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Introduction

Accounting for between and within-subject variability is a relatively easy task when one uses mixed
effects regression [1, 2]. Modelling speaker (and items) as random effects allows for coefficients of the
main effects to be adjusted to account for this type of variability [1, 2]. Using a maximal specification
approach [1] allows for an accurate estimation of the within and between-subject variation, although
this heavily depends on the structure of the data and the need to assess the model’s fit to allow for a
meaningful interpretation of the patterns observed. When dealing with Ultrasound Tongue Imaging
(UTI) data, however, anatomical differences between speakers, for instance in tongue size, lead to
important within and between subject variation that can hinder any cross-speaker generalisations, unless
properly dealt with. The aim of our paper is to demonstrate how this can be achieved using two types
of analyses, namely static and dynamic Principal Component Analysis (PCA), and static and dynamic
Generalised Additive Mixed-effects Models (GAMMs). PCA emerges as a relatively easy, simple and
robust approach to account for between-subject variability using UTI data [3] and has since been
employed in various studies using UTI data on laterals [4], rhotic consonants [5] and acquisition of
laterals/rhotics [6]. GAMMs on the other hand, while it has already been used on UTI data trying to
account for within and between-subject variability [7, 8, 9], they are still not widely used by the
community to account for between-subject and gender differences observed using UTI data.

In this study, we systematically compare the performance of the two approaches at quantifying within
and between-subject and gender variability using UT data, by examining a particular contrast in
Levantine Arabic: impact of the phonological secondary pharyngealisation vs plain coronal (plain
henceforth) contrasts using a whole tongue approach. Previous research has shown that
pharyngealisation has a general backing and retraction effect observed on the consonant itself and
surrounding vowels [10]. The backing effect is related to the front-back dimension of the vocal tract,
while, retraction is described as a general backing and lowering effect of the tongue dorsum and root.
Using a whole tongue approach of the UTI data analysed via GAMMSs, [8] showed that
pharyngealisation led to a general retraction of the tongue dorsum and root, and a depression of the
front part of the tongue. We re-examine the results of [8] and expand them by exploring how static and
dynamic PCA perform in comparison to static and dynamic GAMMs on the same dataset. We
demonstrate similarities between PCA and GAMMs and highlight issues surrounding their application
and interpretation. We also put emphasis on strengths of GAMMs over PCA.

Method, corpus and data processing

Ten Levantine Arabic Urban speakers (5f, Sm), aged 25-45, were recorded using synchronised UTI,
EGG, and audio recordings through a multichannel breakout [11]. The UTI data used a Mindray DP-
6600, NTSC video output at 30fps, with a scan depth of 7.55cm, sampling Frequency of SMHz, with
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an endocavity microconvex probe (10mm radius; 120°Field of View) with a metallic stabilisation
headset (developed by Articulate Instruments). The acoustic signal was recorded using a Roland Pro
Microphone connected to a Roland Quad-Capture, sampled at 44.1 kHz, 16 Bit quantisation in mono
channel; the microphone was placed at = 15 cm from the speaker’s mouth. Due to using the stabilisation
headset, the EGG electrodes and the UTI probe, the angle of view across all participants was identical.

Participants were instructed to produce a list of items in a /' ?V:'CV:/ frame, with all possible consonants
in LA in the three symmetric vowels /i: a: u:/; see more details of corpus, data collection and data
analyses in [8]. UTI data from 8 speakers (4f, 4m) were automatically traced and manually corrected
using AAA [12] at 9 timeframes within the VCV sequence (2 within each of the vowels; 5 within the
consonant). The tongue contours were exported as 42 points in polar coordinates with tongue height in
mm (r) and angle values in Radians (¢) in an unrotated view. Here, we only look at tongue contours
obtained for all plain /t d 8 s z I/ and pharyngealised /t* d* & s* z* I/ contexts produced in the /i: a: u:/
vowel contexts and across all eight participants. For our data analyses, we used the centre 34 contour
points, after removing the first/last four points that were hidden by the hyoid and mandibular bones.

Statistical approaches

We used four sets of modelling to account for both within and between-speaker and gender variation.
Firstly, we started by using a dynamic PCA following [6] to account for the dynamic changes throughout
the VCV sequence allowing us to identify the point of maximal tongue retraction and the averaged
tongue contours to allow for an evaluation of the impact of pharyngealisation on the tongue contour.
This was then followed by a static PCA following [5] on the point of maximal retraction. In comparison,
we used the static and dynamic GAMMs adjusting for within and between-speaker and gender
following [8] using a maximal specification approach [1]. For ease of comparison, for the PCA, we
restricted our analysis to the VCV sequence with symmetric /i:/ sequences; for GAMMs, we accounted
for the interaction between context and vowel by gender in our modelling, which provided a more
streamlined modelling approach (for more details, see [8]).

For the PCA, we used the x and y polar coordinates (r and ¢) for the 34 contour points that were z-
scored per participant to adjust for speaker and gender specific variations (following [5, 6]). We then
modelled these coordinates across the 9 intervals, using the function princomp from the stats package
in R [13]. Once we obtained the variance explained for each PC with a loading of > 5% [14], we plotted
the data to evaluate changes related to both contexts and by proportional time. This allowed us to
identify the point of maximal retraction and the averaged tongue contour. We then ran our static PCA
on this point, and after obtaining the variance explained, we plotted the results to evaluate the
differences related to each context. As a confirmation of the patterns observed and to assess the
significance levels, each PC was submitted to a Linear Mixed-effects Modelling (LMM). For the
dynamic PCA, we modelled each PC loading as a function of the interaction between the context and
proportional time as fixed effects, with speaker and item as random intercepts and a by-speaker random
slope for context; for the static PCA, context was modelled as a fixed effect, with speaker and item as
random intercepts, without random slopes as they did not improve the models’ fit.

The ARI-GAMMSs model was fitted using mgev [15] using the raw data. The model allowed for
modelling tongue height (Rho) as a function of the interaction between context and vowel by gender as
our fixed effects (ordered predictors), with two timeseries smooths for the 34 contour points and for the
9 timeframes, in addition to their interaction (using ti) adjusted by the fixed effects. Our random effects
were modelled as factor smooths for each of speaker and item as a function of the two timeseries
adjusted by the interaction between context and vowel (for speaker) and by gender (for item). Our
optimal model accounted for 88.7% of the variance and improved the fit when compared to a simpler



model (y*(4) = 8101.9, p<0.0001). For dynamic GAMMs, we explored the dynamic changes
throughout the VCV sequence, first using 3D surface plots via the function vis.gam from mgev [15] and
then using the differences between the tongue contours in pharyngealised and plain contexts via the
function plot_diff2 from itsadug [16], with the secondary constriction location estimated following
[17] based the model’s predictions for angle values ranging between -1 and 1. For static GAMMs, we
used the time of maximal retraction identified using the plot_diff2 function, which was identical to
that identified in the dynamic PCA located at timeframe 6 (=C2 at 75% = 62.5% proportional time). We
quantified the tongue contour differences between the pharyngealised and the plain contexts using a
custom-made plotting function adapted from [7] using the function plot_diff from itsadug [16].

Results of the PCA analyses

Table 1 presents the proportion of variance explained by the dynamic PCA (top row) and static PCA
(bottom row). Starting with the dynamic PCA, the first four PCs explained 86.4% of the cumulative
variance, with PC1 explaining 38.7% of the variance. Figure la shows the dynamic changes as a
function of proportional time, with a clear lowering throughout the VCV sequence in the pharyngealised
context, with the lowest value at the 62.5%, coinciding with the consonant’s release. Figure 1b shows
the averaged contour that shows pharyngealisation (dotted lines) impacting the whole tongue with
overall retraction and tilting of the tongue (p<0.0001). Next, using timeframe 6 (=62.5% proportional
time), the static PCA showed that the first four PCs explained 87.2% of the cumulative variance, with
PC1 explaining 44.3% of the variance (Table 1, bottom row). The four plots presented in Figure 1c, d,
e and f show the averaged tongue contours as a function of each PC. PC1 confirms the overall retraction
and tilting of the whole tongue in the pharyngealised context (»p<0.0001, Figure 1c dotted lines). PC2
showed a non-statistically significant raised tongue front, lowered tongue body and marginal retracted
tongue dorsum (p=0.5, Figure 1d dashed lines); PC3 showed a lowered tongue mid and root (p<0.01,
Figure le dotted lines) and PC4 showed a tendency for a raised tongue back and lowered root (p=0.09,
Figure 1f dashed lines). The results obtained from the four PCs are correlated and confirm the general
tongue retraction, tilting, backing and raising, with marginal tongue tip changes reported in [8, 10].

Table 1: Variance explained of PCA for dynamic (top) and static at 62.5% of proportional time (bottom)

PC PC1 PC2 PC3 PC4 Total
Dynamic 38.7% 28.7% 12.3% 6.8% 86.4%
Static 44.3% 22.7% 12.7% 7.4% 87.2%
PC1 - Dynamic PC1 - Dynamic PC1 - Static
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Figure 1: Results of the dynamic and static PCA in an /i:/ context: dynamic PCA with PC1 as a function of proportional time
(a), PC1 loading as averaged across all timeframes (b), static PCA loading at timeframe 6(=62.5%), with averaged tongue
contours on PC1 (c), PC2 (d), PC3 (e) and PC4 (f). Dashed lines = average contour +SD; dotted lines = average contour -SD
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Results of the GAMMs analyses

Figure 2 shows the predictions from our GAMMs. First, the 3D surface plot across Angle, Timeframe
and Rho shows the tongue, in the plain context (Figure 2a), at its highest position towards the hard
palate (front tongue) with no major changes throughout the VCV sequence. The 3D surface plot for the
pharyngealised context (Figure 2b) shows a clear tongue tip rising, tongue front and body depression,
tongue back rising, and tongue dorsum and root retraction; changes observable throughout the VCV
sequence with the strongest changes within the consonant (timeframes 3 to 7). Figure 2c shows the 3D
difference plot between the pharyngealised and the plain contexts, which confirm a statistically
significant tongue depression by a maximum of -6 mm (red) located between the alveolar ridge and the
velum in addition to a statistically significant tongue back and dorsum retraction by a maximum of +10
mm (light colour) located between the uvula and the lower pharynx. These double depression and
retraction are similar to a double-bunched production and are strongest at timeframe 6 (at C2 = 75%),
which coincides with the consonant’s release; the same position identified with the dynamic PCA above
(at 62.5%). Figure 2d presents the 2D difference smooths between the pharyngealised and the plain
contexts, which shows a statistically significant tongue tilting, with tongue front depression, tongue
back and dorsum retraction, in addition to potential tongue root retraction in the pharyngealised context.

Plain - /iz/ Pharyngealised - /iz/

v (50%)

- % 5

2% R

V1 (75%) 1>
i somy -

o8 0s 02 o o0as 07 osa — = Pharyngealised.
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Figure 2: Results of the dynamic and static GAMMs in an /i:/ context: Dynamic GAMMs with 3D surface plot in the
plain context (a; Angle on x-axis, tongue root to tip; timeframe on y-axis from V1 50% to V2 50%; height (Rho) on
z-axis), 3D surface plot in the pharyngealised context (b), Dynamic 3D GAMMs difference between pharyngealised
vs plain contexts (c; Angle on x-axis, tongue root to tip, timeframe on y-axis; V1 50% to V2 50%, height on z-axis;
statistically significant tongue height difference indicated by lighter and red colours; lighter = increase in tongue
height; red = decrease, with estimated constriction location on secondary x-axis at the top) and GAMMs difference
smooths between pharyngealised vs plain contexts (d; polar coordinates with angle on x-axis and tongue height on y-
axis; dashed/dotted lines indicate 95% Cls; shaded areas indicating significant difference).

Discussion and conclusions

This study confirmed prior results on the impact of pharyngealisation on the tongue shape reported in
[8, 10]. Both PCA and GAMMs showed similar patterns. While PCA is quicker, it requires the use of
more than one dimension to explain patterns in the data in addition to validating the results using LMMs.
PC1 explained most of the variance in the data, but at a mere 38.7% for the dynamic PCA or 44.3% for
the static and can sometimes be used as the sole PC to account for the changes observed in the plain vs
pharyngealised contexts. This however means that 55 to 60% of the data is not accounted for. In



addition, individual observations are used to construct the PCA, which in a sense mimics how mixed
effects regressions work, albeit without any adjustments to fixed effects, random effects (especially
items), nor random slopes (for either speaker or item) leading to potentially increased Type I error. Due
to the fact that PCA’s loadings are obtained for each observation, averaging and variance around the
mean are used to account for between-speaker patterns, which can lead to over confidence in the patterns
observed (e.g., our PC2 and PC4 results). GAMMs, on the other hand, offer fine-grained account of the
data at the expense of heavier computation. They allow for a streamlined multidimensional modelling
strategies that includes random effect’s structure that is easier to implement than SSANOVAs [9] and
provide the user with more interpretable outputs and powerful visualisations highlighting various
patterns in the data. In conclusion, our results emphasise that GAMMs are relatively easy to apply on
UTI data allowing for generalisations accounting for within and between-speaker and gender variation.
It provides a unified framework to account for UTI data, without the need to apply any normalisation
techniques as the coefficients are adjusted to account for between-speaker and gender differences [9].
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