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Abstract. Atmospheric emissions from anthropogenic
hotspots, i.e., cities, power plants and industrial facilities,
can be determined from remote sensing images obtained
from airborne and space-based imaging spectrometers. In
this paper, we present a Python library for data-driven emis-
sion quantification (ddeq) that implements various compu-
tationally light methods such as the Gaussian plume inver-
sion, cross-sectional flux method, integrated mass enhance-
ment method and divergence method. The library provides
a shared interface for data input and output and tools for
pre- and post-processing of data. The shared interface makes
it possible to easily compare and benchmark the different
methods. The paper describes the theoretical basis of the
different emission quantification methods and their imple-
mentation in the ddeq library. The application of the meth-
ods is demonstrated using Jupyter notebooks included in
the library, for example, for NO2 images from the Sentinel-
5P/TROPOMI satellite and for synthetic CO2 and NO2 im-
ages from the Copernicus CO2 Monitoring (CO2M) satel-
lite constellation. The library can be easily extended for new
datasets and methods, providing a powerful community tool
for users and developers interested in emission monitoring
using remote sensing images.

1 Introduction

The majority of anthropogenic emissions of air pollutants
and greenhouse gases is confined to localized sources such
as cities, power plants and industrial facilities (e.g., Crippa
et al., 2022). The emissions of these hotspots can be deter-
mined from the atmospheric plumes of trace gas column den-
sities in remote sensing images. Trace gases of interest are ni-
trogen dioxide (NOx =NO2 +NO), carbon monoxide (CO),
carbon dioxide (CO2), methane (CH4) and others. Numerous
methods have been developed in recent years to quantify the
emissions from remote sensing images by matching obser-
vations to simulated plumes (e.g., Bovensmann et al., 2010;
Nassar et al., 2017; Broquet et al., 2018; Ye et al., 2020; Lei
et al., 2021; Kaminski et al., 2022), applying the principle of
mass conservation to individual or temporally averaged im-
ages (e.g., Beirle et al., 2011; de Foy et al., 2015; Varon et al.,
2018; Reuter et al., 2019; Zheng et al., 2020; Kuhlmann et al.,
2021; Leguijt et al., 2023), or using machine-learning mod-
els trained with synthetic observations (e.g., Jongaramrun-
gruang et al., 2022; Joyce et al., 2023; Dumont Le Brazidec
et al., 2024).

Remotely sensed trace gas images are available from
space-based imaging spectrometers such as the TROPO-
spheric Monitoring Instrument (TROPOMI; Veefkind et al.,
2012) and the Orbiting Carbon Observatory-3 (OCO-3; El-
dering et al., 2019) and from high-resolution point source
imagers such as GHGSat, several multispectral land imag-
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ing sensors (e.g., Sentinel-2) and the upcoming generation of
missions in polar and geostationary orbits (i.e., Copernicus
CO2 Monitoring, CO2M; Geostationary Environment Moni-
toring Spectrometer, GEMS; The Global Observing SATel-
lite for Greenhouse gases and Water cycle, GOSAT-GW;
Sentinel-4 and Sentinel-5; Tropospheric Emissions: Monitor-
ing of Pollution, TEMPO; and others). In addition, airborne
imaging spectrometers can be used to map emission plumes
at a high spatial resolution (e.g., Thorpe et al., 2017; Tack
et al., 2019; Fujinawa et al., 2021). An example of the plumes
that can be visible from a city or power plant is shown in
Fig. 1. This example is from the synthetic SMARTCARB
dataset (Kuhlmann et al., 2019) generated for the CO2M
satellite constellation planned for launch in 2026 (ESA Earth
and Mission Science Division, 2020).

Measurement-based emissions monitoring systems are
currently being developed to support global efforts to re-
duce greenhouse gas emissions to achieve the goals of
the Paris Agreement on climate change. One such system
is the European CO2 Monitoring and Verification Support
(CO2MVS) capacity that will be implemented as part of the
European Copernicus program (Janssens-Maenhout et al.,
2020). A prototype system of the European CO2MVS ca-
pacity is currently developed as part of the CoCO2 project
(https://coco2-project.eu/, last access: 24 May 2024). Since
one goal of CO2MVS is the global monitoring of emission
hotspots, several emission quantification methods were im-
plemented and benchmarked in the CoCO2 project using
synthetic CO2M CO2 and NO2 observations and Sentinel-
5P/TROPOMI NO2 observations (Hakkarainen et al., 2024;
Santaren et al., 2024). As the new generation of satellites will
provide a large number of hotspot images (e.g., Kuhlmann
et al., 2021; Wang et al., 2020), it is foreseen that computa-
tionally lightweight methods will be needed to process such
a large amount of data in the operational CO2MVS system.
Such methods will have to make optimal use of the infor-
mation contained in the images without requiring expensive
plume simulations with a high-resolution atmospheric trans-
port model.

This paper describes the Python library for data-driven
emission quantification (ddeq; version 1.0), developed as part
of the CoCO2 project as a shared library for the implemen-
tation of various lightweight approaches. Although the var-
ious methods differ in many aspects, they share many pre-
and post-processing steps including data input and output.
The common interface thus makes ddeq a powerful tool not
only for comparing and benchmarking different methods, but
also for implementing new approaches. The ddeq library was
originally developed as part of the SMARTCARB project
for detecting and quantifying CO2 and NOx emissions in
synthetic CO2 and NO2 images of the CO2M mission
(Kuhlmann et al., 2019, 2020a, 2021), but it has also been
used for quantifying NOx emissions with the airborne APEX
imaging spectrometer (Kuhlmann et al., 2022). ddeq is de-
signed for the lightweight emission quantification of hotspots

from remotely sensed images. A similar community-driven
library exists for regional and global emission estimation
with atmospheric model runs through the Community Inver-
sion Framework (CIF; Berchet et al., 2021). The ddeq version
presented here does not include machine-learning models,
which were also considered in the CoCO2 project (Dumont
Le Brazidec et al., 2023, 2024). ddeq has been used in the
CoCO2 project for benchmarking the different methods us-
ing synthetic CO2M observations (Santaren et al., 2024) and
TROPOMI NO2 observations (Hakkarainen et al., 2024).

The paper has two parts. In the first part, we describe the
general principles of lightweight emission quantification and
describe the different methods. In the second part, we de-
scribe the common framework and interfaces provided by
ddeq and details of the implementation of the different meth-
ods. The application of the ddeq library to synthetic CO2M
observations for estimating CO2 and NOx emissions and
to TROPOMI observations for estimating NOx emissions is
showcased in several Jupyter notebooks available in the Sup-
plement.

2 Theoretical basis

Two families of lightweight approaches exists for emission
quantification of hotspots. The first family quantifies emis-
sions from “instantaneous plumes” obtained from single re-
mote sensing images. The second family requires averag-
ing over multiple images taken at different times before
quantifying the emissions. The ddeq library currently im-
plements four methods for emission estimation, partly in
different flavors. The emission quantification methods are
the (1) Gaussian plume inversion, (2) cross-sectional flux
method, (3) integrated mass enhancement method and (4) di-
vergence method. All methods can be applied to single im-
ages although the divergence method typically requires av-
eraging over many images. In the following, the theoretical
basis for plume detection, background estimation, effective
wind speeds and the four quantification methods are summa-
rized briefly. We also briefly cover the conversion of NO2
to NOx observations and the estimation of annual emissions
from individual estimates.

2.1 Identification of the plume region

A critical first step required by most methods is the identifi-
cation of a subregion within the image (described by a poly-
gon) where the emission quantification method is applied
(see Fig. 1). The subregion contains the plume, i.e., the pixels
where trace gas columns are enhanced due to emissions from
the source of interest and a fraction of the background field.
This first step not only identifies the plume location, but also
assigns the source location and computes a local coordinate
system defining along- and across-plume distances.
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Figure 1. Example of synthetic CO2M (a) CO2 and (b) NO2 satellite images from the SMARTCARB dataset. The images show the emission
plumes of the city of Berlin and the coal-fired power plant near Jänschwalde at a 2 km resolution. Pixels with cloud fractions larger than 1 %
for CO2 and 30 % for NO2 are shown in white, and regions outside the satellite swath are shown in gray. The triangular marker indicates the
wind direction at the source. The yellow polygons delineate the subregions containing the plumes. The smaller polygons show the regions
upstream of the source.

Broadly speaking, two different approaches to defining the
subregion are available, and both have been implemented
in ddeq. The first approach identifies the plumes inside the
remote sensing images using an image segmentation algo-
rithm. For example, if thresholding is used, pixels are as-
signed to the plume if their signal-to-noise ratio (SNR) ex-
ceeds a threshold, zq :

SNR=
V −Vbg

σV
≥ zq , (1)

where V and Vbg are the total and background vertical col-
umn density and σV is the local noise in the image (Varon
et al., 2018; Kuhlmann et al., 2019). The determination of
the background, i.e., the vertical column density that would
be expected without the presence of the source, is described
in the next section. More complex segmentation algorithms
apply feature detection using, for example, convolutional
neural networks (Finch et al., 2022; Dumont Le Brazidec
et al., 2023). The detected plumes can be assigned to one or
more sources by checking their overlap with a known list of
source locations, for example, from an emission inventory.
The Boolean mask obtained from the image segmentation
can be converted to the polygons shown in Fig. 1 by com-
puting the bounding boxes in the local coordinate system.

The second approach determines the subregion based on
the source location and the wind field available from, for
example, a meteorological reanalysis product. This means
that the remote sensing images are not used. In the simplest
case, the wind vector is taken at the source location and the
plume is assumed to be located downstream. It is then possi-
ble to draw a rectangular polygon with the along- and across-
wind direction. The approach can be extended to simulate the
plume location or an ensemble of plume locations with an
atmospheric transport model, which can provide a better es-
timate of the plume location, especially further downstream

of the source. However, this can get computationally quite
expensive and does not qualify as a lightweight method any-
more.

For each detected plume, a natural coordinate system can
be established with the along-plume coordinate, x, and the
across-plume coordinate, y. The coordinates can be com-
puted as distance either along and perpendicular to the wind
vector. For a curved plume, the coordinates can be computed
as the arc length along and distance from a two-dimensional
curve fitted to the detected plume (see Fig. 1 and Kuhlmann
et al., 2020a for details).

2.2 Background estimation

To estimate the emission rate of a source, we are interested
in the enhancement above the background:

Ve(x,y)= V (x,y)−Vbg(x,y). (2)

A common approach for estimating the background is ap-
plying a low-pass filter (e.g., a median filter) or a normal-
ized convolution after masking enhancements, assuming a
spatially smooth background field. Alternatively, the back-
ground can be estimated from the pixels upstream of the
source. Another approach is explicitly fitting a background
term in the emission quantification method, which is possi-
ble with Gaussian plume inversion and the cross-sectional
flux method.

2.3 Effective wind speed

Wind speed and direction describe the transport of the trace
gas in the atmosphere and are therefore important input pa-
rameters for all emission quantification methods. For meth-
ods that are applied to instantaneous images, the wind di-
rection can be estimated from the plume direction. The

https://doi.org/10.5194/gmd-17-4773-2024 Geosci. Model Dev., 17, 4773–4789, 2024



4776 G. Kuhlmann et al.: ddeq Python library (version 1.0)

Table 1. Symbols used in equations.

Symbol Description Units

A pixel area m2

D decay function 1
E emission kgm−2 s−1

F gas flux kgs−1

G Gaussian plume model kgm−2

H Heaviside step function 1
J cost function –
K eddy diffusion coefficient m2 s−1

L plume length m
M integrated mass enhancement kg
Q emission rate kgs−1

S sink term kgm−2 s−1

V vertical column density kgm−2

Vbg background vertical column density kgm−2

b offset of linear background kgm−3

c decay correction factor 1
f NO2-to-NOx conversion factor 1
g Gaussian curve kgm−2

m slope of linear background kgm−2

p two-dimensional Gaussian surface kgm−2 s−1

q line density kgm−1

r correlation 1
t residence time s
u wind speed ms−1

x along-plume coordinate m
y across-plume coordinate m
zq detection threshold 1
κ coefficient in Gaussian plume model 1
ρ trace gas concentration kgm−3

µ center shift of Gaussian curve m
σ standard width of Gaussian curve m
σV random noise of V –
τ decay time s
P plume pixels –

wind speed needs to be taken from another source such as
ECMWF’s ERA5 reanalysis product (Hersbach et al., 2023).

To obtain an unbiased estimate of the emissions, it is nec-
essary to calculate the effective wind speed that corresponds
to the mean transport speed of the plume. The effective wind
speed is the vertically averaged wind speed weighted by the
vertical profile of the trace gas concentration. It can be cal-
culated as

u(x,y)=

∫ zT
0 ρe(x,y,z)u(x,y,z)dz∫ zT

0 ρe(x,y,z)dz
, (3)

where ρe(x,y,z) is the concentration of the trace gas en-
hancement, u(x,y,z) is the along-plume wind speed and zT
is a height above the plume.

Since the vertical profile, ρe(z), is usually not known, a
common approach to approximating the effective wind speed
is by averaging the lowest layers of a reanalysis product (e.g.,

Fioletov et al., 2015, uses the mean of the three lowest ERA5
layers). Alternatively, plume rise calculations can be used to
estimate the height and spread of the trace gas at the source
location. The effective emission height can be significantly
higher than the geometric height of a stack due to the mo-
mentum and buoyancy of the flue gas. Plume rise is gen-
erally influenced by stack geometry (height and diameter),
flue gas properties (temperature, humidity and exit veloc-
ity) and meteorological conditions (wind speed and atmo-
spheric stability) (Bieser et al., 2011; Brunner et al., 2019).
In the case of a well-mixed atmospheric boundary layer,
the exhaust plume becomes uniformly mixed throughout the
depth of the boundary layer with increasing distance from
the source. Therefore, a pressure-weighted mean wind speed
in the boundary layer may be sufficient. This approach could
also be viable for emissions from a city.

Lightweight approaches use a single value, such as the
wind speed at the source location or averaged over the plume.
It is important to note that the effective wind speed also has a
temporal component, even in an instantaneous image, as the
trace gas at the end of long plumes can be several hours old.

2.4 Emission quantification methods

Figure 2 illustrates the application of the Gaussian plume in-
version, cross-sectional flux, integrated mass enhancement
and divergence method. In each panel, the pseudo-color map
shows the NO2 column densities observed by an imaging
spectrometer with a 5 km resolution for an emission plume of
a source located at the origin. The plume was modeled with
a Gaussian plume model with an emission rate of 1 kg s−1

(≈ 32 kt NO2 a−1), a chemical lifetime of NO2 of 6 h, and a
wind speed of 5 m s−1. The white crosses mark pixels where
the NO2 column is larger than 50 µmol m−2. In the following,
the theoretical basis for these methods is described for de-
termining the emissions of a chemically inert gas (e.g., CO2
and CH4) and an exponentially decaying gas (e.g., NO2). The
conversion of NO2 to NOx is discussed in Sect. 2.5.

2.4.1 Gaussian plume inversion

In this method, a vertically integrated Gaussian plume model,
G, is fitted to the observed column densities, V (e.g., Bovens-
mann et al., 2010; Nassar et al., 2017). The Gaussian plume
model can be written as

G(x,y)=
QH(x)
√

2π uσ(x)
exp

(
−

y2

2σ(x)2

)
+Vbg(x,y), (4)

with emission rate Q, wind speed u and background column
Vbg(x,y). H(x) is the Heaviside step function, and x and
y are the along- and across-plume coordinates. The disper-
sion in the across-plume direction is modeled by the standard
width

σ(x)=

√
2Kxκ

u
, (5)

Geosci. Model Dev., 17, 4773–4789, 2024 https://doi.org/10.5194/gmd-17-4773-2024
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Figure 2. Sketch showing the application of the different lightweight methods to an emission plume. Each panel shows an NO2 emission
plume simulated by a Gaussian plume model (Q= 1 kgs−1; u= 5 ms−1), including exponential decay (τ = 6 h).

with the eddy diffusion coefficient, K (in m2 s−1). The addi-
tional exponent κ accounts for possible changes in the disper-
sion rate along the plume depending on meteorological con-
ditions. This makes it possible to modify the standard expres-
sion using κ = 1 with a power law of the form σ(x)= axb,
which has also been used in the literature (e.g., Krings et al.,
2013). An example of the Gaussian plume is shown by the
contour lines in Fig. 2a.

A least-squares method can be used to obtain the optimal
values for Q, K , Vbg and κ as well as their uncertainties by
minimizing the following cost function:

J (Q,K,Vbg,κ)=
∣∣∣∣Vi,j −G(xi,yi)∣∣∣∣22, (6)

where Vi,j is the observed column density for the pixel with
center coordinates (xi,yi).

Equation (4) can be used to approximate the emission
plumes for species with long lifetimes such CO2, CO and
CH4. For species with short lifetimes, the Gaussian plume
model needs to be multiplied with a decay term:

D(x,τ)=H(x)exp
(
−
x

uτ

)
, (7)

where the lifetime, τ , is an additional fitting parameter. In the
case of NO2, the lifetime is typically about 4 h.

The Gaussian plume model is valid for a point source,
where the source area is smaller than the pixel size. For
sources such as cities with dimensions larger than the pixel
size, the flux slowly increases across the source area. An ap-
proach to accounting for this effect is to describe the emis-
sions from the city by an emission map, p(x,y), and the
change in flux in the along-plume direction as the convolu-
tion of a map and a decay term.

Ga(x,y)=G(x,y)

+∞∫
−∞

D(x′,τ )p(x− x′,y)dx′ (8)

The emission map can take the form of a uniform surface
within city boundaries or a two-dimensional Gaussian sur-
face, p(x,y), with the form

p(x,y)=
1

2πσxσy
√

1− r2

· exp

(
−

(x− x0)
2

2σ 2
x (1− r2)

−
(y− y0)

2

2σ 2
y (1− r2)

+
r(x− x0)(y− y0)

σxσy(1− r2)

)
, (9)

where (x0,y0) is the center position, σx and σy are the stan-
dard widths, and r is the correlation. These parameters can
be included in the least-squares method as additional fitting
parameters.

2.4.2 Cross-sectional flux method

The cross-sectional flux method applies mass conservation
by computing the gas flux in the plume (F ; in kg s−1) down-
wind of the source from wind speed, u, and line density, q
(e.g., Varon et al., 2018; Reuter et al., 2019; Kuhlmann et al.,
2021), i.e., as follows:

F = u · q. (10)

For a non-decaying gas, the flux is identical to the emission
rate, Q, under the assumption of steady-state conditions and
that turbulent mixing is negligible compared to advective
transport in the along-plume direction. For a decaying gas,
the flux decreases downstream of the source in the along-
plume distance, x. In this case, the emission rate can be com-
puted by compensating the flux for the along-plume decay:

Q=
F(x)

D(x,τ )
. (11)

https://doi.org/10.5194/gmd-17-4773-2024 Geosci. Model Dev., 17, 4773–4789, 2024
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The line density is obtained by integrating the column en-
hancements in the across-plume direction from y1 to y2 at
distance x:

q(x)=

y2∫
y1

(
V (x,y)−Vbg

)
dy, (12)

where the interval [y1,y2] needs to be sufficiently large to
contain the full plume extent.

The line density can simply be obtained by integrating
over the enhancements for all pixels within a rectangle (a
polygon in the case of a curved plume) delimited by [x1,x2]

and [y1,y2] (see Fig. 2b). However, a disadvantage of this
approach is that the background needs to be estimated first
and subtracted from the observed vertical columns. Another
disadvantage is that missing pixels (e.g., due to clouds) need
to be interpolated to obtain the correct line density. An often-
used alternative approach is therefore fitting a Gaussian curve
to all observations within the rectangle:

g(y)=
q
√

2πσ
exp

(
−
(y−µ)2

2σ 2

)
+my+ b, (13)

with standard width σ and center positionµ. The background
is approximated here by a linear function with slope m and
intercept b. The Gaussian curve has the advantage that it au-
tomatically interpolates missing values. Furthermore, assum-
ing that different trace gases share the same distribution in
the lateral direction, the method can be expanded to use the
standard width and center position estimated for one trace
gas directly when fitting the Gaussian function for another
gas. This is particularly attractive for the combination of NO2
and CO2 observations from the future CO2M mission. Since
NO2 can be measured with higher precision than CO2 with
current remote sensing instruments, images of NO2 can pro-
vide a much stronger constraint on the width and position of
the plume compared to the much noisier images of CO2 (e.g.,
Reuter et al., 2019).

To increase the accuracy of the estimate, fluxes can be
computed for multiple polygons downstream of the source.
For a non-decaying gas, the estimated fluxes can simply be
averaged. For a decaying gas, however, the emission, Q, can
be obtained by additionally fitting the lifetime, τ , to the esti-
mated fluxes. For point sources, where the pixel size is larger
than the source area, a step function is assumed in the decay
term; i.e., the flux increases stepwise from zero to the emis-
sion rate, Q, at the source location:

Fp(x,τ )=Q ·D(x,τ). (14)

For sources such as cities, it is necessary to account for the
effect of the source area by describing the emissions from the
city, for example, as a Gaussian curve and the change in flux
in the along-plume direction as the convolution of a Gaussian

curve and a decay term

Fa(x,τ,µa,σa)=Q

+∞∫
−∞

D(x′,τ )g(x− x′,µa,σa)dx′, (15)

where µa and σa are the location and standard width of the
Gaussian curve describing the extent of the area source. This
is identical to the exponential modified Gaussian method but
applied to a single image (Beirle et al., 2011; de Foy et al.,
2015).

2.4.3 Integrated mass enhancement

The integrated mass enhancement approach computes the
emission rate, Q, from the integrated total mass enhance-
ment, M , of the detectable plume, Pd, and a residence time,
t (Frankenberg et al., 2016; Varon et al., 2018). The method
can be derived by integrating the Gaussian plume model after
subtracting the background (Eq. 4) over a large polygon up
to distance x2 (see Fig. 2c):

M =

y2∫
y1

x2∫
x1

(
G(x,y)−Vbg(x,y)

)
dx dy. (16)

If the integration interval in the across-plume direction is suf-
ficiently large to contain the full plume and 0< x1 < x2, we
obtain

M =

x2∫
x1

Q

u
dx (17)

or

Q=
u

L
M, (18)

where u is the effective wind speed and L= x2− x1 is the
length of the detectable plume. Note that the derivation here
is different from Varon et al. (2018), who only integrated over
the detectable plume and computed L as the length scale de-
fined as the square root of the plume area.

In practice, M can be computed as

M =
∑

(i,j)∈Pa

(Vi,j −Vbg) ·Ai,j , (19)

where Ai,j is the pixel area and Pa is the integration area
obtained by sufficiently expanding the detected plume in the
across-wind direction to also include pixels with enhance-
ments below the detection limit.

To apply the integrated mass enhancement method to a de-
caying gas, the decay term needs to be included in the inte-
gral:

M =

y2∫
y1

x2∫
x1

G(x,y) ·D(x)dx dy. (20)

Geosci. Model Dev., 17, 4773–4789, 2024 https://doi.org/10.5194/gmd-17-4773-2024
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As a result, the emission rate, Q, can be computed as

Q=
1
c

u

L
M, (21)

where the correction factor, c, corrects for the gas decay in
the along-plume direction:

c =
uτ

L

(
exp

(
−
x1

uτ

)
− exp

(
−
x2

uτ

))
. (22)

2.4.4 Divergence method

The divergence method was introduced by Beirle et al.
(2011, 2019) for estimating NOx emissions from TROPOMI
NO2 satellite observations. In the CoCO2 project, the method
was adapted to estimate CO2 emissions (Hakkarainen et al.,
2022). The method is generally applied to a sequence of
satellite images rather than a single image.

The divergence method is based on the continuity equation
(Jacob, 1999; Koene et al., 2024) at steady state. According
to this, the divergence of the flux field, F , corresponds to the
difference between emissions, E, and sinks, S:

∇ ·F = E− S. (23)

The flux, F , is defined as

F =

(
Fx
Fy

)
=

(
V · u

V · v

)
, (24)

where V is the vertical column density and u and v are
the eastward and northward components of the plume trans-
port speed, respectively, which correspond to the horizontal
wind components weighted by the vertical distribution of the
plume concentrations (Koene et al., 2024).

The NOx sink can be calculated from the NO2 columns as
S =

fV
τ

, where τ is the NOx lifetime and f is the constant
NOx-to-NO2 ratio. Assumptions about the lifetime and NOx-
to-NO2 ratio are discussed in the next section.

In the case of gases like CO2 with lifetimes much longer
than the characteristic timescales of a plume (i.e., much
longer than a few hours), the sink term can be neglected. For
long-lived gases, however, it is critical to first subtract the
atmospheric background before computing the divergence
since the flux is not linear with column V due to the verti-
cal change in wind speed (e.g., Hakkarainen et al., 2016).

To obtain the hotspot emissions,Q, from the emission map
(E = S+∇ ·F ), a peak-fitting algorithm can be applied that
fits a two-dimensional Gaussian surface with a background
at each source location (x0, y0):

p(x,y)=
Q

2πσxσy
√

1− r2
·

exp

(
−

(x− x0)
2

2σ 2
x (1− r2)

−
(y− y0)

2

2σ 2
y (1− r2)

+
r(x− x0)(y− y0)

σxσy(1− r2)

)
+pBG, (25)

with standard widths (σx , σy); correlation r; and a constant
background in the divergence flux map, pBG.

2.5 NO2 to NOx conversion

Many studies estimate emissions from NO2 observations.
However, NO2 is emitted primarily as nitrogen monoxide
(NO) and rapidly converted to NO2 in the atmosphere. Emis-
sions are therefore reported as nitrogen oxides (NOx = NO2
+ NO) in NO2 equivalents (kgNO2 s−1). Since imaging re-
mote sensing instruments only measure NO2 column densi-
ties, it is necessary to convert NO2 to NOx using a NO2-to-
NOx ratio, fV , representative of vertical columns

VNOx (x,y)= fV (x,y) ·VNO2(x,y) (26)

or a ratio, fQ, for the estimated emissions

QNOx = fQ ·QNO2 . (27)

If the conversion factor fV is constant in space, fV and fQ
are identical. However, the assumption of spatial (and tempo-
ral) homogeneity is generally not true for emission plumes,
and more realistic models are currently being discussed (e.g.,
Hakkarainen et al., 2024; Meier et al., 2024).

2.6 Estimating annual emissions

Except for the divergence method, the methods described
thus far allow us to quantify emissions from a single satellite
image. To make statements about emissions over longer peri-
ods of time and to take advantage of the detection of a single
source in multiple satellite images, one can compute a tem-
poral average of the various computed emissions. Since the
temporal coverage may be sparse and unevenly distributed
over the year due to cloud cover and other factors, it may
be useful to fill the gaps by making assumptions about the
temporal variability. One possibility is to fit a seasonal cy-
cle to the individual estimates using a low-order spline to
approximate the time-varying emissions and to compute the
annual mean emissions by integrating over the cycle (e.g.,
Kuhlmann et al., 2021). Extrapolating from a few single ob-
servations to an annual average is associated with significant
uncertainties unless additional information on the true tem-
poral variability is available (Hill and Nassar, 2019; Nassar
et al., 2022). A further complication is the fact that satellite
observations are often performed at the same time of day,
providing almost no information on diurnal variability.

3 The ddeq Python library

In this paper, we describe version 1.0 of the library, which
is provided in the Supplement. ddeq is an open-source li-
brary, whose latest release is available on the Python Pack-
age Index (PyPI; https://pypi.org/project/ddeq/). The issue
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tracker and the development version of the library are avail-
able on the project’s website at https://gitlab.com/empa503/
remote-sensing/ddeq (last access: 24 May 2024). How to in-
stall ddeq is described in Appendix A. The documentation of
the library is available in the Supplement and also published
on Read the Docs (https://ddeq.readthedocs.io/, last access:
24 May 2024).

3.1 General framework

The library consists of four main components as shown in
Fig. 3. (1) The data input component provides functions for
reading remote sensing images (e.g., S5P/TROPOMI obser-
vations and synthetic CO2M observations), hotspot locations
(e.g., CoCO2 point source database; Guevara et al., 2024)
and (effective) wind fields (e.g., ERA5 reanalysis product).
(2) The second component provides pre-processing of the
data, which includes plume detection, conversion between
coordinate systems, unit conversions, and estimation of the
background field. (3) To quantify the emissions, five mod-
ules are provided implementing a Gaussian plume inver-
sion (hereafter abbreviated as GP in ddeq.gauss), gen-
eral and light cross-sectional flux method (hereafter CSF in
ddeq.csf and LCSF in ddeq.lcsf), integrated mass en-
hancement (hereafter IME in ddeq.ime), and divergence
method (hereafter DIV in ddeq.div). (4) Finally, the li-
brary provides functions for post-processing, which includes
methods for estimating annual emissions from individual es-
timates, for converting NO2 to NOx emissions, for visual-
izing the results and for writing data output in standardized
NetCDF format.

Listing 1 shows a simple code example demonstrating the
individual steps required for estimating the CO2 and NOx
emissions of the Jänschwalde power plant in Germany. The
Jupyter notebook with the full example is part of the ddeq li-
brary (notebooks/tutorial-introduction-to-ddeq.ipynb). First,
the data input step corresponds to reading the location of
sources, synthetic CO2M data and ERA5 wind fields. ERA5
files were downloaded and prepared by the ddeq library
(see Sect. 3.2). Second, a plume detection algorithm is used
to locate the plume in the satellite image. A center curve is
fitted to the data and natural coordinates are computed for the
detected plume of each source. Third, the data are prepared
for emission quantification by estimating and subtracting the
background field and converting the CO2 and NO2 columns
to kilograms per square meter. Fourth, CO2 and NOx emis-
sions are estimated using the cross-sectional flux method as
an example. The estimated NO2 emissions are converted to
NOx using a conversion factor of 1.32 (in kgNO2 s−1). Fi-
nally, the results are saved as a NetCDF file and the data are
visualized (see Fig. 4). In the following, the different com-
ponents are described in more details. The implementation
details are available in the documentation and the code itself
in the Supplement.

3.2 Data input

ddeq requires that the location of sources used is known
prior to estimating the emissions. The location and type
of sources is therefore an important input for plume de-
tection and emission quantification. ddeq makes extensive
use of the xarray package (Hoyer and Hamman, 2017) for
data handling to combine arrays with attributes. Sources
are read from a comma-separated values (CSV) file into
xarray.Dataset, which contains the source names
(source), longitudes (lon_o), latitudes (lat_o), labels
for visualization (label) and source types (type, which
is currently either city or power plant). ddeq maintains a
small list of sources as a CSV file that primarily contains
cities and power plants used in previous studies by the de-
velopers. User-defined files containing other sources can be
prepared in the same format. The file can be read with the
ddeq.misc.read_point_sources function. In addi-
tion, ddeq can read the comprehensive CoCO2 global emis-
sion point source database (Guevara et al., 2024) using
ddeq.coco2.read_ps_catalogue. The catalogue is
provided together with the library.

Remote sensing images are provided by airborne and
space-based imaging spectrometers. ddeq handles images
with xarray.Dataset with variables (i.e., rs_data in the
example code), providing the trace gas columns and their
uncertainties (e.g., CO2 and CO2_precision) that need
to have a units attribute for automatic unit conversion and
a noise_level attribute that is used as random uncer-
tainty by the plume detection algorithm. In addition, the cen-
tral longitude and latitude of the pixels need to be provided
as lon and lat. If trace gases are provided as column-
averaged mole fractions, surface pressure needs to be pro-
vided as psurf for unit conversion. Units are converted
using the ucat Python library (https://pypi.org/project/ucat/,
last access: 24 May 2024).

ddeq provides functions for automatically downloading
and cropping TROPOMI NO2 data for a given list of sources
(ddeq.dowload_S5P). Furthermore, the library can read
the synthetic CO2M and Sentinel-5 data from the SMART-
CARB dataset (Kuhlmann et al., 2020b) and the simula-
tions from the library of plumes generated in the CoCO2
project (Koene and Brunner, 2022). The synthetic datasets
with known true emissions were used in the CoCO2 project
for method development and benchmarking (Santaren et al.,
2024).

The final important input for emission quantification are
wind fields, from which a representative transport speed
of the trace gas within the plume is computed. ddeq pro-
vides functions for reading and downloading ERA5 re-
analysis fields as well as reading wind fields from the
SMARTCARB project (ddeq.era5 and ddeq.wind).
Wind speed and direction are provided either at the loca-
tion of the source (ddeq.wind.read_at_sources) or
as two-dimensional field that can also be spatially interpo-
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Figure 3. Data flow diagram illustrating the interactions between the different components in ddeq.

Listing 1. Example of ddeq code for applying the CSF method to estimate CO2 and NOx emissions of the Jänschwalde power plants in
Germany. The full code is available in the library as a Jupyter notebook (notebooks/tutorial-introduction-to-ddeq.ipynb).

lated to the remote sensing image pixels, for example, for
computing fluxes on Level-2 data (ddeq.read_field).
Transport speeds can be computed by averaging the winds
over a range of pressure levels, over the depth of the planet
boundary layer or as weighted averages weighted by a verti-
cal profile such as a typical emission profile of power plants
(Brunner et al., 2019). The wind fields include the preci-
sion of the winds, currently hard-coded as 1 ms−1, which is
a rough estimate based on values used in previous studies
(e.g., Varon et al., 2018; Reuter et al., 2019; Kuhlmann et al.,
2021). Users are encouraged to replace the uncertainty with

a value suitable for their application and can also use their
own wind data from other data sources.

3.3 Pre-processing

Data pre-processing includes a plume detection algorithm,
conversion between coordinate systems, unit conversions and
estimation of the background field. Which pre-processing
steps are required or optional depends on the individual
method.

One main pre-processing step is an algorithm for identify-
ing the (a priori) location of the emission plume in the remote
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Figure 4. Plot created by the ddeq.vis.plot_csf_result command in the short example. Panels (a) and (b) show the CO2 and NO2
plumes from the Jänschwalde power plant in the synthetic CO2M images. Panel (c) shows the CO2 and NO2 columns in the across-plume
direction for different along-plume distances with the two fitted Gaussian curves for computing the line densities. Panel (d) shows CO2 and
NOx flux in the along-plume distance. The estimated CO2 and NOx emissions were 25.5 Mta−1 and 29.2 kt a−1 for this example.

sensing image. ddeq implements an image segmentation al-
gorithm for plume detection that is used as a pre-processing
step by the GP, CSF and IME methods. As an alternative,
the LCSF method determines the (a priori) plume location
from the source location and the wind vector, which is cur-
rently part of the method’s implementation. The divergence
method does not require information about plume locations.

The image segmentation algorithm is described in detail
in Kuhlmann et al. (2019, 2021). In short, the algorithm gen-
erates a Boolean mask, which is true where column den-
sities are significantly enhanced above the background us-
ing Eq. (1). The signal is computed as the difference be-
tween the local mean and the background field. The noise
(σV ) is computed from the random and systematic uncer-
tainty in the vertical column densities and uncertainties in
the background. The local mean is computed by applying a
uniform or a Gaussian filter to the image. The background
field is computed using a median filter with a kernel that is
large enough to contain areas outside the plume. The thresh-
old (zq ) is computed from the probability (q) that the local
mean is larger than the background given the uncertainty σV
based on a statistical z test. In the Boolean mask, neigh-
boring pixels are connected to regions and regions over-
lapping with known sources are labeled as plumes. The
ddeq.dplume.detected_plumes function is used for
applying the algorithm to the remote sensing images.

To create the natural coordinate system and
compute the plume length, a center curve
can be fitted to the plume mask using the
ddeq.plume_coords.compute_plume_line_and
_coords function. The center curve is described by two
parabolic polynomials from which the along-plume coordi-
nate x is computed as the arc length from the source and the
across-plume coordinate y is computed as the distance from
the center curve (see Kuhlmann et al., 2020a for details).
The plume length is the arc length from the source to the
most distant detectable pixel. Prior to fitting the center
curve, longitude and latitude are converted to eastings and
northings using a Cartesian coordinate reference system
object from the cartopy library (Met Office, 2010–2015). If
pixel corners are provided by the input dataset, the function
also computes the pixel size (in m2), which is required, for
example, by the integrated mass enhancement method.

Finally, ddeq.emissions.prepare_data can be
used to estimate the background field and convert all trace
gas fields to mass columns (in kgm−2) using the ucat Python
library (Kuhlmann, 2022). ddeq implements a function for
estimating the background field from pixels surrounding a
detected plume (ddeq.background.estimate). The
function masks all pixels where the signal-to-noise ratio is
larger than the threshold zq (using the results from the plume
detection algorithm) and applies a normalized convolution to

Geosci. Model Dev., 17, 4773–4789, 2024 https://doi.org/10.5194/gmd-17-4773-2024



G. Kuhlmann et al.: ddeq Python library (version 1.0) 4783

estimate the background. Alternatively, the background can
also be fitted directly by some emission quantification meth-
ods.

3.4 Emission quantification

3.4.1 Overview

Methods that are applied to single images all use the same
order of parameters to estimate the emissions of sources:

results = ddeq.{method}.estimate_emissions(
rs_data, winds, sources,
[curves, gases, priors],
variable='{gas}_minus_estimated_
background_mass',

[...]
)

where {method} can be gauss, lcsf, csf or ime for Gaus-
sian plume inversion, light cross-sectional flux method, reg-
ular cross-sectional flux method and integrated mass en-
hancement method, respectively. Each method iterates over
all sources provided by the sources dataset and estimates
an emission if the source is inside the image. The method
is applied to the variable in the remote sensing dataset
(rs_data) given by the variable parameter (currently not
implemented for LCSF and DIV). The default string is
{gas}_minus_estimated_background_mass, which is the de-
fault variable name created by the pre-processing after sub-
tracting the estimated background and converting to mass
columns with units of kilogram per square meter. It is pos-
sible to provide a list of up to two gases for the CSF, GP and
LCSF method (e.g, gases = ['NO2', 'CO2']). In this
case, both gases are fitted either simultaneously (CSF) or af-
ter each other where the results from the first fit are used to
constrain the second fit (GP and LCSF). The IME method
can only be applied to a single gas. The {gas} placeholder
in the variable parameter will be replaced with the names in
gases.

The divergence method works on a series of remote sens-
ing images and wind fields. The method therefore requires
different inputs to read images and winds for a day on de-
mand. The DIV method is called by

results = ddeq.div.estimate_emissions(
datasets,
wind_folder,
sources, ...

)

where datasets is a class with a read_datemethod that
returns a list of remote sensing images for a given date and
wind_folder is the path to a folder containing wind fields,
for example, from the ERA5 reanalysis or the COSMO at-
mospheric model, for each day. Examples for the dataset are
the Level2Dataset class in the smartcarb module or the
Level2TropomiDataset in the sats module.

All methods return a results dataset, which is
an xarray.Dataset with at least the vari-
ables {gas}_estimated_emissions and
{gas}_estimated_emissions_precision with
dimension source that can be saved using the to_netcdf
method. The CSF method stores the results datasets using
the ddeq.misc.Result class, which inherits from dict
to handle dimensions of different size between sources. It
has the methods to_netcdf and from_file to write
and read the results. The results are saved as NetCDF
files using a group for each source. The implementation of
the ddeq.misc.Result class is necessary as NetCDF
groups are currently not supported by Xarray.

The total uncertainty in the estimated emissions depends
on the uncertainty in the trace gas columns, wind speed
and background field. Additionally, all methods rely on sim-
plifications and assumptions (e.g., steady-state conditions),
which may result in non-negligible uncertainties that are cur-
rently not accounted for in the ddeq library (see Santaren
et al., 2024, for details). To determine the total uncertainty,
users are therefore encouraged to include such uncertainties
although they might be difficult to assess and vary from case
to case.

3.4.2 Gaussian plume inversion (GP)

The Gaussian plume inversion method implemented in ddeq
fits Eq. (4) to the detected plume. The fit parameters are
Q, Vbg, K , κ and coefficients of the center line. The wind
speed is taken from the winds dataset, which, when using
ddeq.wind.read_at_sources, is the effective wind
speed at the source.

The plume center curve is described by a second-order
Bézier curve which has three control points (one is centered
at the known plume source location, and the other two are fit-
ted parameters for the Gaussian curve), initialized along the
curve, as it is already obtained in pre-processing. The rea-
son for using a Bézier curve is that it behaves smoothly with
respect to small changes in the control points, which is re-
quired for stabilizing the least-squares fit. In the case of a
decaying gas, it is possible to fit a decay time, τ , by setting
fit_decay_times to true.

The inversion consists of three simple Levenberg–
Marquardt least-squares fitting steps. In the first fit, only the
center curve,Q and κ are optimized. In the second fit,K and
τ are optimized, and in the third fit, Q is optimized again.
The implementation of three fits decreases the computation
time and avoids overfitting.

The initial (prior) parameters for Q and τ need to be pro-
vided as a dictionary for each source and trace gas:

priors = {
source: {
'CO2': {'Q': 1000.0, 'tau': 1e10},
'NO2': {'Q': 1.0, 'tau': 4.0*3600},
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...
}

where Q is the source strength (in kgs−1) and tau is the
decay time in seconds. Other parameters are set to typical
values in the ddeq.gauss.generate_params func-
tion. If two gases are provided, the values fitted for the
first gas are used as initial conditions for the second gas
(except for Q, which is reinitialized to the prior emission
rate for that source). To constrain the fit for the second
gas, we only allow for a small amount of deviation around
the previously obtained Gaussian plume parameters (see
ddeq.gauss.gaussian_plume_estimates for de-
tails).

The precision or random uncertainty in the Gaussian
plume estimate is computed as

σQ =

√
σ 2
Q,fit+ σ

2
u

(
Qfit

u

)2

, (28)

where σQ,fit is the estimated standard deviation of the fitted
emission data and the second term accounts for the uncer-
tainty in the wind speed as provided by the winds dataset
(wind_speed_precision).

Estimates are rejected when no fit is found, when no stan-
dard deviation is estimated (i.e., if no good fit is possible),
or when the emission rate is smaller than 0.1 times or larger
than 1.9 times the prior expected emission rate (i.e., using
Q±90 % uncertainty). These filters are currently fixed in the
code. More flexible filters will be implemented in the future
that are common to all methods.

3.4.3 Cross-sectional flux methods (CSF)

The CSF method is one of two different cross-sectional flux
methods implemented in the library. The CSF method was
originally developed as part of the SMARTCARB study
(Kuhlmann et al., 2020a, 2021). It computes line densities in
multiple polygons downstream of the source (see polygons
in Fig. 4). Depending on the model parameter, line densities
are obtained by either fitting a Gaussian curve (Eq. 13) us-
ing model="gauss" or integrating pixels inside the poly-
gon using model="sub_areas". The latter method di-
vides the sub-polygons in the across-plume direction, com-
putes the mean for each sub-polygon, and then integrates the
mean values for each sub-polygon. This is done to account
for missing values in the image. For NO2 observations, the
f_model parameter can be provided to convert NO2 to NOx
line densities.

The line densities are converted to fluxes using the pro-
vided wind speeds at the sources. Emissions are obtained by
fitting Eqs. (14) or (15) to the fluxes. For a non-decaying gas,
the decay function is replaced by a Heaviside step function,
which is 0 upstream and 1 downstream of the source. The
uncertainty in the cross-sectional flux method is computed

by propagation of uncertainty from the single sounding pre-
cision that determines the uncertainty in each line density,
which determines the uncertainty in the fitting parameters (Q
and τ ). Note that we assume that the wind speed uncertainty
is independent of the number of pixels and the length of the
plume.

To remove problematic cases, estimates are excluded if the
angle between wind speed and center curve is larger than 45°,
which often indicates erroneous plume detection. Estimates
are also rejected if more than 5 pixels are detected upwind of
the source.

3.4.4 Light cross-sectional flux method (LCSF)

The LCSF method is derived from the method originally de-
veloped by Zheng et al. (2020) to estimate the CO2 emis-
sions of Chinese cities and industrial areas from OCO-2 data.
The method has then been adapted for routine and automatic
estimation of isolated clusters of CO2 emissions worldwide
(Chevallier et al., 2020) and used to study the temporal vari-
ability in emissions using several years of OCO-2 and OCO-
3 data (Chevallier et al., 2022).

Similarly to the CSF method, the LCSF method com-
putes line densities by interpolating the pixels contained
within polygons downstream of the source by a Gaus-
sian function. The LCSF method uses the wind vector to
construct a polygon that is 100 km wide in across-wind
(perpendicular) direction and which extends downwind the
source over a distance equal to the distance traveled by
the wind in 1 h. A two-dimensional wind field read with
ddeq.wind.read_field is used to determine the wind
vector and for computing the wind speed used later for
computing the flux. The fit_backgrounds parameter can be
used to determine if a linearly changing background should
be added to the Gaussian curve. Additional parameters are
passed using a dictionary (lcs_params). For example, a
NO2 to NOx conversion factor can be defined using the
f_NOx_NO2 key (3.5 being the default).

The uncertainty in the estimates provided by the LCSF
method is computed by propagation of the uncertainty in
the amplitude of the fitted Gaussian function. Several qual-
ity checks remove potentially unrealistic estimates: the fitting
window should contain enough data pixels (50 pixels being
the default) and the selected enhancements should have suf-
ficient amplitude (i.e., larger than the standard deviation of
the values in the polygon), the uncertainty (1σ ) of the fitted
width of the Gaussian function should be larger than 1 km
and smaller than 5 km, and the estimated emissions should be
larger than min_est_emis (0.0 being the default) and smaller
than max_est_emis (infinity being the default), which, when
calling ddeq.lcsf.estimate_emissions, are pro-
vided either as input parameters or as prior values simi-
lar to the implementation for the Gaussian plume inversion
(i.e., using 0.1 and 1.9Q).
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3.4.5 Integrated mass enhancement (IME)

To first identify the location of the plume, the IME method
uses the plume detection algorithm with the same set-
tings as for the CSF and GP method. IME also re-
quires the computation of the background field, the cen-
ter line and the along- and across-plume distance for each
pixel. In the across-plume direction, the integration in-
terval is obtained by either computing the convex hull
of the detected plume or applying a binary dilation to
the Boolean mask of detected pixels. Both computations
are carried out as part of the pre-processing inside the
ddeq.plume_coords.compute_plume_line_and
_coords function. In along-plume direction, the integra-
tion interval is defined by the L_min and L_max parameters.
The default values areLmin = 0 (i.e., the source location) and
Lmax being set to the arc length of the most distant pixel in
the integration area with 10 km subtracted from the value.

Missing values are interpolated using normalized convo-
lution. The plume is discarded when more than 25 % of the
pixels in the detected plume have been obtained through this
gap filling. The effective wind speed is taken from the pro-
vided wind speeds at the source location. A decay time can be
provided to compute the decay time correction term (Eq. 22).

The uncertainty in the emissions is calculated by propa-
gation of uncertainty from the random uncertainty in the gas
columns and the wind speed.

3.4.6 Divergence method (DIV)

In ddeq, the divergence method is applied to each source
individually. The remote sensing images are provided as
a dataset class as described above, where images are
read for each date between start_date and end_date. To
access the wind fields, the folder containing the wind
files is provided along with a filename pattern (e.g.,
ERA5-gnfra-%Y%m%dt%H00.nc).

The divergence method is performed in two steps. In the
first step, the average divergence, ∇ ·F , and sink, S, fields
are calculated from the vertical column densities and wind
fields. In the second step, the peak fitting is applied to derive
the hotspot emissions.

In the first step, the trace gas fields can be denoised using a
median filter, and depending on the choice of the user, either
the local or the regional background is removed. Next, each
pixel is associated with interpolated u and v wind compo-
nents from the provided wind fields, and the vector field, F ,
is derived using second-order accurate central differences as
implemented in numpy.gradient. All the data are grid-
ded to a regular kilometer grid defined by the user by the in-
put parameters lon_km, lat_km and grid_resol given in kilo-
meters. The divergence of the vector field is calculated be-
fore averaging over all available images. The computation
of the divergence before averaging is preferred for remote
sensing images with data gaps, for example, due to clouds

(Hakkarainen et al., 2022; Koene et al., 2024). For NOx , the
sink term is calculated from the averaged vertical column
densities, assuming a lifetime of 4 h.

In the second step, the peak fitting is performed using a
least-squares fit between the averaged emission field, E =
S+∇ ·F , and the peak fitting function, Eq. (25). The opti-
mization is first done using the Nelder–Mead method from
the scipy library. The uncertainty in the estimated emissions
is obtained from the mismatch between the emission field,
E, and peak fitting function; i.e., we assume that the chi
square of the fit is the number of degrees of freedom. ddeq
also implements the adaptive Metropolis algorithm (Haario
et al., 2001) for sampling the posterior distribution (assum-
ing a non-informative prior) to obtain an optimized estimate
of the fitting parameters and their uncertainty.

3.5 Post-processing

The post processing step provides functions for data visu-
alization (ddeq.vis) and for estimating annual emissions
from individual estimates (ddeq.timeseries). In addi-
tion, it is possible to apply scaling factors to estimated emis-
sions to convert NO2 to NOx emissions.

To convert NO2 to NOx emissions, it is possible to scale
all estimated NO2 emissions in the results dataset, i.e., vari-
ables that start with NO2 and have units of kg s-1, to NOx
emissions using the scalar f . The function convert_NO2_
to_NOx_emissions(results, f=1.32) is imple-
mented in the ddeq.emissions module. A more com-
plex NO2 to NOx conversion will be developed in the future
to account for non-constant conversion factors.

ddeq provides functions for fitting a seasonal cycle using
a cubic C spline with periodic boundary conditions to a time
series of estimated emissions (ddeq.timeseries). An-
nual emissions and their uncertainties are obtained by inte-
grating the seasonal cycle, as shown in the following code:

fit, model, _, _, _ = ddeq.timeseries.fit(
times,
estimates,
estimates_precision

)

annual, annual_precision = model.integrate(
fit['x'],
fit['x_std']

)

A detailed example is available as a Jupyter notebook (exam-
ple_annual_emissions.ipynb).

Finally, ddeq provides functions for visualizing
the remote sensing images, the plume detection,
and the results of the emission quantification using
ddeq.vis.plot_{method}_result (e.g., Fig. 4).
The library includes several Jupyter notebooks, with
demonstrations for the different methods.
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4 Conclusions

There have been many studies quantifying the emissions of
hotspots in remote sensing images in the past and we expect
significantly more studies in the future with the new genera-
tion of imaging satellites. The ability to monitor emissions of
air pollutants and greenhouse gases is an important capability
of remote sensing instruments. As information on emissions
from hotspots can be politically sensitive, it is essential that
the emission estimates are reliable, i.e., that the methodology
used can be verified, for which an open-source library will be
an invaluable tool.

ddeq is a community library that is open to new users and
developers. The Jupyter notebooks with tutorials and exam-
ples make it easy for new users to learn how to apply the
library to different datasets. ddeq is hosted as an open-source
project on GitLab, making it possible for users and develop-
ers to submit bug reports and feature request. Finally, devel-
opers can further expand existing methods in ddeq or imple-
ment new methods. ddeq makes it possible to compare these
additions with existing methods in a reproducible way, for
example, using the same input data, increasing the reliability
of estimates of anthropogenic emissions of air pollutants and
greenhouse gases.

The ddeq library provides a general framework where new
methods and options can be easily implemented. It will be
further developed in the future, for example, in the CO2MVS
Research on Supplementary Observations (CORSO) project,
where ddeq will be used for quantifying CO and NOx emis-
sions from Sentinel-5P/TROPOMI and other satellite instru-
ments. Furthermore, ddeq will be used for quantifying CH4
emissions from observations of the newest Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS-4) operated by
a consortium of Swiss research institutes led by the Univer-
sity of Zurich (Green et al., 2022). Future updates will further
harmonize the different implementations, allowing for more
flexibility and even better comparability between the differ-
ent methods. It is also planned for it to provide support for
machine-learning models such as the plume segmentation al-
gorithm developed by Dumont Le Brazidec et al. (2023).

One main goal of the CoCO2 project is the development
of prototype systems for anthropogenic emission monitoring.
The ddeq Python library for data-driven emission quantifi-
cation presents such a prototype for emission monitoring of
hotspots using lightweight approaches. It was developed and
used in the CoCO2 project to benchmark different emission
quantification methods with the aim to identify the most suit-
able and accurate approaches to be implemented in the proto-
type of the European CO2 monitoring system (Hakkarainen
et al., 2024; Santaren et al., 2024).

Appendix A: Installation and interactive computing
environment

The latest version of the ddeq library can be installed using
the Python package manager, pip:

python -m pip install ddeq

The development version of ddeq can be cloned using

git clone https://gitlab.com/empa503/
remote-sensing/ddeq.git

and then installed using pip. For the development version, it
is useful to install it as editable (-e option):

pip install -e ddeq/

The version described in this paper is available in the Sup-
plement. The version can be installed using conda and pip
with the following steps:

# create Python environment
conda create -n ddeq-test python=3.9
conda activate ddeq-test

# install additional packages
conda install jupyterlab
conda install pycurl

# unzip tar.gz file in the Supplement
and install using pip

tar -xzvf ddeq-1.0.tar.gz
python -m pip install ddeq-1.0/

# start JupyterLab
jupyter lab --notebook-dir

The tutorial and examples are included in the notebooks
folder.

Code and data availability. The ddeq version 1.0 described in this
document is available in the Supplement. The code repository is
available on GitLab (https://gitlab.com/empa503/remote-sensing/
ddeq, Kuhlmann, 2024a). The synthetic satellite observations and
wind fields from the SMARTCARB dataset are available on Zen-
odo at https://doi.org/10.5281/zenodo.4048228 (Kuhlmann et al.,
2020b) and https://doi.org/10.5281/zenodo.10684753 (Kuhlmann,
2024b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-4773-2024-supplement.
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