

Neuronal avalanches for EEG-based motor imagery BCI: robustness of classification performance & validity of feature selection

Camilla Mannino, Mario Chavez, Pierpaolo Sorrentino, Marie-Constance Corsi

▶ To cite this version:

Camilla Mannino, Mario Chavez, Pierpaolo Sorrentino, Marie-Constance Corsi. Neuronal avalanches for EEG-based motor imagery BCI: robustness of classification performance & validity of feature selection. Journées CORTICO 2024, May 2024, Nancy, France. hal-04621936

HAL Id: hal-04621936 https://hal.science/hal-04621936

Submitted on 24 Jun2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Neuronal avalanches for EEG-based motor imagery BCI: robustness of classification performance & validity of feature selection

Camilla Mannino¹, Pierpaolo Sorrentino², Mario Chavez¹, Marie-Constance Corsi¹

1. Sorbonne Université, Institut du Cerveau – Paris Brain Institute -ICM, CNRS, Inria, Inserm, AP-HP, Hopital de la Pitié Salpêtrière, Paris, France 2. Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005 Marseille, France

INTRODUCTION

Multiple studies reported that 15%–30% of the subjects fail in controlling a BCI device. This is a phenomenon referred to as the "BCI inefficiency"

Among the potential causes of this phenomenon are the features used. Indeed, by relying mostly on local measurements they might not fully capture the brain functioning that also consists in interactions between areas.

To overcome these limitations in recent researchs we proposed to use a metric that captures the dynamic nature of the brain activity: the neuronal avalanches.

RESULTS

CLASSIFICATION PERFORMANCE

AT GROUP LEVEL:

inter-subject variability larger with sensor-space: In

CSP+SVM (71%+/15%) VS ATM+SVM (71% +/-9%). In the source-space: ATM+SVM (80%+/-8%) VS CSP+SVM (75%+/-14%) (t-test, pval<0.05) statistical improvement and a reduced inter-subject variability.

Performance was robust across splits for both CSP+SVM and ATM+SVM pipelines (one-way ANOVA p>0.05), It gives us the possibility to **closely mimic a real-time setup**.

AT SUBJECT LEVEL:

In **sensor-space** CSP+SVM pipeline led to a larger number of subjects with a performance below the chance level, set to 58% here (6 subjects) with respect to ATM+SVM (1 subject). **EEG source-reconstructed** data, ATM+SVM demonstrated superior performance in 12 subjects, whereas the opposite was observed in 3 subjects with CSP+SVM

FOCUS ON ATM PIPELINE Features selected in What we can observe classification algorithm directly from the data DECODING ENCODING **Sensor-space Sensor-space** PRC

method, suggest that working in the **sensor**

jects with the lowest classification performance.

space could provide enough spatial resolu**tion** to perform the classification and to identify the reliably functional connections with a simpler framework than in the source space. Nevertheless, for deeper analysis investigating the involvement of precise regions of interest, work in the **source space would be advisable**.

CONCLUSION

Our observations suggest that the **integration of periodic and aperiodic features** would be a

straightforward way to capture functionally relevant processes. Hence, **neural avalanches** could

be apply to the **design of BCIs** and to improve task classification. The good performance of the

ATMs on the EEG data is relevant to translate our methodology to real-world scenarios.

37% (Highest) vs 6% (Lowest) in Sensor-Space 48% (Highest) vs 24% (Lowest) in Source-Space

This finding suggests a possible way to apply a dimensionality reduction in the features used in the decoding step, to improve classification performance and to reduce the computational time as well.

REFERENCES

1. Alwi Alkaff, et al. Applications of Brain ComputerInterface in Present Healthcare Setting. in Artificial Intelligence vol. 0 (IntechOpen, 2024).

2. Lotte, F. et al. A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces: A 10-year Update. J. Neural Eng. (2018)

3. Corsi, M.-C. et al. Measuring brain critical dynamics to inform Brain-Computer Interfaces. iScience 27, 108734 (2024) 4. Corsi, M.-C. et al. Functional disconnection of associative cortical areas predicts performance during BCI training. NeuroImage 209, 116500 (2020).

