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Abstract
Contextual bandits serve as a theoretical framework to design recommender systems, which often
rely on user-sensitive data, making privacy a critical concern. However, a significant gap remains
between the known upper and lower bounds on the regret achievable in linear contextual bandits
under Joint Differential Privacy (JDP), which is a popular privacy definition used in this setting. In
particular, the best regret upper bound is known to be O

(
d
√
T log(T ) + d3/4

√
T log(1/δ)/

√
ϵ
)

,

while the lower bound is Ω
(√

dT log(K) + d/(ϵ+ δ)
)

. We discuss the recent progress on this
problem, both from the algorithm design and lower bound techniques, and posit the open questions.
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1. Introduction

We consider the setting of contextual bandits, where a policy (aka learner/agent) observes at each
step t a context ct ∈ C, which may be random or not. Having observed the context, the policy
chooses an action at ∈ [K] and observes a reward rt. For the linear contextual bandits, the reward
rt depends on both the arm at and the context ct in terms of a linear structural equation:

rt ≜ ⟨θ⋆, ψ(at, ct)⟩+ ηt. (1)

Here, ψ : [K] × C → Rd is the feature map, θ⋆ ∈ Rd is the unknown parameter, and ηt is
the noise, which may be assumed to be conditionally 1-subgaussian. While decision-making with
Equation (1), all that matters is the value of the feature vector. Thus, the bandit literature often
studies a reduced model (Lattimore and Szepesvári, 2020), where in round t, the policy is served
with the decision set At ⊂ Rd, from which it chooses an action at ∈ At and receives a reward
rt ≜ ⟨θ⋆, at⟩ + ηt, where ηt is 1-subgaussian given A1, a1, R1, . . . ,At−1, at−1, Rt−1,At, and At.
Different choices of At lead to different settings. For example, if At ≜ {ψ(ct, a) : a ∈ [K]}, then
we have a contextual linear bandit, or if At ≜ {e1, . . . , ed}, where (ei)i are the unit vectors of Rd

then the resulting bandit problem reduces to a d-finite armed bandit. For the contextual bandit set-
ting, the contexts can be either generated stochastically, i.e. sampled from some distribution (Gentile
et al., 2014), or assumed to be generated arbitrarily, i.e. adversarial contexts (Abbasi-Yadkori et al.,
2011). Impacts of further assumptions on the context generation, like the margin condition (Gold-
enshluger and Zeevi, 2013) or diversity conditions (Bastani et al., 2021), have also been studied.

Contextual bandits are increasingly used in a wide range of sequential decision-making tasks
under uncertainty, such as recommender systems (Silva et al., 2022), strategic pricing (Bergemann
and Välimäki, 1996), clinical trials (Thompson, 1933). These applications often involve individu-
als’ sensitive data, such as personal preferences, financial situation, and health conditions. Thus,
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these applications naturally invoke data privacy concerns in contextual bandits. For example, let us
consider a contextual bandit algorithm π recommending one of K medicines. On the t-th day, a
new patient ut arrives, and π recommends medicine at ∈ [K]. To recommend a medicine at, the
policy considers the specific medical conditions (or context) of patient ut, i.e. ct. Then, the patient’s
reaction to the medicine is observed. If the medicine cures the patient, the observed reward rt = 1,
otherwise rt = 0. Both the observed reward and the context can reveal sensitive information about
the health condition of patient ut. Thus, the goal of a privacy-preserving bandit algorithm is to
recommend a sequence of medicines (actions) that cures the maximum number of patients while
protecting the privacy of these patients. Since both rewards and contexts are considered private
information, a variation of Differential Privacy (DP) (Dwork et al., 2014), i.e. Joint Differential Pri-
vacy under continuous observations is proposed for contextual linear bandits (Shariff and Sheffet,
2018) and reinforcement learning (Vietri et al., 2020).

Definition 1 (t-neighbouring context-reward sequences) Let S ≜ {(A1, r1), . . . , (AT , rT )} and
S′ ≜ {(A′

1, r
′
1), . . . , (A′

T , r
′
T )} be two context-reward sequences. S and S′ are said to be t-

neighbours if for all s ̸= t it holds that (As, rs) = (A′
s, r

′
s).

Definition 2 (JDP, Shariff and Sheffet (2018)) A randomised policy π for the contextual bandit
problem is (ϵ, δ)-Jointly Differentially Private (JDP) if for any t and any pair of t-neighbouring
context-reward sequences S and S′, and any subset E>t ⊂ At+1 ×At+2 × · · · × AT of sequence
of actions ranging from step t+ 1 to the end of the sequence, it holds that

Pr{π(S) ∈ E>t} ≤ eϵ Pr{π(S′) ∈ E>t}+ δ. (2)

where π(S) represents the sequence of actions recommended by the policy π when interacting with
S, and Pr accounts only for randomness due to the policy.

JDP requires that changing the context at step t does not affect the actions chosen only in the
future rounds (> t), i.e. (at+1, . . . , aT ). In contrast, the standard notion of DP would require that
the change does not have any effect on the full sequence of actions (a1, . . . , aT ), including the one
chosen at step t. Claim 13 of Shariff and Sheffet (2018) shows that the standard notion of DP for
linear contextual bandits, where both the reward and contexts are private, and the full sequence
of actions is published, always leads to linear regret. In addition, in the reduced model based on
decision sets At, the standard notion of DP is ill-defined, as it requires the full sequence of actions
to remain unchanged under any change in context-reward. This is true because two t-neighbouring
context-reward sequences might yield different sets At and A′

t. Since the action at should be an
element of the decision set at step t, i.e. At or A′

t, then it is impossible to expect that at is unchanged
between the two neighbouring cases.

The goal is to design an (ϵ, δ)-JDP policy that minimises the regret, which is defined as

RT ≜ E[
∑T

t=1maxa∈At ⟨θ⋆, a− at⟩].
Now, we ask the questions:

Q1. Is it possible to derive matching upper and lower bounds on regret, for linear contextual bandits,
under JDP and adversarial contexts?
Q2. Is JDP achievable for free in this setting?
Q3. If not, what is the minimal set of assumptions on context generation to achieve JDP for free?

In the following, we first revisit the settings of finite-armed and linear bandits, where the com-
plexity of privacy is well-studied. Then, we present the gap between regret upper and lower bounds
in contextual linear bandits under JDP.
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Table 1: The known complexity of ρ-zCDP for finite and linear bandits (Azize and Basu, 2024).

Bandit Setting Regret Upper Bound Regret Lower Bound

Finite-armed bandits O
(√

KT log(T )
)
+O

(
K√
ρ

√
log(T )

)
Ω
(
max

(√
KT,

√
K
ρ

))
Linear bandits O

(√
dT log(KT )

)
+O

(
d√
ρ log

3
2 (KT )

)
Ω
(
max

(
d
√
T , d√

ρ

))

2. Warm-up: Finite-armed bandits and linear bandits under DP

For a K-armed bandits, the policy chooses at each step t an action at ∈ {1, . . . ,K}, and observes
a reward rt ∼ Pat , where ν = (Pa : a ∈ [K]) is a bandit instance with K reward distributions
(Pa)a∈[K] with unknown means (µa)a∈[K]. For linear bandits, a fixed set of actions A ⊂ Rd is
available at each round, such that |A| = K. The rewards are generated by a linear structural
equation. Specifically, at step t, the observed reward is rt ≜ ⟨θ⋆, at⟩ + ηt, where θ⋆ ∈ Rd is the
unknown parameter, and ηt is a conditionally 1-subgaussian noise. The main difference between
linear bandits, and the reduced model of linear contextual bandits, is that the decision set A is fixed
for linear bandits, while At is allowed to change from step to step. In both settings, the policy does
not have access to any side information, i.e. contexts. The only private quantity is the reward.

Here, a policy is perceived as a randomised algorithm, that yields a sequence of actions given a
sequence of rewards. Thus, DP is extended to bandits w.r.t. the full sequence of actions (Thakurta
and Smith, 2013), in contrast to only the future rounds in JDP. Also, Azize and Basu (2024) dis-
cusses different ways to extend DP to bandits, against interactive and non-interactive adversaries,
and the effect of partial information on these definitions. The complexity of finite and linear bandits
under DP is well understood for both regret (Azize and Basu, 2022, 2024), and best-arm identi-
fication settings (Azize et al., 2023). For pure ϵ-DP, Azize and Basu (2022) provides regret lower
bounds for finite-armed and linear bandits, and also algorithm design techniques to match them. Az-
ize and Basu (2024) complete the picture for a “relaxation” of pure DP, by providing regret upper
and lower bounds for finite and linear bandits, under ρ-zCDP. We present these bounds in Table 1
that shows the price of ρ-zCDP (presented in blue) to be asymptotically negligible. Specifically, the
additional cost due to ρ-zCDP is in poly log(T ), while the non-private regret is in

√
T . The upper

and lower bounds in Table 1 match up to logarithmic factors in T .
Azize and Basu (2022, 2024) share similar techniques to provide matching regret upper and

lower bounds. First, the algorithmic design follows the same blueprint: the algorithms run in adap-
tive and non-overlapping phases. This helps avoid the use of sequential composition, and thus the
tree-based mechanism (aka binary mechanism) (Dwork et al., 2010; Chan et al., 2011). By running
in adaptive and non-overlapping phases, the algorithms utilise the “parallel composition” property
of DP to add less noise, and thus, yield less regret. This has been first used by Sajed and Sheffet
(2019) to provide a DP version of the Successive Elimination algorithm, and then used in multiple
works to create DP versions of Thompson sampling (Hu and Hegde, 2022), UCB (Hu et al., 2021;
Azize and Basu, 2022) and more (Hanna et al., 2022; Li et al., 2022). Then, coupling ideas have
been adapted to the sequential setting to provide lower bounds. Specifically, the main technical re-
sult used is upper bounding the divergence between sequences of actions, under a change of bandit
environment, which are generalisations of the coupling techniques of Karwa and Vadhan (2017).
All these techniques could be seen as a “stochastic” generalisation of the group property of DP,
adapted to the sequential setting.
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3. The gap between upper and lower bounds in contextual bandits under JDP

Existing upper bound. To solve linear contextual bandits under JDP, Shariff and Sheffet (2018)
propose a variant of LinUCB (Abbasi-Yadkori et al., 2011). The LinUCB algorithm applies the
“optimism in the face of uncertainty principle” to the contextual linear bandit setting, i.e. act in
each round as if the environment is as nice as probably possible. At round t, LinUCB first computes
a regularised least-squares estimator θ̂t ≜ V −1

t ut, where Vt ≜ λId+
∑t−1

s=1 asa
T
s is the Gram matrix,

ut ≜
∑t−1

s=1 asrs, and λ > 0. Then, the algorithm builds an elliptic confidence ball Ct ≜ {θ ∈ Rd :

∥θ−θt∥2Vt
≤ βt} around the estimation θ̂t and chooses the arm at = argmaxa∈At

maxθ∈Ct ⟨θ, a⟩ =
argmaxa∈At

〈
θ̂t, a

〉
+
√
βt∥a∥V −1

t
with the highest optimistic reward estimation.

To design a JDP variant of LinUCB, Shariff and Sheffet (2018) estimate the quantities Vt and ut
privately using the tree-based mechanism, since these two quantities are written as sums. Then, the
algorithm accounts for the noise addition by adapting the confidence intervals using the concentra-
tion properties of Gaussian and Wishart noise. We refer to the private estimations of Vt and ut as Ṽt

and ũt. Thus, θ̃t = Ṽ −1
t ũt and at = argmaxa∈At

〈
θ̃t, a

〉
+

√
β̃t∥a∥Ṽ −1

t
. Shariff and Sheffet (2018)

analyse the corresponding algorithm, for adversarial contexts, and show that it yields a regret upper
bound ofO

(
d
√
T log(T ) + d3/4

√
T log(1/δ)/

√
ϵ
)

, where the price of JDP is non-negligible even
asymptotically in T . Given the advancements in other settings, we wonder: is it possible to propose
a JDP variant of LinUCB, such that the price of JDP is negligible for adversarial contexts?

Existing lower bound. He et al. (2022) propose a reduction technique to go from regret lower
bounds to estimation lower bounds in contextual bandits. Then, they instantiate this technique for
contextual bandits under JDP. First, He et al. (2022) uses the coupling technique of Karwa and
Vadhan (2017) to get a lower bound on the estimation error. Then, in Theorem 4.3 of He et al.
(2022), they plug this estimation lower bound in their generic method, to get a regret lower bound
of Ω

(√
dT log(K) + d/(ϵ+ δ)

)
. It is also worth noting that the lower bounds are established

for stochastic contexts, which are still valid lower bounds for adversarial contexts. The mismatch is
significant with the upper bound of Shariff and Sheffet (2018), both in the horizon T and the privacy
parameter δ. Thus, we wonder whether the JDP lower bound of He et al. (2022) can be improved
by plugging sharper estimation lower bounds under JDP? Is it possible to provide a regret lower
bound under JDP using the KL techniques of Azize and Basu (2022, 2024)?

The vantage point. Finally, Azize and Basu (2024) propose AdaC-OFUL, a ρ-zCDP extension of
the Rarely Switching OFUL (Abbasi-Yadkori et al., 2011). AdaC-OFUL shares the same blueprint
of the algorithms discussed in Section 2. It runs in adaptive phases. At the beginning of each
episode, the least square estimate and the confidence ellipsoid are privately computed. Then, for the
whole episode, the same estimate and confidence ellipsoid are used to choose the optimistic action.
An episode ends, i.e. we update the estimates, when we accumulate enough “useful information” in
the Gram matrix, i.e. when its determinant doubles. However, Azize and Basu (2024) only analyse
AdaC-OFUL for public and stochastically generated contexts, and show that the price of privacy
is negligible in this setting. This means that the private context estimation part, i.e. estimating
the Gram matrix privately, remains the bottleneck. This raises the question: Can AdaC-OFUL
be adapted to private and adversarial contexts with a negligible cost in the regret? If not, then
under which conditions on the context generation, i.e. stochastically generated, and with or without
margin/diversity conditions, is it possible to achieve JDP for free?
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