

Comparison of methane yield of a novel strain of Methanothermobacter marburgensis in pure and mixed adapted culture derived from a methanation bubble column bioreactor

Corinne Biderre-Petit, Mbarki Mariem, Damien Courtine, Benarab Yanis, Christophe Vial, Pierre Fontanille, Pascal Dubessay, Misagh Keramati, Isabelle Jouan-Dufournel, Arthur Monjot, et al.

▶ To cite this version:

Corinne Biderre-Petit, Mbarki Mariem, Damien Courtine, Benarab Yanis, Christophe Vial, et al.. Comparison of methane yield of a novel strain of Methanothermobacter marburgensis in pure and mixed adapted culture derived from a methanation bubble column bioreactor. Bioresource Technology, inPress, 406, pp.131021. 10.1016/j.biortech.2024.131021. hal-04621855v2

HAL Id: hal-04621855 https://hal.science/hal-04621855v2

Submitted on 24 Jun2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Highlights

- 1. Archaeal cell enumeration using flow cytometry
- 2. MBA03 association with Methanothermobacter as an indicator of process stability
- 3. O₂ exposure impacts CH₄ yield of the consortium but not that of pure strains
- 4. Two Methanothermobacter marburgensis strains with different growth behaviour

Title

Comparison of methane yield of a novel strain of *Methanothermobacter marburgensis* in pure and mixed adapted culture derived from a methanation bubble column bioreactor

Authors

Biderre-Petit Corinne¹*, Mbarki Mariem¹, Courtine Damien¹, Benarab Yanis¹, Vial Christophe², Fontanille Pierre², Dubessay Pascal², Keramati Misagh², Jouan-Dufournel Isabelle¹, Monjot Arthur¹, Guez Jean Sébastien² and Fadhlaoui Khaled^{1,3}*

¹Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France.

²Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France.

³Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, F-63000 Clermont-Ferrand, France

*For correspondence: Corinne Biderre-Petit, 1 Impasse Amélie Murat - Bat BioA 63178 Aubière (France). E-mail: <u>corinne.petit@uca.fr</u>, Tel: +33(0)473405139; Fax+33 (0)473407670; Khaled Fadhlaoui, 1 Impasse Amélie Murat - Bat BioA 63178 Aubière (France). E-mail: khaled.fadhlaoui@uca.fr, Tel: +33(0)473177959; Fax+33 (0)473407670.

E-mails: C Petit: corinne.petit@uca.fr; M Mbarki: mmbarki342@gmail.com; D Courtine: Damien.courtine@uca.fr; Y Benarab: benarabyanis0@gmail.com; С Vial: christophe.vial@uca.fr; Р pierre.fontanille@uca.fr, Р Fontanille: Dubessay: pascal.dubessay@uca.fr; M Keramati: Misagh.KERAMATI@uca.fr; I Jouan-Dufournel: Isabelle.JOUAN@uca.fr; Monjot: arthur.monjot.pro@gmail.com; JS Guez: А jsebastien.guez@uca.fr; K Fadhlaoui: Khaled.fadhlaoui@uca.fr

Acknowledgements

The authors would like to acknowledge Hermine Billard and Jonathan Colombet, Plateforme CYSTEM – UCA PARTNER (Clermont-Ferrand, France), for their technical support and expertise. We also thank Pr. Cécile Lepère and Dr. Bernard Ollivier for their thorough reviewing of the manuscript.

Funding sources

This work was sponsored by the French government research program through ANR BIOMINTENS [grant number ANR-20-CE05-0031, 2021].

1 Title

2 Comparison of methane yield of a novel strain of Methanothermobacter marburgensis

- 3 in pure and mixed adapted culture derived from a methanation bubble column
- 4 bioreactor
- 5

6 Abstract

- 7 The ongoing discussion regarding the use of mixed or pure cultures of
- 8 hydrogenotrophic methanogenic archaea in Power-to-Methane (P2M) bioprocess
- 9 applications persists, with each option presenting its own advantages and disadvantages.
- 10 To address this issue, a comparison of methane (CH₄) yield between a novel
- 11 methanogenic archaeon belonging to the species Methanothermobacter marburgensis
- 12 (strain Clermont) isolated from a biological methanation column, and the community
- 13 from which it originated, was conducted. This comparison included the type strain M.
- 14 *marburgensis* str. Marburg. The evaluation also examined how exposure to oxygen (O₂)
- 15 for up to 240 minutes impacted the CH_4 yield across these cultures. While both
- 16 *Methanothermobacter* strains exhibit comparable CH₄ yield, slightly higher than that of
- 17 the mixed adapted culture under non-O₂-exposed conditions, strain Clermont does not
- 18 display the lag time observed for strain Marburg.
- 19

20 Keywords

- 21 *Methanothermobacter marburgensis*, mixed hydrogenotrophic methanogenic culture,
- 22 oxygen exposure, multi-omics approaches.
- 23
- 24 1. Introduction

25	To limit the rise of global surface temperature to less than 2°C while meeting the
26	increasing energy demand, a significant global energy transition is urgently needed.
27	However, shifting away from polluting fossil fuels to low-carbon solutions requires
28	technological innovation, particularly in renewable energy. Despite substantial progress
29	in wind, solar, and geothermal energies, challenges such as intermittency, variability,
30	geographical limitations, and storage persist (Tong et al., 2021). Power-To-Gas (P2G)
31	concept has emerged as a promising solution allowing the storage of surplus of
32	renewable energy recovered from the electricity sector in the form of gas (<i>i.e.</i>
33	dihydrogen (H ₂) called P2H and CH ₄ called P2M) (Glenk and Reichelstein, 2022).
34	Currently, P2M offers advantages over P2H. It allows converting electricity into
35	chemical energy and uses existing infrastructure. Considering storability, it has a higher
36	energy density (10 kWh/Nm ³ for CH ₄ versus 3 kWh/Nm ³ for H ₂) and is suitable for
37	long term and large-scale storage (Blanco et al., 2018). P2M systems combine H_2
38	oxidation and carbon dioxide (CO ₂) reduction to produce CH ₄ using either
39	physicochemical or biological catalysts (biomethanation). Comparatively,
40	biomethanation processes require lower temperatures and pressures than
41	physicochemical methanation processes and exhibit increased resistance to chemical
42	contaminants including hydrogen sulfide (H ₂ S), organic acids, or ammonia (Burkhardt
43	et al., 2015).
44	Hydrogenotrophic methanogenic archaea (HMs), which can use H ₂ as a reducing agent
45	for the conversion of CO ₂ into CH ₄ , are key biocatalysts for biomethane (Bellini et al.,
46	2022). They require as much H_2 as the system can provide for CO_2 reduction.
47	Therefore, the competition and sustainable equilibrium between H ₂ producers (<i>e.g.</i>
48	acetogens) and consumers (e.g. HMs) usually result in a very low dissolved H ₂ partial

49	pressure $(p(H_2))$ to maintain a balanced operation of the entire microbiological
50	community. However, numerous abiotic and biotic factors can affect this equilibrium.
51	From a thermodynamical perspective, external H ₂ provision strongly favours
52	hydrogenotrophic methanogenesis. But a sudden increment of $p(H_2)$ can enable the
53	homoacetogenic pathway to outcompete the hydrogenotrophic methanogenesis (Treu et
54	al., 2018; Tsapekos et al., 2022). In addition, temperature, pH, H ₂ /CO ₂ ratio, H ₂ supply,
55	etc, are all abiotic factors that can influence CH4 content and microbial community
56	during in-situ biological biogas upgrading (Rachbauer et al., 2017; Wahid et al., 2019).
57	Among HMs, the main actors in biomethanation processes comprise members of the
58	genera Methanoculleus, Methanothermobacter, Methanobacterium, or Methanosarcina.
59	The relative abundance of these genera in biogas upgrading reactors varies based on
60	factors such as temperature, pH, carbon monoxide (CO), etc (Thema et al., 2021; Xu et
61	al., 2020). In thermophilic conditions, Methanothermobacter was shown to be
62	predominant in the mixed cultures due to its favorable growth at higher temperatures
63	(Kaster et al., 2011; Szuhaj et al., 2021). Within this genus, Methanothermobacter
64	thermautotrophicus and Methanothermobacter marburgensis, largely used as model
65	organisms, have already been implemented as biocatalysts in large-scale industrial
66	processes because they are robust, and reach high cell densities, and CH ₄ production
67	rate (Seifert et al., 2014; Pfeifer et al., 2021; Thema et al., 2021, Kaul et al., 2022).
68	Two main approaches can be employed for biomethanation, <i>i.e.</i> using pure cultures or
69	enriched mixed cultures, each with its own advantages and drawbacks (Rachbauer et al.,
70	2017; Rafrafi et al., 2021; Rittmann et al., 2018). Indeed, using single self-replicating
71	catalysts would prevent oxidation of H ₂ by other hydrogenotrophic microorganisms,
72	thereby avoiding a loss of efficiency in biogas upgrading. It would also allow for better

system variability and behaviour prediction (Martin et al., 2013). On the other hand, 73 74 using consortia would be more efficient, leading to larger CH₄ yields (Bellini et al, 75 2022, Paniagua et al., 2022). Other advantages of employing consortia include greater robustness and short recovery time upon starvation/excess input gas rate and 76 77 oxygenation. However, managing mixed cultures often requires increased control and a 78 thorough understanding of how microbial composition impacts the system (Paniagua et 79 al., 2022). Therefore, despite the growing number of studies in this field, the question of 80 whether pure or mixed cultures are more suitable for biomethanation processes remains unresolved. To address this question, a comparison of the performance of both HM pure 81 82 cultures and reactor microbiomes from which HMs have been isolated appears essential. This study aims to evaluate the methanation efficiency of a new HM affiliated to the M. 83 84 *marburgensis* species (strain Clermont) isolated from a bubble column reactor. Its 85 methanogenic performance was compared not only with its native consortium but also with the type strain, *i.e. M. marburgensis* strain Marburg (hereinafter referred to as 86 strain Marburg). This comparison was extended under oxidative stress, a common 87 88 occurrence in biomethanation processes.

89

90 2. Material and Methods

91 2.1. Laboratory-scale methanation reactor

The mixed adapted culture used in this study was collected from a 3.5 L bubble column reactor, six weeks after its inoculation with 300 mL of digestate from a thermophilic industrial-scale biogas plant treating livestock effluent and agri-food industry wastes that operates between 52 and 54°C (Methelec, Ennezat, France). Briefly, the reactor contained 2.7 L of basal anaerobic (BA) culture medium prepared as previously reported (Bu et al., 2018) and reduced by introducing 0.4 g/L of sodium sulfide nanohydrate (Na₂S.9H₂O). The H_2/CO_2 gas mixture was set at a ratio of 4:1 (v/v) with a

- 99 mass flowmeter (SLA5800, Brooks Instrument, Hatfield, USA). Flow rates ranged from
- 100 0.29 to 0.44 NL.min⁻¹. The temperature was set to 55°C using a thermostatic bath (Eco
- 101 RE1225 silver, Lauda, Königshofen, Germany).
- 102 Volatile fatty acids (VFAs) in the six-week mixed adapted culture were determined
- using a liquid chromatograph (1260 HPLC, Agilent, Santa Clara, USA). The HPLC
- apparatus was equipped with two columns (Rezex ROA 300 x 7.8 nm, Phenomenex,
- 105 Torrance, USA) mounted in serial in an oven (50°C) and coupled with a refractive index
- 106 detector. The mobile phase was a 2 mM sulfuric acid in ultra-pure water pumped at 0.7
- 107 mL.min⁻¹ and 70 bars. For the analysis, 2 mL of sample were mixed with 125 μ L of
- 108 Ba(OH)_{2.8} H₂O (0.3 M) and 125 μL of ZnSO_{4.7} H₂O (5% w/v) before a 5 min
- 109 centrifugation at 10000 g. Samples were filtered through 0.2 µm nylon filters before
- 110 being injected in the HPLC apparatus.
- 111 Measurements of archaeal and bacterial abundance (quantitative real-time PCR),
- 112 performed on the six-week sample mixed adapted culture, revealed a dominance of
- archaea over bacteria with an archaea/bacteria ratio of five $(1.0 \ 10^9 \text{ archaeal cells/mL})$
- 114 versus $2.2 \ 10^8$ bacterial cells/mL).

115 2.2. Microbial community analysis of the mixed adapted culture

- 116 Two mL of the six-week mixed adapted culture were centrifuged at 10000 g at room
- 117 temperature (RT) for 10 min and total genomic DNA (gDNA) was extracted from the
- 118 pellet using a Nucleo Spin Soil kit in accordance with manufacturer's instructions
- 119 (Machery Nagel, Düren, Germany). Then, gDNA was quantified using a
- 120 spectrophotometer (NanoDrop 1000, Thermo Fisher Scientific, USA). Subsequently,
- 121 the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA (rRNA) genes was

amplified using the primer set F343 (5'-

123 CTTTCCCTACACGACGCTCTTCCGATCTACGGRAGGCAGCAG-3') - R784 (5'-

124 GGAGTTCAGACGTGTGCTCTTCCGATCTTACCAGGGTATCTAATCCT-3')

125 (Carmona-Martinez et al., 2015) while the V4-V5 region of the archaeal 16S rRNA

126 genes was amplified with the primer set F504-519 (5'-

- 127 CTTTCCCTACACGACGCTCTTCCGATCTCAGCMGCCGCGGKAA-3') and R910-
- 128 928 (5'-GGAGTTCAGACGTGTGCTCTTCCGATCTCCCGCCWATTCCTTTAAGT-

129 3') (Braga Nan et al., 2020), primers containing adapters and barcodes for Miseq

130 sequencing. PCR reactions contained TaqTM TaKaRa Premix, 1 μ M of each primer, 200

131 µM of each deoxynucleoside triphosphate (dNTP), 0.625 U TaKaRa Taq polymerase

132 (TakaRa Inc., France), nuclease free-H₂O and 50 to 100 ng gDNA template in a total

133 volume of 50 μ L. For both bacteria and archaea, after a denaturation step of 1 min at

134 98°C, PCR steps at 98°C for 1 min, 59°C for 40 s, and 72°C for 1 min were repeated 35

times, followed by an elongation step at 72°C for 10 min in a Mastercycler® thermal

136 cycler (Eppendorf, Hamburg, Germany). Amplicon size was checked by Agilent High

137 Sensitivity DNA Kit on 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,

138 USA). Amplicon libraries were prepared and sequenced by the GenoToul platform

139 (Toulouse, France) with an Illumina MiSeq sequencer to generate 2 x 300 bp paired-end

140 reads. Bacterial and archaeal reads were separately processed using a homemade

141 bioinformatics pipeline. Briefly, paired reads were merged using the VSEARCH

142 v2.18.0 (Rognes et al., 2016) and then trimmed and filtered with Cutadapt (Martin,

143 2011) to minimize the effects of random sequencing errors as follows: (i) only merged

reads with a length 200-500 bp were kept, (ii) paired reads with sequencing errors in

145 primers were discarded and (iii) primer sequences and nucleotides with Phred quality

scores upper than 30 were trimmed. Deletion of chimeric sequences and clusterization
were carried out using VSEARCH (Rognes et al., 2016) and operational taxonomic
units (OTUs) that accounted for <0.005% of the total set of sequences were discarded
(Bokulich et al., 2013). The taxonomic assignment was performed against the SILVA
v138.1 SSU NR99 database using the global alignment script in VSEARCH (Pruesse et al., 2007; Rognes et al., 2016).

152 2.3. Hydrogenotrophic methanogenic archaea isolation and analytical procedures

153 A serum vial (Dutscher, Bernolsheim, France) containing 50 ml of BA medium (110

154 mL in capacity) was inoculated with an aliquot of the six-week mixed adapted culture

155 (10% v/v). After BA medium autoclaving, and prior to its inoculation, dinitrogen (N_2)

filling the head space was replaced by H_2/CO_2 (4:1, v/v) gas mixture from a gas

157 cylinder (Westfalen, France) at 2 bars. Liquid cultivation was conducted at 55°C in the
158 dark, without agitation.

159 HM isolation was performed *via* successive dilution to extinction series in Hungate

160 tubes (16.5 mL capacity) containing 5 mL of either liquid or solid BA medium (2% agar

161 w/v; roll-tube technique (Hungate, 1969)). Headspace composition was determined by

162 gas chromatography (3000A MicroGC, Agilent Technologies, Santa Clara, CA, USA)

163 equipped with two capillary columns (one MS-5A column associated with a backflush

164 injector and one PorapLOT Q column associated with a standard injector) and Soprane

software v3.5.2 for the analysis. The microGC used argon as gas carrier and the

temperature of the columns and injectors were at 50 and 60°C, respectively.

167 The purity of HMs was checked by microscopic observations (Leica DM IRB inverted

168 microscope equipped with a Hamamatsu C13440 camera and Zen Blue v3.1 software)

and by adding yeast extract (2 g/L) and glucose (20 mM final concentration) to the BA

170	medium to confirm the absence of fermentative bacteria. Subsequently, HM taxonomic
171	identification was performed by 16S rRNA gene sequence amplification using the
172	universal primer set Arch21F-1492R (Nakagawa et al., 2006) followed by sequencing
173	(Eurofins Genomics, Cologne, Germany). For the ultrastructural characterization, the
174	archaeal cells in 1% (v/v) formaldehyde fixed samples were collected by centrifugation
175	at 20000 g for 20 min at 14°C directly onto 400-mesh electron microscopy copper grids
176	covered with carbon-coated Formvar film (AO3X, Pelanne Instruments, Toulouse,
177	France). Particles were over contrasted with 2% uranyl salts and rinsed three times in
178	distilled deionized water before being dried at RT. Subsequently, the characterization
179	was performed with a transmission electron microscope using a JEOL 2100
180	(Akishikma, Tokyo, Japan; Plateforme CYSTEM, UCA Partner, Clermont-Ferrand,
181	France). The microscope was operated at 80 kV, and the images were recorded with an
182	Gatan CMOS RIO 9 camera (Gatan Ametek, Pleasaton, USA) at 3072 x 3072 pixels.
183	Since all HMs belonged to the same strain, one representative, called
184	Methanothermobacter marburgensis strain Clermont (hereafter referred to as strain
185	Clermont), was deposited in the Deutsche Sammlung von Mikroorganismen und
186	Zellkulturen (DSMZ) culture collection (accession number DSM 34405).
187	2.4. Cultivation procedures
188	The hydrogenotrophic and methanogenic activities of strain Clermont, the mixed
189	adapted culture, and M. marburgensis strain Marburg obtained from DSMZ (DSM
190	2133), which is the closest relative of strain Clermont (99.5% 16S rRNA gene identity),

- 191 were investigated under reduced conditions. Cultures were conducted in serum vials
- 192 containing 50 mL of BA medium as described above (Paragraph 2.3). All inoculations
- 193 were performed with the same number of archaeal cells, *i.e.* 5.7×10^5 cells. Briefly, an

194 aliquot of 1 mL of pure or mixed cultures at the end of the exponential growth phase 195 was diluted to 1:10 and directly used for flow cytometry analysis (BD LSR Fortessa X-20; BD Biosciences, CA, USA). Two lasers (Violet, 405 nm, 50 mW and Blue, 488 nm, 196 60 mW) were used for F420 cofactor excitation (autofluorescence of archaeal cells) and 197 198 morphological characterization, respectively. The threshold was set at 200 on the F420 cofactor parameter. Data were acquired during 60 sec at a constant flow rate of 29.85 199 µL/min and processed using FACSDivA 9 software (BD Biosciences). 200 Cultures subjected to oxidative stress were inoculated and grown in medium devoid of 201

chemical reducing agents, namely Na₂S.9H₂O and resazurin, generally used to reinforce 202 203 anaerobiosis and detect any potential oxidation, to prevent O₂ reduction during the exposure. Indeed, their presence would have reduced the effective amount of O₂ during 204 205 oxic stress. Anaerobiosis prior to oxic stress was confirmed by microGC. After reaching 206 the end of the exponential growth phase in anaerobic conditions, the cultures were transferred to sterile beakers in a laminar flow hood and placed under high stirring 207 speed to be exposed to atmospheric levels of O_2 (21%) for durations of 0, 10, 30, 60, 90, 208 209 120, and 240 min. The quantity of dissolved O_2 measured in the medium was 10 mg/L \pm 210 0.32 mg/L from 1 min up to 240 min of exposure (portable oximeter, Laqua 200 series, 211 Horiba Scientific, Japan). Subsequently, fresh BA medium containing a reducing agent 212 was inoculated as above. The absence of O_2 was checked by gas chromatography before 213 incubation.

214 All experiments were conducted in biological triplicates. During growth, gas

composition in the headspace was monitored daily by gas chromatography. Statistical

analysis of CH₄ yield during growth was conducted using the Student t-test, one-way or

217 two-way ANOVA (culture × incubation days) followed by Tukey's test under normality

218 and homoscedasticity assumption. The level of significance was set at α =0.05. All 219 statistical analyses were performed using the R Stats package v4.2.2. 220 2.5. DNA extraction for whole genome sequencing of the *M. marburgensis* strain 221 Clermont 222 A culture of strain Clermont (50 mL) in exponential growth was concentrated by centrifugation for 15 min at 10000 g at RT. gDNA was extracted from the pellet using a 223 224 standard phenol-chloroform method (Biderre-Petit et al, 2024) before quantification on a Qubit Fluorometer (ThermoFisher Scientific, USA) by using QubitTM dsDNA HS 225 assay kit in accordance with manufacturer's instructions. Subsequently, 300 ng of 226 gDNA were sequenced using Illumina HiSeq technology (2×150 bp; Eurofins 227 Genomics, Constance, Germany). Raw paired-end reads were quality-filtered with fastp 228 v0.23.4 (Chen et al., 2018). De novo assembly of whole genome sequencing data was 229 performed using Unicycler v0.5.0 (Wick et al., 2017) with default settings. In the 230 231 following step, the short contigs with viral/transposable elements (BLASTX search against non-redundant database) and fragmented rRNA operons (barrnap v0.9 and 232 233 parameter "--kingdom arc", https://github.com/tseemann/barrnap) were filtered out. 2.6. Phylogenomic tree construction 234 235 Representative genomes of Methanothermobacterium, Methanonatronarchaeia, 236 Archaeoglobi, Methanobacteria, Methanococci, Methanomicrobia, Methanopyri, 237 Thermococci, and Halobacterium were downloaded from the National Center for Biotechnology Information (NCBI) RefSeq. Subsequently, a genome-based 238

- phylogenetic tree was generated with the program GToTree v1.8.2 as reported in
- 240 Biderre-Petit et al. (2024), using an archaea-specific gene set composed of 73 markers.
- 241 Individual gene alignments were concatenated to construct a species tree using IQ-

- 242 TREE v2.2.3 with the evolution model LG+F+I+R10 and parameters "-B 2000 --alrt
- 243 2000 --bnni" (Minh et al., 2020). *Halobacterium* was used as an outgroup.

244 2.7. Pan-genomic analysis and other genome characterizations

- 245 Pan-genomic analysis of the Marburg clade (*i.e.* including the strains Marburg,
- 246 Clermont and their closest relatives-strain KEPCO-1 (assembly accession
- 247 GCA_008033705.1), strain K4 (GCA_022014235.1), strain THM2
- 248 (GCA_009917665.1), bin GMQ_75_MeOH_H2_bin_21 (GCA_030055425.1) and bin
- JZ-3_D_bin_25 (GCA_030055435.1); seven genomes in total) was carried out using the
- 250 "pan-genomics workflow of anvi'o v7.1 (Delmont and Eren, 2018). The average
- 251 nucleotide identity (ANI) was also calculated through anvi'o and to complete the
- 252 results, in silico DNA-DNA hybridization (isDDH) was computed using Genome-to-
- 253 Genome Distance Calculator v2.1 with formula 2 as previously recommended (Meier-
- Kolthoff et al., 2013). Genome synteny was visualized by NGenomeSyn v1.41 (He et
- 255 al., 2023).
- 256

257 3. Results and discussion

258 3.1. Overview of microbial community diversity in a bubble column reactor

259 Metabarcoding procedure was used to separately address the archaeal and bacterial

260 diversity present in the six-week adapted culture. Although less abundant than archaea,

bacteria showed much higher diversity, with 833 OTUs (19403 reads in total) versus 42

262 OTUs (28482 reads), respectively, which is consistent with what is generally described

for mixed cultures (Xu et al., 2020). For the archaea, the four most abundant OTUs

264 (>1% relative abundance in the sample) covered 96.1% of the community (See

supplementary material). Methanothermobacter genus represented 98.5% of the

archaeal community in terms of reads, followed by *Methanobacterium* (1.2%),

267 Methanomassiliicoccus (0.09%) and Methanoculleus (0.01%) (Fig. 1A). This finding closely aligns with previous research, which has shown that Methanothermobacter is 268 the dominant genus in the hydrogenotrophic methanogenic consortium of ex-situ 269 270 methanation systems at 55°C (Xu et al., 2020). Within this genus, 98.9% of the reads are affiliated to the *M. marburgensis* species (>97% 16S rRNA gene sequence identity). 271 272 Regarding bacteria, the most represented phyla in terms of reads were *Bacillota* (ex Firmicutes, 91.8% of total bacterial reads) followed by Pseudomonadota (ex 273 Proteobacteria, 6.8%) (Fig. 1B), in agreement with previous studies (Bassani et al., 274 2015; Campanaro et al., 2020). The 11 most abundant OTUs (>1% relative abundance 275 in the sample) covered 48.7% of the bacterial community (See supplementary material) 276 277 and mostly affiliated with the genus *Haloplasma* (35.2% of all bacterial reads) and the 278 class Limnochordia (33.2%) in Bacillota. The most abundant taxon, *i.e. Haloplasma*, is currently represented by only one 279 representative, a halophilic bacterium isolated from a deep-sea brine lake, named H. 280 281 contractile. The growth limit of this bacterium was determined at 44°C (Antunes et al, 282 2008), which is not in accordance with the temperature used in this study, *i.e.* 55° C. However, although SILVA classifies this predominant taxon in the genus Haloplasma, 283 284 the sequence used as reference and which shows 99% identity with OTUs affiliated to 285 Haloplasma (accession number FN436037, see supplementary material), displays only up to 89% sequence similarity with *Haloplasma* using BLAST N against the nucleotide 286 287 database in NCBI. This may be due to the low number of sequences representative of

the genus *Haloplasma* and also more generally of the family and order. Indeed, the

289 order Haloplasmatales currently includes a single family -Haloplasmataceae- which

290 includes a single genus and species: H. contractile. This most likely not only leads to an 291 inaccurate affiliation at the genus level, but also potentially at the family level. Consequently, the representatives that will be discovered for this group of 292 293 Haloplasmatales will most certainly allow significant changes to the current description 294 made for the single type species. 295 The second most abundant taxon, the *Limnochordia* class, is frequently observed in full-296 size and laboratory-scale thermophilic biogas reactors (Campanaro et al., 2020). The main representative in this class was MBA03 (14.6% of all bacterial reads). 297 Laguillaumie et al. (2022) suggested that MBA03, referenced as a carbohydrate 298 299 fermentative taxon, would grow on lysis products and prevent side products, such as VFAs, from accumulating in the reactor. The low amount of VFAs measured in the 300 reactor could therefore be explained, at least in part, by the MBA03 abundance. This 301 302 low quantity also indicates that hydrogenotrophic methanogenesis has not shifted towards homoacetogenesis. Moreover, MBA03 association with Methanobacterium was 303 described as an indicator of process stability (Laguillaumie et al., 2022). Its association 304 305 with Methanothermobacter could therefore still be such an indicator. 306 In addition to MBA03, two other bacteria known to be syntrophic acetate oxidizing, *i.e.* 307 *Tepidiphilus (Pseudomonadota)* and norank order D8A-2 (*Bacillota*), showed 308 significant relative abundance, with 2.9% and 3.6% of all bacterial reads, respectively. 309 These results are in line with previous studies, which showed that these taxa were 310 abundant in thermophilic samples and worked synergistically with HMs, providing the 311 substrates they need towards biogas production (Tang et al., 2008; Xu et al., 2020). An anaerobic digestion system seeded from manure samples (which is comparable to what 312 313 was used for the bioreactor, *i.e.* a biogas plant treating livestock effluent) and running at

314 55°C (Sun et al., 2015), was shown to be populated with similar microbial taxa. This

supports the view that temperature, but also inoculum, are crucial variables in

316 determining the structure of microbial consortia in hydrogenotrophic methanogenic

317 mixed cultures (Xu et al., 2020).

318 3.2. Isolation and genome sequencing of *M. marburgensis* strain Clermont

- 319 The strain isolated from the bioreactor belonged to the genus *Methanothermobacter* and
- showed >99.5% identity with strain Marburg 16S rRNA gene sequence (accession
- number NR_102881.1). It was named *M. marburgensis* strain Clermont and deposited
- in the DSMZ collection (DSM 34405). This strain was rod-shaped (\sim 5 µm long and 0.6
- 323 µm wide) and non-motile (See supplementary material).
- 324 The draft genome of strain Clermont (~330-fold coverage), featuring six contigs (from
- ~ 21.9 to 776.9 kb), had a total length of ~ 1.72 Mb, a N50 contig length of 593 kb, and
- a G+C content of 48.7%. The number of coding DNA sequences was 1805 with two
- 327 16S-23S rRNA gene clusters, three 5S rRNA genes and 37 transfer RNA (tRNA) genes.
- 328 No extra-chromosomal genetic elements were detected. Genome fragmentation was
- 329 mainly due to the high conservation degree between rRNA operons and transposase
- sequences that hamper the assembly tool to resolve these loci. Phylogenomic analysis
- 331 confirmed the close relationship of strain Clermont with strain Marburg but also with
- three other *Methanothermobacter* strains (*i.e.* KEPCO-1, THM_2, and K4) and two bins
- 333 (*i.e.* GMQ_75_MeOH_H2_bin_21 and JZ-3_D_bin_25). They all formed a clade
- 334 (hereinafter referred to as Marburg clade) within the genus *Methanothermobacter* (Fig.
- 2A). Their genomes revealed a high degree of synteny (Fig. 2B). Based on ANI and
- isDDH values, strains Clermont, Marburg, KEPCO_1 and THM_2 formed a single
- species (ANI \geq 96% and DDH ~70%; thresholds proposed for species definition

338 (Lindsey et al., 2023)) while strain K4 and the bins represented three novel

339 *Methanothermobacter* species (Fig. 2C).

340 At the pan-genome level, the Marburg clade comprised 2076 gene clusters (GCs) with

1564 (75.3%) forming the core genome (shared by all seven genomes), 324 (15.6%)

- constituting the accessory genome (specific to a subset of genomes) and 188 (9.1%)
- being unique to a single genome (Fig. 2C). The core genome contained the full suite for
- 344 proteins encoded to carry out the hydrogenotrophic pathway. Members of this clade can
- assimilate acetyl-coA via the CO-methylating acetyl-CoA synthase from methyl-
- 346 tetrahydromethanopterin. In strain Marburg, this complex was also shown to play a key
- role in CO oxidation (Diender et al., 2016). Moreover, the presence of all genes
- 348 involved in carboxydotrophic methanogenesis in all Marburg clade genomes suggests
- they are also able to grow with CO as the sole carbon source. A protein of the carbonic
- anhydrase family (Cah), known to potentially convert bicarbonate into bioavailable
- 351 CO₂, was also present. Finally, as strains Clermont and Marburg were unable to grow
- 352 on formate as an energy source (data not shown), the function of the formate
- dehydrogenase (FdhAB) is likely to reduce CO₂ to formate for its use in the purine
- 354 synthesis (Kaster et al, 2011).

355 3.3. Comparison of CH₄ yields between the pure cultures-strains Clermont and

356 Marburg-, and the mixed adapted culture

357 3.3.1. CH₄ yield during growth under reduced conditions

358 The isolation of a new strain for the species *M. marburgensis* (strain Clermont) from a

- reactor microbiome enabled to compare CH₄ yield not only between two strains of the
- 360 same species but also between strain Clermont and the community from which it was
- isolated. In this respect, a flow cytometry method based on the cofactor F420

362 fluorescence (Lambrecht et al., 2017) was used for quantification and each culture was inoculated with 5.7 x 10⁵ archaeal cells. The maximum specific growth rates (μ_{MAX}) 363 were 0.017, 0.03 and 0.02 h⁻¹ for strain Clermont, Marburg and the mixed adapted 364 culture, respectively. 365 366 Methanogenic activity was observed at one-day post-inoculation for strain Clermont and the mixed adapted culture (Fig. 3). CH₄ yield increased linearly until total H₂ 367 368 conversion, reaching a maximum value after six days of growth, corresponding to $54.3\% \pm 1.4\%$ CH₄ in the gas fraction for strain Clermont and to $49.3\% \pm 2.6\%$ for the 369 mixed adapted culture (p<0.05). This aligns with the view that the use of unique, self-370 replicating catalysts would avoid a loss of efficiency in biogas upgrading due to H₂ 371 oxidation by other hydrogenotrophic microorganisms (Martin et al, 2013). 372 For strain Marburg, methanogenic activity was observed three days post-inoculation, 373 374 *i.e.* with a two-day lag phase compared with strain Clermont. Total H_2 conversion was observed after eight days of growth, resulting in a maximum of $53.9\% \pm 2.4\%$ CH₄ in 375 the gas fraction, a proportion similar to that obtained for strain Clermont (Fig. 3, 376 377 p>0.05). Consequently, the medium used in this study (*i.e.* BA medium), which is that 378 used for the isolation of strain Clermont, favoured the growth behaviour of the latter but not its CH₄ yield. As the two pure strains are genetically very close, one explanation of 379 380 the two-day delay for strain Marburg may be, in part, attributed to their accessory 381 genomes. Indeed, the genome of strain Clermont contains 121 genes that are not present in strain Marburg while the genome of strain Marburg contains 49 genes not found in 382 383 strain Clermont, all mostly organized into clusters (the largest contained 34 genes for strain Clermont while 11 genes, for strain Marburg; See supplementary material). 384 385 Among these accessory genes, those encoding glycosyltransferases associated with the

synthesis and glycosylation of cellular surface proteins (*e.g* RafB, WcaA, WcaE) were

387 more abundant in strain Clermont (See supplementary material). Kaster et al. (2011)

suggested that these protein families might be partially responsible for the observed

389 differences in growth rate phenotype between strain Marburg and *M*.

390 *thermautotrophicus*. If this hypothesis proves to be true, it could also partly account for

the observed phenotypic differences between strains Clermont and Marburg.

392 3.3.2. CH₄ yield following oxidative stress

393 As methanation reactors can experience episodic oxygenation (accidents, maintenance

operations), it is essential to assess the HMs ability to maintain CH₄ yield after exposure

to O₂. This has never been done for *Methanothermobacter* species, either in pure or

396 mixed cultures. Interestingly, the results showed that O₂ exposure had no impact on the

397 pure strains (*i.e.* strains Clermont and Marburg) as they exhibited the same CH₄ yield

levels when all H₂ was consumed (*e.g.* $51.2\% \pm 1.6\%$ and $55.3\% \pm 2.3\%$, respectively;

after 240 min of O_2 exposure, Fig. 4B), whatever the time of exposure to O_2 , *i.e* from 0

400 min up to 240 min (p>0.05; See supplemental material). The O₂ resistance capacity of

401 these strains is suspected to be mediated by the presence in their genome of energy-free

402 reactive oxygen species (ROS) scavengers of various protection enzymes, *i.e.*

403 superoxide dismutase (SOD), superoxide reductase (SOR), F₄₂₀H₂₀ oxidase (FprA),

404 peroxiredoxin (PRX), and rubrerythrin (Rbr) (Fig. 5), as previously reported for other

405 methanogens (Liu et al., 2022). However, no catalase-encoding gene was found, similar

406 to what was observed by Lyu and Lu (2018) in the Class I methanogens (*i.e.*

407 *Methanobacteriales, Methanocellales and Methanopyrales*) to which

408 *Methanothermobacter* spp. belongs. In all Marburg clade genomes, most ROS

409 scavengers co-localize with genes encoding protection enzymes like rubredoxin (Rub,

410 electron providers to SOD and SOR), ferritin (FtnA, iron detoxifier during transient O₂) 411 (Fig. 5) and F390-synthetase which is thought to have a regulatory function in O_2 stress response (Vermeij et al., 1997). As most of these genes are up-regulated during the 412 growth of strain Marburg on CO, it was hypothesized that they respond to redox stress 413 414 in general, and not just to O₂ stress, or are regulated by universal stress proteins (Diender et al., 2016). Moreover, strain Marburg still shows the same two-day lag 415 416 compared with strain Clermont. Its growth behaviour is therefore not altered by oxic stress either. 417 Conversely, exposure to O_2 has an impact on CH_4 yield by the mixed adapted culture. 418 Indeed, it exhibited a slight increase from the sixth day of incubation, when all H₂ was 419 420 converted, with 50.1% \pm 1.6% CH₄ yield at 240 min of O₂ exposure (Fig. 4A) versus $46.4\% \pm 2.9\%$ at 0 min (p<0.02; See supplementary material), thereby reaching the 421 422 level of the pure cultures (Fig. 4B). This gap in CH_4 yield could be associated with the inhibition of hydrogenotrophic microorganisms, other than strain Clermont, present in 423 the mixed adapted culture. 424

425

426 **4.** Conclusions

427 Although methanogenesis is well studied, gaps remain in the understanding of

428 biomethanation, particularly regarding the choice between pure and mixed cultures in an

429 energy bioprocess. Comparative analysis of bioenergetic performances between strain

- 430 Clermont and its native consortium shows that the pure strain outperforms the
- 431 consortium in CH₄ yield under reduced conditions. However, this is no longer the case
- 432 after exposure to O₂. Furthermore, although both pure strains show the same CH₄ yield,

433	strain Clermont displays a higher reaction speed than the type strain of its species under
434	the culture conditions used in this study.

436 E-supplementary data of this work can be found in online version of the paper.

437

438 Data availability

- 439 The raw reads of the 16S rRNA gene sequencing and genomic data were deposited at
- the NCBI database under the BioProject PRJNA1044399. M. marburgensis strain
- 441 Clermont was deposited in the DSMZ German Collection of Microorganisms under
- 442 accession number DSM 34405. Although the strain is not in the DSMZ catalogue or
- 443 website, it is available on demand.

444

445 **References**

- 446 Antunes, A, Rainey, F.A., Wanner, G., Taborda, M., Pätzold, J., Nobre, M.F., da Costa,
- 447 M.S., Huber, R., 2008. A new lineage of halophilic, wall-less, contractile
- bacteria from a brine-filled deep of the Red Sea. J. Bacteriol. 190, 3580-3587.
- 449 https://doi.org/ 10.1128/JB.01860-07
- 450 Bassani, I., Kougias, P.G., Treu, L., Angelidaki, I., 2015. Biogas Upgrading via
- 451 Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank
- 452 Reactors at Mesophilic and Thermophilic Conditions. Environ. Sci. Technol. 49,
- 453 12585–12593. https://doi.org/10.1021/acs.est.5b03451
- 454 Bellini, R., Bassani, I., Vizzarro, A., Azim, A., Vasile, N., Pirri, C., Verga, F., Menin,
- 455 B., 2022. Biological Aspects, Advancements and Techno-Economical

456	Evaluation of Biological Methanation for the Recycling and Valorization of
457	CO2. Energies 15, 4064. https://doi.org/10.3390/en15114064
458	Biderre-Petit, C., Courtine, D., Hennequin, C., Galand, P.E., Bertilsson, S., Debroas, D.,
459	Monjot, A., Lepère, C., Divne, A., Hochart, C., 2024. A pan-genomic approach
460	reveals novel Sulfurimonas clade in the ferruginous meromictic Lake Pavin.
461	Mol. Ecol. Resour. e13923. https://doi.org/10.1111/1755-0998.13923
462	Blanco, H., Nijs, W., Ruf, J., Faaij, A., 2018. Potential of Power-to-Methane in the EU
463	energy transition to a low carbon system using cost optimization. Appl. Energy
464	232, 323-340. https://doi.org/10.1016/j.apenergy.2018.08.027
465	Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills,
466	D.A., Caporaso, J.G., 2013. Quality-filtering vastly improves diversity estimates
467	from Illumina amplicon sequencing. Nat. Methods 10, 57–59.
468	https://doi.org/10.1038/nmeth.2276
469	Braga Nan, L., Trably, E., Santa-Catalina, G., Bernet, N., Delgenès, JP., Escudié, R.,
470	2020. Biomethanation processes: new insights on the effect of a high H2 partial
471	pressure on microbial communities. Biotechnol. Biofuels 13, 141.
472	https://doi.org/10.1186/s13068-020-01776-y
473	Bu, F., Dong, N., Kumar Khanal, S., Xie, L., Zhou, Q., 2018. Effects of CO on
474	hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic
475	conditions: Microbial community and biomethanation pathways. Bioresour.
476	Technol. 266, 364–373. https://doi.org/10.1016/j.biortech.2018.03.092
477	Burkhardt, M., Koschack, T., Busch, G., 2015. Biocatalytic methanation of hydrogen
478	and carbon dioxide in an anaerobic three-phase system. Bioresour. Technol. 178,
479	330-333. https://doi.org/10.1016/j.biortech.2014.08.023

480	Campanaro, S., Treu, L., Rodriguez-R, L.M., Kovalovszki, A., Ziels, R.M., Maus, I.,
481	Zhu, X., Kougias, P.G., Basile, A., Luo, G., Schlüter, A., Konstantinidis, K.T.,
482	Angelidaki, I., 2020. New insights from the biogas microbiome by
483	comprehensive genome-resolved metagenomics of nearly 1600 species
484	originating from multiple anaerobic digesters. Biotechnol. Biofuels 13, 25.
485	https://doi.org/10.1186/s13068-020-01679-y
486	Carmona-Martínez, A.A., Trably, E., Milferstedt, K., Lacroix, R., Etcheverry, L.,
487	Bernet, N., 2015. Long-term continuous production of H ₂ in a microbial
488	electrolysis cell (MEC) treating saline wastewater. Water Res. 81, 149–156.
489	https://doi.org/10.1016/j.watres.2015.05.041
490	Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ
491	preprocessor. Bioinformatics 34, i884-i890.
492	https://doi.org/10.1093/bioinformatics/bty560
493	Delmont, T.O., Eren, A.M., 2018. Linking pangenomes and metagenomes: the
494	Prochlorococcus metapangenome. PeerJ. 6, e4320.
495	https://doi.org/10.7717/peerj.4320
496	Diender, M., Pereira, R., Wessels, H.J.C.T., Stams, A.J.M., Sousa, D.Z., 2016.
497	Proteomic Analysis of the Hydrogen and Carbon Monoxide Metabolism of
498	Methanothermobacter marburgensis. Front. Microbiol. 7.
499	https://doi.org/10.3389/fmicb.2016.01049
500	Glenk, G., Reichelstein, S., 2022. Reversible Power-to-Gas systems for energy
501	conversion and storage. Nat. Commun. 13, 2010.
502	https://doi.org/10.1038/s41467-022-29520-0

503	He, W., Yang, J., Jing, Y., Xu, L., Yu, K., Fang, X., 2023. NGenomeSyn: an easy-to-
504	use and flexible tool for publication-ready visualization of syntenic relationships
505	across multiple genomes. Bioinformatics 39, btad121.
506	https://doi.org/10.1093/bioinformatics/btad121
507	Hungate, R.E., 1969. Chapter IV A Roll Tube Method for Cultivation of Strict
508	Anaerobes, in: Methods in Microbiology. Elsevier, pp. 117–132.
509	https://doi.org/10.1016/S0580-9517(08)70503-8
510	Kaster, AK., Goenrich, M., Seedorf, H., Liesegang, H., Wollherr, A., Gottschalk, G.,
511	Thauer, R.K., 2011. More Than 200 Genes Required for Methane Formation
512	from H ₂ and CO ₂ and Energy Conservation Are Present in
513	Methanothermobacter marburgensis and Methanothermobacter
514	thermautotrophicus. Archaea 2011, 1–23. https://doi.org/10.1155/2011/973848
515	Kaul, A., Böllmann, A., Thema, M., Kalb, L., Stöckl, R., Huber, H., Sterner, M.,
516	Bellack, A., 2022. Combining a robust thermophilic methanogen and packing
517	material with high liquid hold-up to optimize biological methanation in trickle-
518	bed reactors. Bioresour. Technol. 345, 126524.
519	https://doi.org/10.1016/j.biortech.2021.126524
520	Laguillaumie, L., Rafrafi, Y., Moya-Lecalir, E.? Delagnes, D., Dubos, S., Spérandio,
521	M., Paul, E., Dumas, C, 2022. Stability of ex situ biological methantion of
522	H2/CO2 with a mixed microbial culture in a pilot scale bubble column reactor.
523	Bioresour. Technol. 354, 127180.
524	https://doi.org/10.1016/j.biortech.2022.127180
525	Lambrecht, J., Cichocki, N., Hübschmann, T., Koch, C., Harms, H., Müller, S., 2017.
526	Flow cytometric quantification, sorting and sequencing of methanogenic archaea

527 based on F420 autofluorescence. Microb. Cell Factories 16, 180. https://doi.org/10.1186/s12934-017-0793-7 528 Lindsey, R.L., Gladney, L.M., Huang, A.D., Griswold, T., Katz, L.S., Dinsmore, B.A., 529 Im, M.S., Kucerova, Z., Smith, P.A., Lane, C., Carleton, H.A., 2023. Rapid 530 531 identification of enteric bacteria from whole genome sequences using average nucleotide identity metrics. Front. Microbiol. 14, 1225207. 532 https://doi.org/10.3389/fmicb.2023.1225207 533 Liu, T., Li, X., Yekta, S.S., Björn, A., Mu, B.-Z., Masuda, L.S.M., Schnürer, A., Enrich-534 Prast, A., 2022. Absence of oxygen effect on microbial structure and methane 535 production during drying and rewetting events. Sci. Rep. 12, 16570. 536 https://doi.org/10.1038/s41598-022-20448-5 537 Lyu, Z., Lu, Y., 2018. Metabolic shift at the class level sheds light on adaptation of 538 methanogens to oxidative environments. ISME J. 12, 411-423. 539 https://doi.org/10.1038/ismej.2017.173 540 Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput 541 542 sequencing reads. EMBnet.journal 17, 10. https://doi.org/10.14806/ej.17.1.200 543 Martin, M.R., Fornero, J.J., Stark, R., Mets, L., Angenent, L.T., 2013. A Single-Culture Bioprocess of *Methanothermobacter thermautotrophicus* to Upgrade Digester 544 545 Biogas by CO₂-to-CH₄. Conversion with H₂. Archaea 2013, 1–11. https://doi.org/10.1155/2013/157529 546 Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.-P., Göker, M., 2013. Genome sequence-547 548 based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14, 60. https://doi.org/10.1186/1471-2105-14-60 549

550	Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von
551	Haeseler, A., Lanfear, R., 2020. IQ-TREE 2: New Models and Efficient
552	Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37,
553	1530–1534. https://doi.org/10.1093/molbev/msaa015
554	Nakagawa, S., Inagaki, F., Suzuki, Y., Steinsbu, B.O., Lever, M.A., Takai, K., Engelen,
555	B., Sako, Y., Wheat, C.G., Horikoshi, K., Integrated Ocean Drilling Program
556	Expedition 301 Scientists, 2006. Microbial Community in Black Rust Exposed
557	to Hot Ridge Flank Crustal Fluids. Appl. Environ. Microbiol. 72, 6789–6799.
558	https://doi.org/10.1128/AEM.01238-06
559	Paniagua, S., Lebrero, R., Muñoz, R., 2022. Syngas biomethanation: Current state and
560	future perspectives. Bioresour. Technol. 358, 127436.
561	https://doi.org/10.1016/j.biortech.2022.127436
562	Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., Glockner,
563	F.O., 2007. SILVA: a comprehensive online resource for quality checked and
564	aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids
565	Res. 35, 7188–7196. https://doi.org/10.1093/nar/gkm864
566	Pfeifer, K., Ergal, İ., Koller, M., Basen, M., Schuster, B., Rittmann, S.KM.R., 2021.
567	Archaea Biotechnology. Biotechnol. Adv. 47, 107668.
568	https://doi.org/10.1016/j.biotechadv.2020.107668
569	Rachbauer, L., Beyer, R., Bochmann, G., Fuchs, W., 2017. Characteristics of adapted
570	hydrogenotrophic community during biomethanation. Sci. Total Environ. 595,
571	912–919. https://doi.org/10.1016/j.scitotenv.2017.03.074
572	Rafrafi, Y., Laguillaumie, L., Dumas, C., 2021. Biological Methanation of H2 and CO2
573	with Mixed Cultures: Current Advances, Hurdles and Challenges. Waste

- 574 Biomass Valorization 12, 5259–5282. https://doi.org/10.1007/s12649-020575 01283-z
- 576 Rittmann, S.K.-M.R., Seifert, A.H., Bernacchi, S., 2018. Kinetics, multivariate
- 577 statistical modelling, and physiology of CO2-based biological methane
- 578 production. Appl. Energy 216, 751–760.
- 579 https://doi.org/10.1016/j.apenergy.2018.01.075
- 580 Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile
- 581 open source tool for metagenomics. PeerJ 4, e2584.
- 582 https://doi.org/10.7717/peerj.2584
- 583 Seifert, A.H., Rittmann, S., Herwig, C., 2014. Analysis of process related factors to

increase volumetric productivity and quality of biomethane with

585 Methanothermobacter marburgensis. Appl. Energy 132, 155–162.

- 586 https://doi.org/10.1016/j.apenergy.2014.07.002
- 587 Sun, W., Yu, G., Louie, T., Liu, T., Zhu, C., Xue, G., Gao, P., 2015. From mesophilic to

thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and

- 589 fungal community structures in sludge and manure samples. Appl. Microbiol.
- 590 Biotechnol. 99, 10271–10282. https://doi.org/10.1007/s00253-015-6866-9
- 591 Szuhaj, M., Wirth, R., Bagi, Z., Maróti, G., Rákhely, G., Kovács, K.L., 2021.

592 Development of Stable Mixed Microbiota for High Yield Power to Methane
593 Conversion. Energies 14, 7336. <u>https://doi.org/10.3390/en14217336</u>

- Tang, Y.Q., Matsui, T., Morimura, S., Wu, X.L., Kida, K., 2008. Effect of Temperature
- 595 on Microbial Community of a Glucose-Degrading Methanogenic Consortium
- under Hyperthermophilic Chemostat Cultivation. J. BioSci. Bioeng. 106, 180–
- 597 187. https://doi.org/10.1263/jbb.106.180.

598	Thema, M., Weidlich, T., Kaul, A., Böllmann, A., Huber, H., Bellack, A., Karl, J.,
599	Sterner, M., 2021. Optimized biological CO2-methanation with a pure culture of
600	thermophilic methanogenic archaea in a trickle-bed reactor. Bioresour. Technol.
601	333, 125135. https://doi.org/10.1016/j.biortech.2021.125135
602	Tong, D., Farnham, D.J., Duan, L., Zhang, Q., Lewis, N.S., Caldeira, K., Davis, S.J.,
603	2021. Geophysical constraints on the reliability of solar and wind power
604	worldwide. Nat. Commun. 12, 6146. <u>https://doi.org/10.1038/s41467-021-26355-</u>
605	<u>Z</u>
606	Treu, L., Kougias, P.G., De Diego-Díaz, B., Campanaro, S., Bassani, I., Fernández-
607	Rodríguez, J., Angelidaki, I., 2018. Two-year microbial adaptation during
608	hydrogen-mediated biogas upgrading process in a serial reactor configuration.
609	Bioresour. Technol. 264, 140–147.
610	https://doi.org/10.1016/j.biortech.2018.05.070
611	Tsapekos, P., Alvarado-Morales, M., Angelidaki, I., 2022. H ₂ competition between
612	homoacetogenic bacteria and methanogenic archaea during biomethantion from
613	a combined experimental-modelling approach. J. Environ. Chem. Eng. 10,
614	107281. https://doi.org/10.1016/j.jece.2022.107281
615	Vermeij, P., Pennings, J.L., Maassen, S.M., Keltjens, J.T., Vogels, G.D., 1997. Cellular
616	levels of factor 390 and methanogenic enzymes during growth of
617	Methanobacterium thermoautotrophicum deltaH. J. Bacteriol. 179, 6640–6648.
618	https://doi.org/10.1128/jb.179.21.6640-6648.1997
619	Wahid, R., Mulat, D.G., Gaby J.C., Horn, S.V., 2019. Effects of H ₂ :CO ₂ ratio and H ₂
620	supply fluctuation on methane content and microbial community composition

- 621 during *in-situ* biological biogas upgrading. Biotechnol Biofuels 12, 104.
- 622 https://doi.org/10.1186/s13068-019-1443-6
- 623 Wick, R.R., Judd, L.M., Gorrie, C.L., Holt, K.E., 2017. Unicycler: Resolving bacterial
- 624 genome assemblies from short and long sequencing reads. PLOS Comput. Biol.
- 625 13, e1005595. https://doi.org/10.1371/journal.pcbi.1005595
- 626 Xu, J., Bu, F., Zhu, W., Luo, G., Xie, L., 2020. Microbial Consortiums of
- 627 Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas
- 628 Upgrading Systems under Different Conditions of Temperature, pH and CO.
- 629 Microorganisms 8, 772. https://doi.org/10.3390/microorganisms8050772

632 Figure captions:

633 Figure 1: Relative abundance of microbial taxa inferred from Illumina MiSeq sequencing of 16S rRNA genes. (A) Archaeal abundance at the genus level from the 634 V4-V5 16S rRNA region of the 16S rRNA gene. The pie chart on right indicates 635 636 abundance of minor genera (<2% of total archaeal reads). (B) Bacterial abundance at the phylum level from the V3-V4 16S rRNA region of the 16S rRNA gene. The pie 637 charts on right show the proportion of the different classes and genera constituting the 638 phyla Bacillota and Pseudomonadota. 639 Figure 2: Comparative genomics of strain Clermont. (A) Phylogenomic tree of 640 major archaeal clades based on a 73 genes core set using GToTree v1.8.2. On left: 641 Known major clades, including Methanothermobacter (dark pink) are collapsed and 642 shown as wedges of different colors. Halobacteriales was placed as outgroup. Bar, 0.3 643 644 substitution per amino acid position. On right: Decollapsed Methanothermobacter wedge showing the position of strain Clermont (in red) within this genus. Bar, 0.05 645 substitution per amino acid position. (B) Collinearity analysis among assemblies of the 646 647 seven genomes forming the Marburg clade using MUMmer v4.0.0rc1 and visualized using NGenomeSyn. (C) Anvi'o representation of the pan-genome of the Marburg 648 clade. Gene clusters (n = 2076) were ordered according to a hierarchical clustering of 649 650 their presence/absence (inner dendrogram). Rings show the presence (filled) or absence 651 (undashed) of the gene clusters in each genome. Single copy core and other core: gene clusters present in all seven Methanothermobacter genomes. Gene clusters exclusively 652 653 present in a unique genome are indicated by a number: 1. strain K4, 2. strain THM_2, 3. JZ-3_D_bin_25, 4. strain Kepco-1, 5. GMQ_75_MeOH_H2_bin_21, 6. strain Marburg, 654

655 7. strain Clermont. To the right is given an ANI percentage identity heatmap; red: 100%
656 identity; light red: values ranging from 96% to 97%; white: values <96%.

657 Figure 3: Methane yield under reduced conditions in batch culture for pure strains

658 (*i.e.* Marburg and Clermont) and the mixed adapted culture. An asterisk denotes a

659 significant difference (p < 0.05) between strain Marburg versus the two other cultures 660 (days 3 to 6), and between the mixed culture versus pure cultures (days 8 and 18). The

- 661 error bar indicates the standard error (n=3).
- 662 Figure 4: Methane yield in batch cultures under oxidative stressed conditions (240

663 min of exposure to O₂). (A) Comparison over time between strain Clermont and mixed

- adapted culture. (B) Comparison over time between strain Clermont and strain Marburg.
- An asterisk denotes a significant difference (p < 0.05) between cultures over time. The
- 666 error bar indicates the standard error (n=3).
- 667 Figure 5: Schematic representation of oxidative stress protection enzymes detected
- 668 in the Marburg clade genomes. (A) Gene-loci in the genome of strain Marburg. (B)
- 669 Potential cellular responses to oxidative stress.
- 670
- 671

1	Title
2	Comparison of methane yield of a novel strain of Methanothermobacter marburgensis
3	in pure and mixed adapted culture derived from a methanation bubble column
4	bioreactor
5	
6	Abstract
7	The ongoing discussion regarding the use of mixed or pure cultures of
8	hydrogenotrophic methanogenic archaea in Power-to-Methane (P2M) bioprocess
9	applications persists, with each option presenting its own advantages and disadvantages.
10	To address this issue, a comparison of methane (CH ₄) yield between a novel
11	methanogenic archaeon belonging to the species Methanothermobacter marburgensis
12	(strain Clermont) isolated from a biological methanation column, and the community
13	from which it originated, was conducted. This comparison included the type strain M.
14	marburgensis str. Marburg. The evaluation also examined how exposure to oxygen (O ₂)
15	for up to 240 minutes impacted the CH4 yield across these cultures. While both
16	Methanothermobacter strains exhibit comparable CH ₄ yield, slightly higher than that of
17	the mixed adapted culture under non-O2-exposed conditions, strain Clermont does not
18	display the lag time observed for strain Marburg.
19	
20	Keywords
21	Methanothermobacter marburgensis, mixed hydrogenotrophic methanogenic culture,
22	oxygen exposure, multi-omics approaches.
23	
24	1. Introduction

25	To limit the rise of global surface temperature to less than 2°C while meeting the
26	increasing energy demand, a significant global energy transition is urgently needed.
27	However, shifting away from polluting fossil fuels to low-carbon solutions requires
28	technological innovation, particularly in renewable energy. Despite substantial progress
29	in wind, solar, and geothermal energies, challenges such as intermittency, variability,
30	geographical limitations, and storage persist (Tong et al., 2021). Power-To-Gas (P2G)
31	concept has emerged as a promising solution allowing the storage of surplus of
32	renewable energy recovered from the electricity sector in the form of gas (<i>i.e.</i>
33	dihydrogen (H ₂) called P2H and CH ₄ called P2M) (Glenk and Reichelstein, 2022).
34	Currently, P2M offers advantages over P2H. It allows converting electricity into
35	chemical energy and uses existing infrastructure. Considering storability, it has a higher
36	energy density (10 kWh/Nm ³ for CH_4 versus 3 kWh/Nm ³ for H_2) and is suitable for
37	long term and large-scale storage (Blanco et al., 2018). P2M systems combine H_2
38	oxidation and carbon dioxide (CO ₂) reduction to produce CH ₄ using either
39	physicochemical or biological catalysts (biomethanation). Comparatively,
40	biomethanation processes require lower temperatures and pressures than
41	physicochemical methanation processes and exhibit increased resistance to chemical
42	contaminants including hydrogen sulfide (H2S), organic acids, or ammonia (Burkhardt
43	et al., 2015).
44	Hydrogenotrophic methanogenic archaea (HMs), which can use H ₂ as a reducing agent
45	for the conversion of CO ₂ into CH ₄ , are key biocatalysts for biomethane (Bellini et al.,
46	2022). They require as much H_2 as the system can provide for CO_2 reduction.
47	Therefore, the competition and sustainable equilibrium between H ₂ producers (<i>e.g.</i>
48	acetogens) and consumers (e.g. HMs) usually result in a very low dissolved H ₂ partial
49	pressure $(p(H_2))$ to maintain a balanced operation of the entire microbiological
----	--
50	community. However, numerous abiotic and biotic factors can affect this equilibrium.
51	From a thermodynamical perspective, external H ₂ provision strongly favours
52	hydrogenotrophic methanogenesis. But a sudden increment of $p(H_2)$ can enable the
53	homoacetogenic pathway to outcompete the hydrogenotrophic methanogenesis (Treu et
54	al., 2018; Tsapekos et al., 2022). In addition, temperature, pH, H ₂ /CO ₂ ratio, H ₂ supply,
55	etc, are all abiotic factors that can influence CH ₄ content and microbial community
56	during in-situ biological biogas upgrading (Rachbauer et al., 2017; Wahid et al., 2019).
57	Among HMs, the main actors in biomethanation processes comprise members of the
58	genera Methanoculleus, Methanothermobacter, Methanobacterium, or Methanosarcina.
59	The relative abundance of these genera in biogas upgrading reactors varies based on
60	factors such as temperature, pH, carbon monoxide (CO), etc (Thema et al., 2021; Xu et
61	al., 2020). In thermophilic conditions, Methanothermobacter was shown to be
62	predominant in the mixed cultures due to its favorable growth at higher temperatures
63	(Kaster et al., 2011; Szuhaj et al., 2021). Within this genus, Methanothermobacter
64	thermautotrophicus and Methanothermobacter marburgensis, largely used as model
65	organisms, have already been implemented as biocatalysts in large-scale industrial
66	processes because they are robust, and reach high cell densities, and CH ₄ production
67	rate (Seifert et al., 2014; Pfeifer et al., 2021; Thema et al., 2021, Kaul et al., 2022).
68	Two main approaches can be employed for biomethanation, <i>i.e.</i> using pure cultures or
69	enriched mixed cultures, each with its own advantages and drawbacks (Rachbauer et al.,
70	2017; Rafrafi et al., 2021; Rittmann et al., 2018). Indeed, using single self-replicating
71	catalysts would prevent oxidation of H ₂ by other hydrogenotrophic microorganisms,
72	thereby avoiding a loss of efficiency in biogas upgrading. It would also allow for better

system variability and behaviour prediction (Martin et al., 2013). On the other hand, using consortia would be more efficient, leading to larger CH₄ yields (Bellini et al, 2022, Paniagua et al., 2022). Other advantages of employing consortia include greater robustness and short recovery time upon starvation/excess input gas rate and oxygenation. However, managing mixed cultures often requires increased control and a thorough understanding of how microbial composition impacts the system (Paniagua et al., 2022). Therefore, despite the growing number of studies in this field, the question of whether pure or mixed cultures are more suitable for biomethanation processes remains unresolved. To address this question, a comparison of the performance of both HM pure cultures and reactor microbiomes from which HMs have been isolated appears essential. This study aims to evaluate the methanation efficiency of a new HM affiliated to the M. marburgensis species (strain Clermont) isolated from a bubble column reactor. Its methanogenic performance was compared not only with its native consortium but also with the type strain, *i.e. M. marburgensis* strain Marburg (hereinafter referred to as strain Marburg). This comparison was extended under oxidative stress, a common occurrence in biomethanation processes.

90 2. Material and Methods

2.1. Laboratory-scale methanation reactor

92 The mixed adapted culture used in this study was collected from a 3.5 L bubble column 93 reactor, six weeks after its inoculation with 300 mL of digestate from a thermophilic 94 industrial-scale biogas plant treating livestock effluent and agri-food industry wastes 95 that operates between 52 and 54°C (Methelec, Ennezat, France). Briefly, the reactor 96 contained 2.7 L of basal anaerobic (BA) culture medium prepared as previously 97 reported (Bu et al., 2018) and reduced by introducing 0.4 g/L of sodium sulfide

nanohydrate (Na₂S.9H₂O). The H₂/CO₂ gas mixture was set at a ratio of 4:1 (v/v) with a mass flowmeter (SLA5800, Brooks Instrument, Hatfield, USA). Flow rates ranged from 0.29 to 0.44 NL.min⁻¹. The temperature was set to 55°C using a thermostatic bath (Eco RE1225 silver, Lauda, Königshofen, Germany).

Volatile fatty acids (VFAs) in the six-week mixed adapted culture were determined

using a liquid chromatograph (1260 HPLC, Agilent, Santa Clara, USA). The HPLC

apparatus was equipped with two columns (Rezex ROA 300 x 7.8 nm, Phenomenex,

Torrance, USA) mounted in serial in an oven (50°C) and coupled with a refractive index

detector. The mobile phase was a 2 mM sulfuric acid in ultra-pure water pumped at 0.7

mL.min⁻¹ and 70 bars. For the analysis, 2 mL of sample were mixed with 125 µL of

Ba(OH)₂.8 H₂O (0.3 M) and 125 µL of ZnSO₄.7 H₂O (5% w/v) before a 5 min

centrifugation at 10000 g. Samples were filtered through 0.2 µm nylon filters before

being injected in the HPLC apparatus.

Measurements of archaeal and bacterial abundance (quantitative real-time PCR),

performed on the six-week sample mixed adapted culture, revealed a dominance of

archaea over bacteria with an archaea/bacteria ratio of five (1.0 10⁹ archaeal cells/mL

versus 2.2 10^8 bacterial cells/mL).

2.2. Microbial community analysis of the mixed adapted culture

Two mL of the six-week mixed adapted culture were centrifuged at 10000 g at room

temperature (RT) for 10 min and total genomic DNA (gDNA) was extracted from the

pellet using a Nucleo Spin Soil kit in accordance with manufacturer's instructions

(Machery Nagel, Düren, Germany). Then, gDNA was quantified using a

spectrophotometer (NanoDrop 1000, Thermo Fisher Scientific, USA). Subsequently,

the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA (rRNA) genes was

amplified using the primer set F343 (5'-

CTTTCCCTACACGACGCTCTTCCGATCTACGGRAGGCAGCAG-3') - R784 (5'-GGAGTTCAGACGTGTGCTCTTCCGATCTTACCAGGGTATCTAATCCT-3') (Carmona-Martinez et al., 2015) while the V4-V5 region of the archaeal 16S rRNA genes was amplified with the primer set F504-519 (5'-CTTTCCCTACACGACGCTCTTCCGATCTCAGCMGCCGCGGKAA-3') and R910-928 (5'-GGAGTTCAGACGTGTGCTCTTCCGATCTCCCGCCWATTCCTTTAAGT-3') (Braga Nan et al., 2020), primers containing adapters and barcodes for Miseq sequencing. PCR reactions contained TaqTM TaKaRa Premix, 1 µM of each primer, 200 µM of each deoxynucleoside triphosphate (dNTP), 0.625 U TaKaRa Taq polymerase (TakaRa Inc., France), nuclease free-H₂O and 50 to 100 ng gDNA template in a total volume of 50 μ L. For both bacteria and archaea, after a denaturation step of 1 min at 98°C, PCR steps at 98°C for 1 min, 59°C for 40 s, and 72°C for 1 min were repeated 35 times, followed by an elongation step at 72°C for 10 min in a Mastercycler® thermal cycler (Eppendorf, Hamburg, Germany). Amplicon size was checked by Agilent High Sensitivity DNA Kit on 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Amplicon libraries were prepared and sequenced by the GenoToul platform (Toulouse, France) with an Illumina MiSeq sequencer to generate 2 x 300 bp paired-end reads. Bacterial and archaeal reads were separately processed using a homemade bioinformatics pipeline. Briefly, paired reads were merged using the VSEARCH v2.18.0 (Rognes et al., 2016) and then trimmed and filtered with Cutadapt (Martin, 2011) to minimize the effects of random sequencing errors as follows: (i) only merged reads with a length 200-500 bp were kept, (ii) paired reads with sequencing errors in primers were discarded and (iii) primer sequences and nucleotides with Phred quality

scores upper than 30 were trimmed. Deletion of chimeric sequences and clusterization
were carried out using VSEARCH (Rognes et al., 2016) and operational taxonomic
units (OTUs) that accounted for <0.005% of the total set of sequences were discarded
(Bokulich et al., 2013). The taxonomic assignment was performed against the SILVA
v138.1 SSU NR99 database using the global alignment script in VSEARCH (Pruesse et al., 2007; Rognes et al., 2016).

152 2.3. Hydrogenotrophic methanogenic archaea isolation and analytical procedures
153 A serum vial (Dutscher, Bernolsheim, France) containing 50 ml of BA medium (110
154 mL in capacity) was inoculated with an aliquot of the six-week mixed adapted culture
155 (10% v/v). After BA medium autoclaving, and prior to its inoculation, dinitrogen (N₂)
156 filling the head space was replaced by H₂/CO₂ (4:1, v/v) gas mixture from a gas
157 cylinder (Westfalen, France) at 2 bars. Liquid cultivation was conducted at 55°C in the
158 dark, without agitation.

HM isolation was performed via successive dilution to extinction series in Hungate tubes (16.5 mL capacity) containing 5 mL of either liquid or solid BA medium (2% agar w/v; roll-tube technique (Hungate, 1969)). Headspace composition was determined by gas chromatography (3000A MicroGC, Agilent Technologies, Santa Clara, CA, USA) equipped with two capillary columns (one MS-5A column associated with a backflush injector and one PorapLOT Q column associated with a standard injector) and Soprane software v3.5.2 for the analysis. The microGC used argon as gas carrier and the temperature of the columns and injectors were at 50 and 60°C, respectively. The purity of HMs was checked by microscopic observations (Leica DM IRB inverted microscope equipped with a Hamamatsu C13440 camera and Zen Blue v3.1 software) and by adding yeast extract (2 g/L) and glucose (20 mM final concentration) to the BA

170	medium to confirm the absence of fermentative bacteria. Subsequently, HM taxonomic
171	identification was performed by 16S rRNA gene sequence amplification using the
172	universal primer set Arch21F-1492R (Nakagawa et al., 2006) followed by sequencing
173	(Eurofins Genomics, Cologne, Germany). For the ultrastructural characterization, the
174	archaeal cells in 1% (v/v) formaldehyde fixed samples were collected by centrifugation
175	at 20000 g for 20 min at 14°C directly onto 400-mesh electron microscopy copper grids
176	covered with carbon-coated Formvar film (AO3X, Pelanne Instruments, Toulouse,
177	France). Particles were over contrasted with 2% uranyl salts and rinsed three times in
178	distilled deionized water before being dried at RT. Subsequently, the characterization
179	was performed with a transmission electron microscope using a JEOL 2100
180	(Akishikma, Tokyo, Japan; Plateforme CYSTEM, UCA Partner, Clermont-Ferrand,
181	France). The microscope was operated at 80 kV, and the images were recorded with an
182	Gatan CMOS RIO 9 camera (Gatan Ametek, Pleasaton, USA) at 3072 x 3072 pixels.
183	Since all HMs belonged to the same strain, one representative, called
184	Methanothermobacter marburgensis strain Clermont (hereafter referred to as strain
185	Clermont), was deposited in the Deutsche Sammlung von Mikroorganismen und
186	Zellkulturen (DSMZ) culture collection (accession number DSM 34405).
187	2.4. Cultivation procedures
188	The hydrogenotrophic and methanogenic activities of strain Clermont, the mixed
189	adapted culture, and M. marburgensis strain Marburg obtained from DSMZ (DSM
190	2133), which is the closest relative of strain Clermont (99.5% 16S rRNA gene identity),

- 191 were investigated under reduced conditions. Cultures were conducted in serum vials
- 192 containing 50 mL of BA medium as described above (Paragraph 2.3). All inoculations
- 193 were performed with the same number of archaeal cells, *i.e.* 5.7×10^5 cells. Briefly, an

aliquot of 1 mL of pure or mixed cultures at the end of the exponential growth phase was diluted to 1:10 and directly used for flow cytometry analysis (BD LSR Fortessa X-20; BD Biosciences, CA, USA). Two lasers (Violet, 405 nm, 50 mW and Blue, 488 nm, 60 mW) were used for F420 cofactor excitation (autofluorescence of archaeal cells) and morphological characterization, respectively. The threshold was set at 200 on the F420 cofactor parameter. Data were acquired during 60 sec at a constant flow rate of 29.85 µL/min and processed using FACSDivA 9 software (BD Biosciences). Cultures subjected to oxidative stress were inoculated and grown in medium devoid of chemical reducing agents, namely Na₂S.9H₂O and resazurin, generally used to reinforce anaerobiosis and detect any potential oxidation, to prevent O₂ reduction during the exposure. Indeed, their presence would have reduced the effective amount of O₂ during oxic stress. Anaerobiosis prior to oxic stress was confirmed by microGC. After reaching the end of the exponential growth phase in anaerobic conditions, the cultures were transferred to sterile beakers in a laminar flow hood and placed under high stirring speed to be exposed to atmospheric levels of O_2 (21%) for durations of 0, 10, 30, 60, 90, 120, and 240 min. The quantity of dissolved O_2 measured in the medium was 10 mg/L \pm 0.32 mg/L from 1 min up to 240 min of exposure (portable oximeter, Lagua 200 series, Horiba Scientific, Japan). Subsequently, fresh BA medium containing a reducing agent was inoculated as above. The absence of O_2 was checked by gas chromatography before incubation. All experiments were conducted in biological triplicates. During growth, gas composition in the headspace was monitored daily by gas chromatography. Statistical

217 two-way ANOVA (culture × incubation days) followed by Tukey's test under normality

analysis of CH₄ yield during growth was conducted using the Student t-test, one-way or

and homoscedasticity assumption. The level of significance was set at α =0.05. All statistical analyses were performed using the R Stats package v4.2.2.

220 2.5. DNA extraction for whole genome sequencing of the *M. marburgensis* strain 221 Clermont

A culture of strain Clermont (50 mL) in exponential growth was concentrated by centrifugation for 15 min at 10000 g at RT. gDNA was extracted from the pellet using a standard phenol-chloroform method (Biderre-Petit et al, 2024) before quantification on a Qubit Fluorometer (ThermoFisher Scientific, USA) by using QubitTM dsDNA HS assay kit in accordance with manufacturer's instructions. Subsequently, 300 ng of gDNA were sequenced using Illumina HiSeq technology (2×150 bp; Eurofins Genomics, Constance, Germany). Raw paired-end reads were quality-filtered with fastp v0.23.4 (Chen et al., 2018). De novo assembly of whole genome sequencing data was performed using Unicycler v0.5.0 (Wick et al., 2017) with default settings. In the following step, the short contigs with viral/transposable elements (BLASTX search against non-redundant database) and fragmented rRNA operons (barrnap v0.9 and parameter "--kingdom arc", https://github.com/tseemann/barrnap) were filtered out.

2.6. Phylogenomic tree construction

Representative genomes of *Methanothermobacterium*, *Methanonatronarchaeia*, *Archaeoglobi*, *Methanobacteria*, *Methanococci*, *Methanomicrobia*, *Methanopyri*, *Thermococci*, and *Halobacterium* were downloaded from the National Center for
Biotechnology Information (NCBI) RefSeq. Subsequently, a genome-based
phylogenetic tree was generated with the program GToTree v1.8.2 as reported in
Biderre-Petit et al. (2024), using an archaea-specific gene set composed of 73 markers.
Individual gene alignments were concatenated to construct a species tree using IQ-

TREE v2.2.3 with the evolution model LG+F+I+R10 and parameters "-B 2000 --alrt 2000 -- bnni" (Minh et al., 2020). Halobacterium was used as an outgroup. 2.7. Pan-genomic analysis and other genome characterizations Pan-genomic analysis of the Marburg clade (*i.e.* including the strains Marburg, Clermont and their closest relatives-strain KEPCO-1 (assembly accession GCA_008033705.1), strain K4 (GCA_022014235.1), strain THM2 (GCA 009917665.1), bin GMQ 75 MeOH H2 bin 21 (GCA 030055425.1) and bin JZ-3 D bin 25 (GCA 030055435.1); seven genomes in total) was carried out using the "pan-genomics workflow of anvi'o v7.1 (Delmont and Eren, 2018). The average nucleotide identity (ANI) was also calculated through anvi'o and to complete the results, in silico DNA-DNA hybridization (isDDH) was computed using Genome-to-Genome Distance Calculator v2.1 with formula 2 as previously recommended (Meier-Kolthoff et al., 2013). Genome synteny was visualized by NGenomeSyn v1.41 (He et al., 2023).

3. Results and discussion

258 3.1. Overview of microbial community diversity in a bubble column reactor

Metabarcoding procedure was used to separately address the archaeal and bacterial diversity present in the six-week adapted culture. Although less abundant than archaea, bacteria showed much higher diversity, with 833 OTUs (19403 reads in total) versus 42 OTUs (28482 reads), respectively, which is consistent with what is generally described for mixed cultures (Xu et al., 2020). For the archaea, the four most abundant OTUs (>1% relative abundance in the sample) covered 96.1% of the community (See supplementary material). *Methanothermobacter* genus represented 98.5% of the

archaeal community in terms of reads, followed by *Methanobacterium* (1.2%), Methanomassiliicoccus (0.09%) and Methanoculleus (0.01%) (Fig. 1A). This finding closely aligns with previous research, which has shown that Methanothermobacter is the dominant genus in the hydrogenotrophic methanogenic consortium of ex-situ methanation systems at 55°C (Xu et al., 2020). Within this genus, 98.9% of the reads are affiliated to the *M. marburgensis* species (>97% 16S rRNA gene sequence identity). Regarding bacteria, the most represented phyla in terms of reads were *Bacillota* (ex Firmicutes, 91.8% of total bacterial reads) followed by Pseudomonadota (ex Proteobacteria, 6.8%) (Fig. 1B), in agreement with previous studies (Bassani et al., 2015; Campanaro et al., 2020). The 11 most abundant OTUs (>1% relative abundance in the sample) covered 48.7% of the bacterial community (See supplementary material) and mostly affiliated with the genus Haloplasma (35.2% of all bacterial reads) and the class Limnochordia (33.2%) in Bacillota. The most abundant taxon, *i.e. Haloplasma*, is currently represented by only one representative, a halophilic bacterium isolated from a deep-sea brine lake, named H. contractile. The growth limit of this bacterium was determined at 44°C (Antunes et al, 2008), which is not in accordance with the temperature used in this study, *i.e.* 55° C. However, although SILVA classifies this predominant taxon in the genus Haloplasma, the sequence used as reference and which shows 99% identity with OTUs affiliated to Haloplasma (accession number FN436037, see supplementary material), displays only up to 89% sequence similarity with *Haloplasma* using BLAST N against the nucleotide database in NCBI. This may be due to the low number of sequences representative of

289 order Haloplasmatales currently includes a single family -Haloplasmataceae- which

the genus Haloplasma and also more generally of the family and order. Indeed, the

includes a single genus and species: H. contractile. This most likely not only leads to an inaccurate affiliation at the genus level, but also potentially at the family level. Consequently, the representatives that will be discovered for this group of Haloplasmatales will most certainly allow significant changes to the current description made for the single type species. The second most abundant taxon, the Limnochordia class, is frequently observed in full-size and laboratory-scale thermophilic biogas reactors (Campanaro et al., 2020). The main representative in this class was MBA03 (14.6% of all bacterial reads). Laguillaumie et al. (2022) suggested that MBA03, referenced as a carbohydrate fermentative taxon, would grow on lysis products and prevent side products, such as VFAs, from accumulating in the reactor. The low amount of VFAs measured in the reactor could therefore be explained, at least in part, by the MBA03 abundance. This low quantity also indicates that hydrogenotrophic methanogenesis has not shifted towards homoacetogenesis. Moreover, MBA03 association with Methanobacterium was described as an indicator of process stability (Laguillaumie et al., 2022). Its association with Methanothermobacter could therefore still be such an indicator. In addition to MBA03, two other bacteria known to be syntrophic acetate oxidizing, *i.e.* Tepidiphilus (Pseudomonadota) and norank order D8A-2 (Bacillota), showed significant relative abundance, with 2.9% and 3.6% of all bacterial reads, respectively. These results are in line with previous studies, which showed that these taxa were abundant in thermophilic samples and worked synergistically with HMs, providing the substrates they need towards biogas production (Tang et al., 2008; Xu et al., 2020). An anaerobic digestion system seeded from manure samples (which is comparable to what was used for the bioreactor, *i.e.* a biogas plant treating livestock effluent) and running at

55°C (Sun et al., 2015), was shown to be populated with similar microbial taxa. This supports the view that temperature, but also inoculum, are crucial variables in determining the structure of microbial consortia in hydrogenotrophic methanogenic mixed cultures (Xu et al., 2020).

3.2. Isolation and genome sequencing of *M. marburgensis* strain Clermont

The strain isolated from the bioreactor belonged to the genus Methanothermobacter and

showed >99.5% identity with strain Marburg 16S rRNA gene sequence (accession

number NR_102881.1). It was named *M. marburgensis* strain Clermont and deposited

in the DSMZ collection (DSM 34405). This strain was rod-shaped (~5 µm long and 0.6

μm wide) and non-motile (See supplementary material).

The draft genome of strain Clermont (~330-fold coverage), featuring six contigs (from ~21.9 to 776.9 kb), had a total length of ~1.72 Mb, a N50 contig length of 593 kb, and

a G+C content of 48.7%. The number of coding DNA sequences was 1805 with two

16S-23S rRNA gene clusters, three 5S rRNA genes and 37 transfer RNA (tRNA) genes.

No extra-chromosomal genetic elements were detected. Genome fragmentation was

mainly due to the high conservation degree between rRNA operons and transposase

sequences that hamper the assembly tool to resolve these loci. Phylogenomic analysis

confirmed the close relationship of strain Clermont with strain Marburg but also with

three other Methanothermobacter strains (i.e. KEPCO-1, THM_2, and K4) and two bins

(*i.e.* GMQ_75_MeOH_H2_bin_21 and JZ-3_D_bin_25). They all formed a clade

(hereinafter referred to as Marburg clade) within the genus *Methanothermobacter* (Fig.

2A). Their genomes revealed a high degree of synteny (Fig. 2B). Based on ANI and

isDDH values, strains Clermont, Marburg, KEPCO_1 and THM_2 formed a single

species (ANI \geq 96% and DDH ~70%; thresholds proposed for species definition

Methanothermobacter species (Fig. 2C).

At the pan-genome level, the Marburg clade comprised 2076 gene clusters (GCs) with 1564 (75.3%) forming the core genome (shared by all seven genomes), 324 (15.6%) constituting the accessory genome (specific to a subset of genomes) and 188 (9.1%) being unique to a single genome (Fig. 2C). The core genome contained the full suite for proteins encoded to carry out the hydrogenotrophic pathway. Members of this clade can assimilate acetyl-coA via the CO-methylating acetyl-CoA synthase from methyl-tetrahydromethanopterin. In strain Marburg, this complex was also shown to play a key role in CO oxidation (Diender et al., 2016). Moreover, the presence of all genes involved in carboxydotrophic methanogenesis in all Marburg clade genomes suggests they are also able to grow with CO as the sole carbon source. A protein of the carbonic anhydrase family (Cah), known to potentially convert bicarbonate into bioavailable CO₂, was also present. Finally, as strains Clermont and Marburg were unable to grow on formate as an energy source (data not shown), the function of the formate dehydrogenase (FdhAB) is likely to reduce CO₂ to formate for its use in the purine synthesis (Kaster et al, 2011).

355 3.3. Comparison of CH₄ yields between the pure cultures-strains Clermont and
356 Marburg-, and the mixed adapted culture

357 3.3.1. CH₄ yield during growth under reduced conditions

The isolation of a new strain for the species *M. marburgensis* (strain Clermont) from a reactor microbiome enabled to compare CH_4 yield not only between two strains of the same species but also between strain Clermont and the community from which it was isolated. In this respect, a flow cytometry method based on the cofactor F420 fluorescence (Lambrecht et al., 2017) was used for quantification and each culture was inoculated with 5.7 x 10^5 archaeal cells. The maximum specific growth rates (μ_{MAX}) were 0.017, 0.03 and 0.02 h⁻¹ for strain Clermont, Marburg and the mixed adapted culture, respectively.

Methanogenic activity was observed at one-day post-inoculation for strain Clermont and the mixed adapted culture (Fig. 3). CH₄ yield increased linearly until total H₂ conversion, reaching a maximum value after six days of growth, corresponding to 54.3% \pm 1.4% CH₄ in the gas fraction for strain Clermont and to 49.3% \pm 2.6% for the mixed adapted culture (p<0.05). This aligns with the view that the use of unique, self-replicating catalysts would avoid a loss of efficiency in biogas upgrading due to H₂ oxidation by other hydrogenotrophic microorganisms (Martin et al, 2013). For strain Marburg, methanogenic activity was observed three days post-inoculation, *i.e.* with a two-day lag phase compared with strain Clermont. Total H₂ conversion was observed after eight days of growth, resulting in a maximum of $53.9\% \pm 2.4\%$ CH₄ in the gas fraction, a proportion similar to that obtained for strain Clermont (Fig. 3,

p>0.05). Consequently, the medium used in this study (*i.e.* BA medium), which is that used for the isolation of strain Clermont, favoured the growth behaviour of the latter but not its CH₄ yield. As the two pure strains are genetically very close, one explanation of the two-day delay for strain Marburg may be, in part, attributed to their accessory genomes. Indeed, the genome of strain Clermont contains 121 genes that are not present in strain Marburg while the genome of strain Marburg contains 49 genes not found in strain Clermont, all mostly organized into clusters (the largest contained 34 genes for strain Clermont while 11 genes, for strain Marburg; See supplementary material). Among these accessory genes, those encoding glycosyltransferases associated with the

synthesis and glycosylation of cellular surface proteins (e.g RafB, WcaA, WcaE) were more abundant in strain Clermont (See supplementary material). Kaster et al. (2011) suggested that these protein families might be partially responsible for the observed

differences in growth rate phenotype between strain Marburg and M.

thermautotrophicus. If this hypothesis proves to be true, it could also partly account for

the observed phenotypic differences between strains Clermont and Marburg.

3.3.2. CH₄ vield following oxidative stress

As methanation reactors can experience episodic oxygenation (accidents, maintenance operations), it is essential to assess the HMs ability to maintain CH₄ yield after exposure to O₂. This has never been done for *Methanothermobacter* species, either in pure or mixed cultures. Interestingly, the results showed that O₂ exposure had no impact on the pure strains (*i.e.* strains Clermont and Marburg) as they exhibited the same CH₄ yield levels when all H₂ was consumed (e.g. $51.2\% \pm 1.6\%$ and $55.3\% \pm 2.3\%$, respectively; after 240 min of O₂ exposure, Fig. 4B), whatever the time of exposure to O₂, *i.e* from 0 min up to 240 min (p>0.05; See supplemental material). The O₂ resistance capacity of these strains is suspected to be mediated by the presence in their genome of energy-free reactive oxygen species (ROS) scavengers of various protection enzymes, *i.e.* superoxide dismutase (SOD), superoxide reductase (SOR), F₄₂₀H₂₀ oxidase (FprA), peroxiredoxin (PRX), and rubrerythrin (Rbr) (Fig. 5), as previously reported for other methanogens (Liu et al., 2022). However, no catalase-encoding gene was found, similar

to what was observed by Lyu and Lu (2018) in the Class I methanogens (i.e.

Methanobacteriales, Methanocellales and Methanopyrales) to which

Methanothermobacter spp. belongs. In all Marburg clade genomes, most ROS

scavengers co-localize with genes encoding protection enzymes like rubredoxin (Rub,

electron providers to SOD and SOR), ferritin (FtnA, iron detoxifier during transient O₂) (Fig. 5) and F390-synthetase which is thought to have a regulatory function in O_2 stress response (Vermeij et al., 1997). As most of these genes are up-regulated during the growth of strain Marburg on CO, it was hypothesized that they respond to redox stress in general, and not just to O₂ stress, or are regulated by universal stress proteins (Diender et al., 2016). Moreover, strain Marburg still shows the same two-day lag compared with strain Clermont. Its growth behaviour is therefore not altered by oxic stress either.

418 Conversely, exposure to O_2 has an impact on CH₄ yield by the mixed adapted culture. 419 Indeed, it exhibited a slight increase from the sixth day of incubation, when all H₂ was 420 converted, with 50.1% ± 1.6% CH₄ yield at 240 min of O_2 exposure (Fig. 4A) versus 421 46.4% ± 2.9% at 0 min (p<0.02; See supplementary material), thereby reaching the 422 level of the pure cultures (Fig. 4B). This gap in CH₄ yield could be associated with the 423 inhibition of hydrogenotrophic microorganisms, other than strain Clermont, present in 424 the mixed adapted culture.

4. Conclusions

Although methanogenesis is well studied, gaps remain in the understanding of
biomethanation, particularly regarding the choice between pure and mixed cultures in an
energy bioprocess. Comparative analysis of bioenergetic performances between strain
Clermont and its native consortium shows that the pure strain outperforms the
consortium in CH₄ yield under reduced conditions. However, this is no longer the case
after exposure to O₂. Furthermore, although both pure strains show the same CH₄ yield,

strain Clermont displays a higher reaction speed than the type strain of its species under the culture conditions used in this study.

E-supplementary data of this work can be found in online version of the paper.

Data availability

The raw reads of the 16S rRNA gene sequencing and genomic data were deposited at the NCBI database under the BioProject PRJNA1044399. M. marburgensis strain Clermont was deposited in the DSMZ German Collection of Microorganisms under accession number DSM 34405. Although the strain is not in the DSMZ catalogue or website, it is available on demand.

References

Antunes, A, Rainey, F.A., Wanner, G., Taborda, M., Pätzold, J., Nobre, M.F., da Costa, M.S., Huber, R., 2008. A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep of the Red Sea. J. Bacteriol. 190, 3580-3587. https://doi.org/10.1128/JB.01860-07

Bassani, I., Kougias, P.G., Treu, L., Angelidaki, I., 2015. Biogas Upgrading via

Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank

Reactors at Mesophilic and Thermophilic Conditions. Environ. Sci. Technol. 49,

12585-12593. https://doi.org/10.1021/acs.est.5b03451

Bellini, R., Bassani, I., Vizzarro, A., Azim, A., Vasile, N., Pirri, C., Verga, F., Menin,

B., 2022. Biological Aspects, Advancements and Techno-Economical

456	Evaluation of Biological Methanation for the Recycling and Valorization of
457	CO2. Energies 15, 4064. https://doi.org/10.3390/en15114064
5 458	Biderre-Petit, C., Courtine, D., Hennequin, C., Galand, P.E., Bertilsson, S., Debroas, D.,
459	Monjot, A., Lepère, C., Divne, A., Hochart, C., 2024. A pan-genomic approach
460	reveals novel Sulfurimonas clade in the ferruginous meromictic Lake Pavin.
461	Mol. Ecol. Resour. e13923. https://doi.org/10.1111/1755-0998.13923
462	Blanco, H., Nijs, W., Ruf, J., Faaij, A., 2018. Potential of Power-to-Methane in the EU
463	energy transition to a low carbon system using cost optimization. Appl. Energy
464	232, 323–340. https://doi.org/10.1016/j.apenergy.2018.08.027
465	Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills,
466	D.A., Caporaso, J.G., 2013. Quality-filtering vastly improves diversity estimates
467	from Illumina amplicon sequencing. Nat. Methods 10, 57–59.
468	https://doi.org/10.1038/nmeth.2276
469	Braga Nan, L., Trably, E., Santa-Catalina, G., Bernet, N., Delgenès, JP., Escudié, R.,
470	2020. Biomethanation processes: new insights on the effect of a high H2 partial
471	pressure on microbial communities. Biotechnol. Biofuels 13, 141.
472	https://doi.org/10.1186/s13068-020-01776-y
473	Bu, F., Dong, N., Kumar Khanal, S., Xie, L., Zhou, Q., 2018. Effects of CO on
474	hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic
475	conditions: Microbial community and biomethanation pathways. Bioresour.
476	Technol. 266, 364–373. https://doi.org/10.1016/j.biortech.2018.03.092
477	Burkhardt, M., Koschack, T., Busch, G., 2015. Biocatalytic methanation of hydrogen
478	and carbon dioxide in an anaerobic three-phase system. Bioresour. Technol. 178,
479	330-333. https://doi.org/10.1016/j.biortech.2014.08.023
)	
-	

1 2	480	Campanaro, S., Treu, L., Rodriguez-R, L.M., Kovalovszki, A., Ziels, R.M., Maus, I.,
3 4	481	Zhu, X., Kougias, P.G., Basile, A., Luo, G., Schlüter, A., Konstantinidis, K.T.,
5 6 7	482	Angelidaki, I., 2020. New insights from the biogas microbiome by
, 8 9	483	comprehensive genome-resolved metagenomics of nearly 1600 species
) 1 2	484	originating from multiple anaerobic digesters. Biotechnol. Biofuels 13, 25.
2 3 4	485	https://doi.org/10.1186/s13068-020-01679-y
5	486	Carmona-Martínez, A.A., Trably, E., Milferstedt, K., Lacroix, R., Etcheverry, L.,
7 8 9	487	Bernet, N., 2015. Long-term continuous production of H ₂ in a microbial
) 1	488	electrolysis cell (MEC) treating saline wastewater. Water Res. 81, 149–156.
2 3 4	489	https://doi.org/10.1016/j.watres.2015.05.041
5 6 7	490	Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ
, 8 9	491	preprocessor. Bioinformatics 34, i884-i890.
) 1 2	492	https://doi.org/10.1093/bioinformatics/bty560
2 3 4	493	Delmont, T.O., Eren, A.M., 2018. Linking pangenomes and metagenomes: the
5	494	Prochlorococcus metapangenome. PeerJ. 6, e4320.
7 8 9	495	https://doi.org/10.7717/peerj.4320
) 1	496	Diender, M., Pereira, R., Wessels, H.J.C.T., Stams, A.J.M., Sousa, D.Z., 2016.
2 3 4	497	Proteomic Analysis of the Hydrogen and Carbon Monoxide Metabolism of
5	498	Methanothermobacter marburgensis. Front. Microbiol. 7.
7 8 9	499	https://doi.org/10.3389/fmicb.2016.01049
) 1	500	Glenk, G., Reichelstein, S., 2022. Reversible Power-to-Gas systems for energy
2 3	501	conversion and storage. Nat. Commun. 13, 2010.
1 5 б	502	https://doi.org/10.1038/s41467-022-29520-0
7 3		
9) 1		
2 3		
4		

1 2	503	He, W., Yang, J., Jing, Y., Xu, L., Yu, K., Fang, X., 2023. NGenomeSyn: an easy-to-
3 4	504	use and flexible tool for publication-ready visualization of syntenic relationships
5 5 7	505	across multiple genomes. Bioinformatics 39, btad121.
, 3 9	506	https://doi.org/10.1093/bioinformatics/btad121
) 1	507	Hungate, R.E., 1969. Chapter IV A Roll Tube Method for Cultivation of Strict
2 3 4	508	Anaerobes, in: Methods in Microbiology. Elsevier, pp. 117-132.
5	509	https://doi.org/10.1016/S0580-9517(08)70503-8
/ 3 9	510	Kaster, AK., Goenrich, M., Seedorf, H., Liesegang, H., Wollherr, A., Gottschalk, G.,
) 1	511	Thauer, R.K., 2011. More Than 200 Genes Required for Methane Formation
2 3 4	512	from H 2 and CO 2 and Energy Conservation Are Present in
5	513	Methanothermobacter marburgensis and Methanothermobacter
7 3 2	514	thermautotrophicus. Archaea 2011, 1–23. https://doi.org/10.1155/2011/973848
9) 1	515	Kaul, A., Böllmann, A., Thema, M., Kalb, L., Stöckl, R., Huber, H., Sterner, M.,
2 3	516	Bellack, A., 2022. Combining a robust thermophilic methanogen and packing
± 5 5	517	material with high liquid hold-up to optimize biological methanation in trickle-
7 3	518	bed reactors. Bioresour. Technol. 345, 126524.
€)) 1	519	https://doi.org/10.1016/j.biortech.2021.126524
2 3	520	Laguillaumie, L., Rafrafi, Y., Moya-Lecalir, E.? Delagnes, D., Dubos, S., Spérandio,
4 5 5	521	M., Paul, E., Dumas, C, 2022. Stability of ex situ biological methantion of
5 7 3	522	H2/CO2 with a mixed microbial culture in a pilot scale bubble column reactor.
€) 1	523	Bioresour. Technol. 354, 127180.
L 2 3	524	https://doi.org/10.1016/j.biortech.2022.127180
4 5	525	Lambrecht, J., Cichocki, N., Hübschmann, T., Koch, C., Harms, H., Müller, S., 2017.
5 7 3	526	Flow cytometric quantification, sorting and sequencing of methanogenic archaea
9)		
L 2 3		
-		

1 2	527	based on F420 autofluorescence. Microb. Cell Factories 16, 180.					
3 4	528	https://doi.org/10.1186/s12934-017-0793-7					
5 6 7	529	Lindsey, R.L., Gladney, L.M., Huang, A.D., Griswold, T., Katz, L.S., Dinsmore, B.A.,					
8 9	530	Im, M.S., Kucerova, Z., Smith, P.A., Lane, C., Carleton, H.A., 2023. Rapid					
10 11 12	531	identification of enteric bacteria from whole genome sequences using average					
13 14	532	nucleotide identity metrics. Front. Microbiol. 14, 1225207.					
15 16 17	533	https://doi.org/10.3389/fmicb.2023.1225207					
17 18 19	534	Liu, T., Li, X., Yekta, S.S., Björn, A., Mu, BZ., Masuda, L.S.M., Schnürer, A., Enri					
20 21	535	Prast, A., 2022. Absence of oxygen effect on microbial structure and methane					
22 23 24	536	production during drying and rewetting events. Sci. Rep. 12, 16570.					
25 26	537	https://doi.org/10.1038/s41598-022-20448-5					
27 28 29	538	Lyu, Z., Lu, Y., 2018. Metabolic shift at the class level sheds light on adaptation of					
30 31	539	methanogens to oxidative environments. ISME J. 12, 411-423.					
32 33 34	540	https://doi.org/10.1038/ismej.2017.173					
35 36	541	Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput					
37 38 20	542	sequencing reads. EMBnet.journal 17, 10. https://doi.org/10.14806/ej.17.1.200					
40 41	543	Martin, M.R., Fornero, J.J., Stark, R., Mets, L., Angenent, L.T., 2013. A Single-Culture					
42 43	544	Bioprocess of Methanothermobacter thermautotrophicus to Upgrade Digester					
44 45 46	545	Biogas by CO ₂ -to-CH ₄ . Conversion with H ₂ . Archaea 2013, 1–11.					
47 48	546	https://doi.org/10.1155/2013/157529					
49 50 51	547	Meier-Kolthoff, J.P., Auch, A.F., Klenk, HP., Göker, M., 2013. Genome sequence-					
52 53	548	based species delimitation with confidence intervals and improved distance					
54 55 56	549	functions. BMC Bioinformatics 14, 60. https://doi.org/10.1186/1471-2105-14-60					
57 58							
59 60							
62 63							
64 65		cc					

550	Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von
551	Haeseler, A., Lanfear, R., 2020. IQ-TREE 2: New Models and Efficient
552	Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37,
553	1530–1534. https://doi.org/10.1093/molbev/msaa015
554	Nakagawa, S., Inagaki, F., Suzuki, Y., Steinsbu, B.O., Lever, M.A., Takai, K., Engelen,
555	B., Sako, Y., Wheat, C.G., Horikoshi, K., Integrated Ocean Drilling Program
556	Expedition 301 Scientists, 2006. Microbial Community in Black Rust Exposed
557	to Hot Ridge Flank Crustal Fluids. Appl. Environ. Microbiol. 72, 6789–6799.
558	https://doi.org/10.1128/AEM.01238-06
559	Paniagua, S., Lebrero, R., Muñoz, R., 2022. Syngas biomethanation: Current state and
560	future perspectives. Bioresour. Technol. 358, 127436.
561	https://doi.org/10.1016/j.biortech.2022.127436
562	Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., Glockner,
563	F.O., 2007. SILVA: a comprehensive online resource for quality checked and
564	aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids
565	Res. 35, 7188–7196. https://doi.org/10.1093/nar/gkm864
566	Pfeifer, K., Ergal, İ., Koller, M., Basen, M., Schuster, B., Rittmann, S.KM.R., 2021.
567	Archaea Biotechnology. Biotechnol. Adv. 47, 107668.
568	https://doi.org/10.1016/j.biotechadv.2020.107668
569	Rachbauer, L., Beyer, R., Bochmann, G., Fuchs, W., 2017. Characteristics of adapted
570	hydrogenotrophic community during biomethanation. Sci. Total Environ. 595,
571	912-919. https://doi.org/10.1016/j.scitotenv.2017.03.074
572	Rafrafi, Y., Laguillaumie, L., Dumas, C., 2021. Biological Methanation of H2 and CO2
573	with Mixed Cultures: Current Advances, Hurdles and Challenges. Waste

Biomass Valorization 12, 5259-5282. https://doi.org/10.1007/s12649-020-01283-z Rittmann, S.K.-M.R., Seifert, A.H., Bernacchi, S., 2018. Kinetics, multivariate statistical modelling, and physiology of CO2-based biological methane production. Appl. Energy 216, 751–760. https://doi.org/10.1016/j.apenergy.2018.01.075 Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 Seifert, A.H., Rittmann, S., Herwig, C., 2014. Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl. Energy 132, 155–162. https://doi.org/10.1016/j.apenergy.2014.07.002 Sun, W., Yu, G., Louie, T., Liu, T., Zhu, C., Xue, G., Gao, P., 2015. From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples. Appl. Microbiol. Biotechnol. 99, 10271-10282. https://doi.org/10.1007/s00253-015-6866-9 Szuhaj, M., Wirth, R., Bagi, Z., Maróti, G., Rákhely, G., Kovács, K.L., 2021. Development of Stable Mixed Microbiota for High Yield Power to Methane Conversion. Energies 14, 7336. https://doi.org/10.3390/en14217336 Tang, Y.Q., Matsui, T., Morimura, S., Wu, X.L., Kida, K., 2008. Effect of Temperature on Microbial Community of a Glucose-Degrading Methanogenic Consortium under Hyperthermophilic Chemostat Cultivation. J. BioSci. Bioeng. 106, 180-187. https://doi.org/10.1263/jbb.106.180.

-	598	Thema, M., Weidlich, T., Kaul, A., Böllmann, A., Huber, H., Bellack, A., Karl, J.,
- 	599	Sterner, M., 2021. Optimized biological CO2-methanation with a pure culture of
5	600	thermophilic methanogenic archaea in a trickle-bed reactor. Bioresour. Technol.
3	601	333, 125135. https://doi.org/10.1016/j.biortech.2021.125135
) - >	602	Tong, D., Farnham, D.J., Duan, L., Zhang, Q., Lewis, N.S., Caldeira, K., Davis, S.J.,
3 E	603	2021. Geophysical constraints on the reliability of solar and wind power
5	604	worldwide. Nat. Commun. 12, 6146. <u>https://doi.org/10.1038/s41467-021-26355-</u>
3	605	<u>Z</u>
)	606	Treu, L., Kougias, P.G., De Diego-Díaz, B., Campanaro, S., Bassani, I., Fernández-
2 } L	607	Rodríguez, J., Angelidaki, I., 2018. Two-year microbial adaptation during
5	608	hydrogen-mediated biogas upgrading process in a serial reactor configuration.
7 } }	609	Bioresour. Technol. 264, 140–147.
) -	610	https://doi.org/10.1016/j.biortech.2018.05.070
2 3	611	Tsapekos, P., Alvarado-Morales, M., Angelidaki, I., 2022. H ₂ competition between
5	612	homoacetogenic bacteria and methanogenic archaea during biomethantion from
7 }	613	a combined experimental-modelling approach. J. Environ. Chem. Eng. 10,
,) -	614	107281. https://doi.org/10.1016/j.jece.2022.107281
2	615	Vermeij, P., Pennings, J.L., Maassen, S.M., Keltjens, J.T., Vogels, G.D., 1997. Cellular
5	616	levels of factor 390 and methanogenic enzymes during growth of
, 7 }	617	Methanobacterium thermoautotrophicum deltaH. J. Bacteriol. 179, 6640–6648.
)	618	https://doi.org/10.1128/jb.179.21.6640-6648.1997
- 2 3	619	Wahid, R., Mulat, D.G., Gaby J.C., Horn, S.V., 2019. Effects of H ₂ :CO ₂ ratio and H ₂
5	620	supply fluctuation on methane content and microbial community composition
) 7 }		
))		
-		

during in-situ biological biogas upgrading. Biotechnol Biofuels 12, 104. https://doi.org/10.1186/s13068-019-1443-6 Wick, R.R., Judd, L.M., Gorrie, C.L., Holt, K.E., 2017. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput. Biol. 13, e1005595. https://doi.org/10.1371/journal.pcbi.1005595 Xu, J., Bu, F., Zhu, W., Luo, G., Xie, L., 2020. Microbial Consortiums of Hydrogenotrophic Methanogenic Mixed Cultures in Lab-Scale Ex-Situ Biogas Upgrading Systems under Different Conditions of Temperature, pH and CO. Microorganisms 8, 772. https://doi.org/10.3390/microorganisms8050772

632 Figure captions:

Figure 1: Relative abundance of microbial taxa inferred from Illumina MiSeq
sequencing of 16S rRNA genes. (A) Archaeal abundance at the genus level from the
V4-V5 16S rRNA region of the 16S rRNA gene. The pie chart on right indicates
abundance of minor genera (<2% of total archaeal reads). (B) Bacterial abundance at
the phylum level from the V3-V4 16S rRNA region of the 16S rRNA gene. The pie
charts on right show the proportion of the different classes and genera constituting the
phyla *Bacillota* and *Pseudomonadota*.

Figure 2: Comparative genomics of strain Clermont. (A) Phylogenomic tree of major archaeal clades based on a 73 genes core set using GToTree v1.8.2. On left: Known major clades, including Methanothermobacter (dark pink) are collapsed and shown as wedges of different colors. Halobacteriales was placed as outgroup. Bar, 0.3 substitution per amino acid position. *On right*: Decollapsed *Methanothermobacter* wedge showing the position of strain Clermont (in red) within this genus. Bar, 0.05 substitution per amino acid position. (B) Collinearity analysis among assemblies of the seven genomes forming the Marburg clade using MUMmer v4.0.0rc1 and visualized using NGenomeSyn. (C) Anvi'o representation of the pan-genome of the Marburg clade. Gene clusters (n = 2076) were ordered according to a hierarchical clustering of their presence/absence (inner dendrogram). Rings show the presence (filled) or absence (undashed) of the gene clusters in each genome. Single copy core and other core: gene clusters present in all seven Methanothermobacter genomes. Gene clusters exclusively present in a unique genome are indicated by a number: 1. strain K4, 2. strain THM_2, 3. JZ-3_D_bin_25, 4. strain Kepco-1, 5. GMQ_75_MeOH_H2_bin_21, 6. strain Marburg,

655 7. strain Clermont. To the right is given an ANI percentage identity heatmap; red: 100%
656 identity; light red: values ranging from 96% to 97%; white: values <96%.

Figure 3: Methane yield under reduced conditions in batch culture for pure strains (*i.e.* Marburg and Clermont) and the mixed adapted culture. An asterisk denotes a significant difference (p < 0.05) between strain Marburg versus the two other cultures (days 3 to 6), and between the mixed culture versus pure cultures (days 8 and 18). The error bar indicates the standard error (n=3).

662 Figure 4: Methane yield in batch cultures under oxidative stressed conditions (240

min of exposure to O₂**).** (A) Comparison over time between strain Clermont and mixed

adapted culture. (B) Comparison over time between strain Clermont and strain Marburg.

An asterisk denotes a significant difference (p < 0.05) between cultures over time. The

666 error bar indicates the standard error (n=3).

667 Figure 5: Schematic representation of oxidative stress protection enzymes detected

668 in the Marburg clade genomes. (A) Gene-loci in the genome of strain Marburg. (B)

669 Potential cellular responses to oxidative stress.

Β

Others (Actinobacteria, Bacteroidota, Synergistota)

Figure 3

Figure 5

Figure

Α

В

Click here to access/download;Figure;Fig_

Figure S1: Morphology of *Methanothermobacter marburgensis* strain Clermont in optical microscopy (A) and transmission electron microscopy (B).

Time (day)

Figure S2: Methane production in batch cultures at the first level (0 min of exposure to O₂) of the experiment oxidative stressed conditions. (A) Comparison over time between strain Clermont and the mixed adapted culture. (B) Comparison over time between strain Clermont and strain Marburg. Asterisks denote a significant difference (p < 0.05) between cultures over time. The error bar indicates the standard error (n=3).

В

Age	Citrate	Lactate	Acetate	Propionate	Butyrate	Succinate	Ethanol	Lactose	Glucose
0	0.017	0	0	0.054	0	0	0	0.033	0
43	0.015	0	0	0.017	0	0	0	0.032	0
46	0.015	0	0	0	0	0	0	0.036	0
50	0.016	0	0	0	0	0	0	0.036	0
54	0.014	0	0	0	0	0	0	0.032	0

Figure S3: Organic acids, ethanol, lactose, and glucose concentrations measured by liquid chromatography in mixed adapted cultures. (A) Chromatogram for the six-week mixed adapted culture used in the study (age 46 days post inoculation of bubble column reactor with digestate sample). (B) Concentrations for mixed adapted cultures of different ages (0 to 54 days post inoculation) including that used in the study (in blue, 46 days).
Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

⊠The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Pierre Fontanille has patent #Procede de biomethanation in situ Number FR2211561 pending to neither licensee nor assignee. The authors declare that the strain Methanothermobacter marburgensis strain Clermont presented in this work was deposited according to the Budapest Treaty (rule 11.2, option 1) for the purposes of patent (filed on 7 november 2022). The authors declare that they have no known competing interests. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.