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Abstract—We present a spectrogram separation method tai-
lored for mixtures comprising two nonstationary components.
By exploiting the unique characteristics of their time-frequency
representations, we propose an inverse problem formulation to es-
timate the spectrograms of the components. We then introduce an
alternating optimization algorithm that ensures the consistency
of the estimated spectrograms. The efficacy of the algorithm is
evaluated through testing on synthetic mixtures and is applied
to a bioacoustic signal.

Index Terms—time-frequency, inverse problem, source separa-
tion, consistency, single-channel

I. INTRODUCTION

Spectrogram separation constitutes an essential first step
in many applications before performing the desired task.
For example, in applications such as sound event detection
and localization, speech enhancement, or single-channel audio
source separation [1]–[3], the proposed approaches take a
mixture spectrogram as input and generate a mask to apply
to the spectrogram for each source being separated. Although
the primary focus is on audio source separation, the first
step is spectrogram separation. We thus define spectrogram
separation as the task of decomposing a spectrogram into
several spectrograms based on the different patterns that
constitute it, similar to the texture image decomposition [4].
In this paper, we focus on the spectrogram separation for
mixtures of two components. This can be seen as the initial
stage in single-channel source separation [5], which is a major
challenge, representing the extreme scenario of underdeter-
mined blind source separation (when the number of sources
exceeds the number of observations) [6]. Various methods
tackle this challenge leveraging source signal characteristics
and application requirements: Probabilistic models [7]–[9],
spectral decomposition-based methods, Computational Audi-
tory Scene Analysis (CASA)-based methods [10], and the deep
neural network (DNN) approaches [11].

Probabilistic models, including Gaussian mixture models
(GMM) [7], [12], hidden Markov models (HMM) [8], [13],
and factorial HMM [9], [14], are widely utilized for speaker
separation tasks. While GMM and HMM assume constant
source energy during separation, limiting real-time perfor-
mance, factorial HMM models mitigate this constraint but
increase computational complexity. An alternative approach
involves spectral decomposition-based methods such as In-

dependent Subspace Analysis (ISA) [15] and Nonnegative
Matrix Factorization (NMF) [16]–[18]. Independent Subspace
Analysis (ISA) is an extension of Independent Component
Analysis (ICA) [19] for single-channel source separation,
aiming to decompose the time-frequency space of a mixed
signal into independent source subspaces using Short-Time
Fourier Transform (STFT), which often results in cross-
spectral terms due to harmonic phenomena and overlapping
windows between consecutive time frames. Spectral decom-
position methods use the principle of NMF [17]. However,
the energy of real sources can be negative or positive. CASA
[10] aims to separate the mixture of sound sources like
human ears do. These techniques, however, have difficulty
separating instruments with similar tonal characteristics into
distinct streams. Recently, DNN-based approaches have shown
effective separation in the TF domain for speech signals.
Nevertheless, these methods demand an extensive database for
training, which may not always be readily accessible.

Unlike these methods, which work on the reconstruction
of the sources, we focus on the reconstruction of the sources
spectrograms from the mixture, due to their pivotal role in
determining sources frequency content. Accurate spectrogram
estimation lays the groundwork for subsequent phase esti-
mation, essential for signal reconstruction. To achieve this,
we impose the consistency constraint [20] on the estimated
spectrograms in our algorithm: indeed, since the STFT is
not surjective, estimated spectrograms may not correspond to
those of a signal. The consistency constraint ensures this. In
Section II, we describe and introduce our model. We then
present our method in Section III. Section IV presents the
numerical experiments and results. Section V pertains to the
conclusion.

II. MODELS AND DEFINITIONS

Consider a mixture z consisting of two distinct nonstation-
ary signals x and y:

z(t) = x(t) + y(t), (1)

where x is a bumps signal and y is a multicomponent AM-FM
signal (see Definitions 1 and 2).



Definition 1 (Bumps signal). A bumps signal x is composed
of a series of K distinct impulses, called bumps. It is written:

x(t) =

K∑
k=1

φ(t− tk), (2)

where tk are the impulse times, and φ defines an even,
bounded, function, called bump, localized near the origin.

We denote by ∆φ the constant such that the support φ is
[−∆φ,∆φ]. Furthermore, the impulses times tk are assumed
to be distinct: the smallest difference between two consecutive
pulses is denoted by θφ, i.e.,

θφ = min
k,k′
|tk − tk′ |.

Definition 2 (Multicomponent AM-FM signal). A multicom-
ponent AM-FM signal y is defined as:

y(t) =

L∑
ℓ=1

Aℓ(t) sin(2πϕℓ(t)), (3)

for L ∈ N, Aℓ and ϕℓ are respectively instantaneous amplitude
and phase of mode ℓ satisfying: Aℓ(t) > 0, ϕ′

ℓ(t) > 0 and
ϕ′
ℓ+1(t) > ϕ′

ℓ(t) for all t, where ϕ′
ℓ is referred to as the

instantaneous frequency.

The bumps component is localized around the impulse
times tk, and vanishes elsewhere, characterizing brief and
irregular events. The signal x is therefore well localized in
time. In contrast, signal y is locally periodic, making it well-
localized in the frequency domain. Hence, time-frequency
representations appear to be suited to isolate the contributions
of each component separately.

Definition 3 (Short-Time Fourier Transform (STFT)). Let x ∈
L2(R) the analyzed signal, g ∈ L2(R) the analysis window.
The STFT Tx of x is defined by:

Tx(ν, τ) =

∫
R
x(t)g(t− τ)e−i2πνtdt. (4)

The spectrogram, denoted by Sx, is the squared modulus of
the STFT, that is,

Sx(ν, τ) = |Tx(ν, τ)|2 . (5)

III. METHOD

A. Asymptotic results

In this section, we provide the asymptotic behaviors of the
spectrograms of signals as defined in Definitions (1) and (2).

1) Spectrogram of the bumps signal:

Theorem 1. Let x be a signal defined by (2). Choose a
compactly supported, differentiable analysis window g, with
supp(g) = [−∆g,∆g], so that it satisfies

∆φ < ∆g <
θφ
2
−∆φ. (6)

Then, the partial derivative of its spectrogram with respect to
frequency, denoted by ∂νSx, satisfies the following equation:

∂νSx(ν, τ)=2ℜ
(

K∑
k=1

(g(tk − τ)φ̂(ν) + ϵ1(ν, τ − tk))

×
(
g(tk − τ)φ̂′(ν) + ϵ2(ν, τ − tk)

))
(7)

where |ϵ1(ν, τ)| ≤∆2
φ∥φ∥∞∥g′∥∞,

|ϵ2(ν, τ)| ≤
4

3
π∆3

φ∥φ∥∞∥g′∥∞,

and ℜ(.) denotes the real part.

Proof. See Appendix.

Theorem 1 shows that the partial derivative of the spec-
trogram of x with respect to frequency is controlled by the
spread of the bump φ and the smoothness of the window
function g, among others. Inequality (6) specifies that the
analysis window can encompass each bump separately from
neighboring bumps. Then, the more localized the bump φ, the
smaller the error terms ϵ1 and ϵ2. For the sake of simplicity,
we assume these terms are negligible and focus on the re-
maining cross-terms |g(tk− τ)|2φ̂(ν)φ̂′(ν). They are nonzero
in the vicinity of tk only. However, since φ is localized in
time, the uncertainty principle, stipulates that φ̂ is spread in
frequency. Consequently, its derivative φ̂′ remains small over
the frequency band considered by the STFT.

2) Spectrogram of the multicomponent AM-FM signal:
The properties of the STFT of AM-FM signals have been
well-studied for decades. As a matter of fact, the quest for
the ideal time-frequency representation has motivated the
construction of adaptive methods such as the empirical mode
decomposition [21], the reassignment or the synchrosqueezing
transform (see [22] for a review). The ideal time-frequency
representation (ITF) of a multicomponent AM-FM signal is
written as:

ITFx(ν, τ) =

L∑
ℓ=1

Aℓ(τ)δ(ν − ϕ′
ℓ(τ)) (8)

The instantaneous spectral content of x at time τ is precisely
localized at the instantaneous frequencies. The contribution of
each component is weighed by its instantaneous amplitude.

Sparsity is a key property of such a representation. As
shown by Equation (8), the ITF is a sparse representation
in the time-frequency plane. This observation has led to the
construction of inverse problems whose solution is sparse and
approximates the ITF [23].

3) Spectrogram of the mixture: The purpose of this work
is to separate the contributions of each component to the
spectrogram of the observations. Since

Sz = Sx + Sy + 2ℜ(TxTy),

we will neglect the interactions between the STFT of x and y,
and assume that the cross term is negligible. This assumption,
based on the models in Definitions 1 and 2, is numerically



justified in Section IV—a mathematical proof is part of our
upcoming work.

B. Inverse Problem
1) Problem Statement: Given the approximated behaviors

of the spectrograms Sx and Sy provided in Section III-A, we
estimate them by solving:

Ŝx, Ŝy =arg min
Sx,Sy

∥Sz−(Sx+Sy)∥22+λ∥∂νSx∥22+µ∥Sy∥1 (9)

The first term, called data fidelity, quantifies the differ-
ence between the observed spectrogram and the sum of
the approximated spectrograms. It ensures that the solution
accurately reconstructs or fits the observed data. The second
term introduces the regularization for Sx. It promotes the
smoothness of Sx as described in Section III-A. The third term
encourages sparsity in Sy , implying that most elements of Sy

should be zero. The parameters λ and µ are tuning parameters
that balance the importance of fitting the data, controlling the
smoothness of Sx, and promoting sparsity in Sy .

We optimize Problem (9) using an alternating minimization
strategy, alternating updates between Sx and Sy . The initial
estimate S

(0)
y serves as the starting point for this iterative

process. At iteration k, the goal is to find S
(k)
x that minimizes

the following cost function:

S(k)
x =argmin

Sx

∥Sz − Sx − S(k−1)
y ∥22 + λ∥∂νSx∥22. (10)

In the next step, the cost function is updated with the current
estimate of S(k)

x and the algorithm optimizes over Sy:

S(k)
y = argmin

Sy

∥Sz − S(k)
x − Sy∥22 + µ∥Sy∥1 (11)

For practical applications and the sake of clarity, we consider
the following the discrete version of STFT, while keeping the
same notations. Due to the quadratic nature of the cost function
in (10), canceling out its gradient leads to:

S(k)
x =

(
I + λBTB

)−1
(
Sz − S(k−1)

y

)
, (12)

with B the matrix obtained after discretization of ∂νSx:

B =


−1 1 0 · · · 0
0 −1 1 · · · 0

0 0 −1 . . .
...

...
...

. . . . . . 1
0 0 · · · 0 −1


We solve (11) using the FISTA algorithm [24], which is well-
suited for tackling such inverse problems. For more details on
the iterations of the algorithm, we refer the reader to [24].

2) Spectrogram consistency: In the discrete case as men-
tioned above, a complex valued-matrix X is said to be
consistent if Π(X) = X , where Π = STFT ◦ STFT−1. Π
is a projector on the subspace of consistent matrices. Since
we estimate the spectrograms, adhering to the consistency
constraint is imperative. Therefore, at each stage of estimating
Sx and Sy , we incorporate the phases of the mixture Sz and
project onto Π.

3) Estimation Algorithm: Algorithm 1 presents the pro-
posed alternate estimation algorithm. Initialization is set so that
S
(0)
y = 0. The algorithm stops when it reaches the maximum

number of iterations K or when the relative change in the cost
function (9), denoted by ρ(k), falls below the threshold Θ.

Algorithm 1 Consistent Spectrogram Separation
Require: λ, µ ▷ Hyperparameters
Require: K, Θ ▷ Algorithm parameters
Require: Tz and Sz ▷ Input STFT and spectrogram
S
(0)
y ← 0 ▷ Initialization

k ← 1
while k ≤ K and ρ(k) ≥ Θ do

S
(k)
x ← Output of (12) ▷ Sx update

T
(k)
x ←

√
S
(k)
x arg(Tz)

S
(k)
x ← |Π(T

(k)
x )|2 ▷ Consistency of Sx

S
(k)
y ← FISTA on (11) ▷ Sy update

T
(k)
y ←

√
S
(k)
y arg(Tz)

S
(k)
y ← |Π(T

(k)
y )|2 ▷ Consistency of Sy

k ← k + 1
end while

IV. NUMERICAL EXPERIMENTS

We implement the proposed algorithm to both a synthetic
mixture and a real audio signal. For the sake of reproducibility,
the codes produced for this article are available on GitHub1.

A. Application to a synthetic signal

We generate a 1-second mixture, sampled at Fs = 214 Hz
(i.e., 214 samples). The bumps signal is composed of about 20
randomly spaced bumps, while ensuring that θφ ≥ 35 ms. The
bumps have a Hann window shape, where ∆φ = 0.55 ms (i9
samples). The AM-FM signal has a single component, with
a constant amplitude, and an instantaneous frequency defined
by

ϕ′
1(t) = f0

(
1 +

t

2
sin(2πt)

)
,

where f0 = 1.5 kHz is the central frequency. Figure 1 shows
the resulting mixture spectrogram. The analysis window is
a Hann window of length 2∆g = 31.5 ms. This satisfies
Inequality (6), ensuring non-interference between the bumps
in the spectrogram of the bumps signal.

We run the proposed algorithm with Θ = 0.1%. We observe
that the algorithm converges in 52 iterations. Figure 2 shows
the estimated spectrograms of x and y in the left panels.
We note that the two components are indeed separated in
the time-frequency plane. The intrinsic characteristics of the
spectrograms are well preserved, with smoothness regarding
frequency for the first component, and sparsity for the sec-
ond. However, challenges arise in regions of overlap, making
component separation more challenging and leading to some
distortions. The spectrograms estimated using NMF are shown

1https://github.com/AdMeynard/SpectrogramSeparation

https://github.com/AdMeynard/SpectrogramSeparation
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Fig. 1. Spectrogram of the synthetic mixture.
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Fig. 2. Estimated spectrograms of the bumps signal (top) and the AM-FM
signal (bottom). The spectrograms on the left are obtained by our method,
those on the right by NMF.

in the right panels of Figure 2. While NMF accurately captures
the vertical patterns of the first component, the estimated
second component exhibits a spectrogram resembling a dis-
continuous horizontal line, diverging significantly from the
expected pattern. The additional degree of freedom offered by
our method allows for a more accurate decomposition of the
spectrogram. Indeed, the norm of residuals ∥Sz−S(k)

x −S(k)
y ∥2

after convergence is 7.8× 10−5 with our algorithm while it is
1.4× 10−2 with NMF.

B. Application to an audio signal

We analyze a 3.5-second recording of a vocalizing Atlantic
spotted dolphin. It is sourced from the Watkins Marine Mam-
mal Sound Database [25]. The sound the dolphin produces is
made up of whistles and clicks. The bumps signal models the
clicks, whereas the AM-FM component models the whistles.
The spectrogram of the sound is shown in Figure 3. The
contributions of the two components are visible in the time-
frequency plane.

We set λ = 0.1 and µ = 0.00001. The algorithm converges
in 165 iterations. The estimated spectrograms, shown in Fig-
ure 4, illustrate the ability of our technique to isolate the two
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Fig. 3. Spectrogram of the recording of a vocalizing dolphin.
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Fig. 4. Estimated spectrograms of the clicks (left) and the whistles (right) of
a vocalizing dolphin.

components in the time-frequency plane. On the one hand, the
estimated spectrogram of the bumps component is a frequency-
spread representation, especially visible during click periods
(e.g., in the 2–3 s interval). On the other hand, the estimated
spectrogram of the AM-FM signal captures the frequency-
localized whistles (visible, e.g., around 4-6 kHz in the 0–2 s
interval). This example shows the extent to which this tool
can be used in bioacoustics to better visualize and interpret
the two types of sound emitted simultaneously by a dolphin.

V. CONCLUSION AND PERSPECTIVES

We have presented a consistent spectrogram separation
technique, adapted to a specific type of nonstationary mixtures
composed of a bump component and an AM-FM component.
To address this problem, we leveraged the properties of the
time-frequency representations of such mixtures. We then
constructed an inverse problem to estimate the spectrograms
of the two components. Finally, we propose an alternating
optimization algorithm that we test on a synthetic mixture.
We show that our method outperforms the standard NMF
decomposition. An application to a bioacoustic signal is also
presented, demonstrating the real-world applicability of the
technique.

This work represents a step towards the construction of a
single-channel source separation method for reconstructing the
two components themselves. We plan to use the estimated
spectrograms as time-frequency masks to estimate the STFTs
of each component. Our previous work is particularly well-
suited to this type of problem [26]. An inverse transform will
then be used to reconstruct the time signals.

APPENDIX: PROOF OF THEOREM 1

Proof. By incorporating the bumps signal expression (2) into
the STFT definition (4), we obtain

Tx(ν, τ) =

K∑
k=1

∫
R
φ(t− tk)g(t− τ)e−i2πνtdt

=

K∑
k=1

∫
R
φ(u)g(u− (τ − tk))e

−i2πν(u−tk)du

=

K∑
k=1

e+i2πνtkTφ(ν, τ − tk).

The second row is obtained by changing the variable u = t−
tk. Besides, since φ and g are compactly supported functions,



Tφ(ν, τ − tk) is nonzero only if the supports of φ and g(· −
τ − tk) intersect. This condition is written

tk − (∆g +∆φ) < τ < tk +∆g +∆φ. (13)

Hence, Tφ(ν, τ − tk) and Tφ(ν, τ − tk′) are never simultane-
ously nonzero if there is no value of τ where (13) is satisfied
for tk and tk′ simultaneously. We end up with the condition

|tk − tk′ | < 2(∆g +∆φ),

which is always satisfied when (6) is true. Therefore, the
spectrogram is given by

Sx(ν, τ) =

∣∣∣∣∣
K∑

k=1

ei2πνtkTφ(ν, τ − tk)

∣∣∣∣∣
2

=

K∑
k=1

|Tφ(ν, τ − tk)|2 .

This yields

∂νSx(ν, τ) = 2ℜ
(

K∑
k=1

Tφ(ν, τ−tk)∂νTφ(ν, τ−tk)
)
. (14)

Besides, the analysis window had wider support than φ. That
is why we take advantage of the mean value theorem to write:

∃0 < ϑ(t) < t, g(t− τ) = g(−τ) + tg′(ϑ(t)− τ). (15)

Hence,

Tφ(ν, τ) =

∫ ∆φ

−∆φ

φ(t)g(t− τ)e−i2πνtdt

= g(−τ)φ̂(ν) + ϵ1(ν, τ), (16)

where ϵ1(ν, τ − tk) =
∫∆φ

−∆φ
φ(t)tg′(ϑ(t)− τ)e−i2πνtdt. The

same reasoning yields

∂νTφ(ν, τ) = g(−τ)φ̂′(ν) + ϵ2(ν, τ − tk), (17)

where ϵ2(ν, τ) = −i2π
∫∆φ

−∆φ
φ(t)t2g′(ϑ(t) − τ)e−i2πνtdt.

Inserting results (16) and (17) into Equation (14) leads to the
main result (7) of the theorem. Finally, we bound the error
terms as follows:

|ϵ1(ν, τ)| ≤
∫ ∆φ

−∆φ

∥φ∥∞|t|∥g′∥∞dt = ∆2
φ∥φ∥∞∥g′∥∞

|ϵ2(ν, τ)| ≤ 2π

∫ ∆φ

−∆φ

∥φ∥∞|t|2∥g′∥∞dt =
4

3
π∆3

φ∥φ∥∞∥g′∥∞.
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