
HAL Id: hal-04621690
https://hal.science/hal-04621690

Submitted on 24 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Performance Evaluation of a Non-Preemptive
Cooperative Multithreading Framework Through

Tracing
Lea Jungmann, Zain A H Hammadeh, Jan Sommer, Daniel Lüdtke

To cite this version:
Lea Jungmann, Zain A H Hammadeh, Jan Sommer, Daniel Lüdtke. Runtime Performance Evalua-
tion of a Non-Preemptive Cooperative Multithreading Framework Through Tracing. 12th European
Congress on Embedded Real Time Software and Systems (ERTS 2024), Jun 2024, Toulouse, France.
�hal-04621690�

https://hal.science/hal-04621690
https://hal.archives-ouvertes.fr

Runtime Performance Evaluation of a
Non-Preemptive Cooperative Multithreading

Framework Through Tracing
Lea Jungmann, Zain A. H. Hammadeh, Jan Sommer, Daniel Lüdtke

Institute for Software Technology
German Aerospace Center (DLR)

Braunschweig, Germany
lea.jungmann@dlr.de, zain.hajhammadeh@dlr.de, jan.sommer@dlr.de, daniel.luedtke@dlr.de

Abstract—In the aerospace and automotive domains, there is a
growing trend towards delegating more tasks to embedded soft-
ware, employing sophisticated algorithms and machine learning-
based solutions. As a result of this trend, the complexity of
embedded software is escalating rapidly. Classical performance
analysis methods, such as static worst-case execution time anal-
ysis, struggle to cope with this complexity without providing
prohibitively over-approximated upper bounds.

In this paper, we introduce a tracing-based performance analy-
sis approach tailored to data flow space applications. We illustrate
how traces are leveraged to extract arrival curves, minimum
distance functions, and execution times. We showcase the utility
of tracing in design decisions using an aerospace use case, e.g.,
optimising the number of cores to reduce end-to-end latency.
Furthermore, we extracted and presented debugging information
graphically. While our tracing-based performance analysis may
introduce overhead on the extracted timing properties, such as
worst-case execution time, this overhead is bounded by 6.5%.
Finally, we demonstrated the efficacy of our proposed tracing-
based analysis approach through its application in a space
application scenario.

I. INTRODUCTION

Modern space applications, including Earth observation, on-
orbit servicing, and autonomous spacecraft and rover mis-
sions on distant celestial bodies, entail intensive on-board
data processing and sophisticated control algorithms. These
applications can become very complex, with high requirements
for reliability and performance. The high demand for small
satellites, such as cube-sats, necessitates more modular and
reusable software that meets mission requirements, including
timing requirements.

Multi-core platforms can offer high performance with low
power consumption compared to single-core platforms. How-
ever, the parallel execution and simultaneous access to shared
resources on multi-core platforms introduce additional com-
plexity to embedded software. Furthermore, reading from
sensors involves a significant time delay relative to computing
time. Although self-suspending processes are employed for
sensor reading, they contribute to more intricate and less
predictable timing models. Event-driven execution models,

 $

Execution Trace file Visualisation

Timing
Analyses

Fig. 1. Workflow of the tracing discussed in this paper: the execution of
a program equipped with tracing results in a trace file which can either be
graphically displayed or further analysed.

such as the publisher-subscriber model in Robotic Operating
System version 2 (ROS2) [1], are also commonly employed
for improved data predictability. In this case, a common
industry practice is to assign tasks to a pool of threads
where the threads cooperate to execute the tasks under a non-
preemptive manner [1], [2]. Nevertheless, these models do not
simplify timing considerations; instead, they introduce their
own complexities.

Measurement-based performance analyses are widely uti-
lized in the industry; however, they cannot guarantee complete
coverage of all corner cases. Static methods, on the other hand,
can offer formal guarantees on performance and are primarily
employed for safety-critical applications. Despite providing
over-approximated results, static methods struggle to smoothly
scale with the complexity of modern hardware/software. Con-
temporary research often leans towards proposing hybrid ap-
proaches to address the heightened complexity of modern
hardware/software and compute reliable guarantees. Tracing
emerges as a versatile approach to extract crucial runtime in-
formation from complex embedded software to enhance formal
methods. For instance, tracers have been used to define the
activation pattern of tasks in the Real-Time Calculus (RTC) [3]
approach and the Symbolic Timing Analysis for Systems

(SymTA/S) [4] approach. This technique finds application in
various domains, such as robotics [5] and automotive [6],
where it aids in extracting timing properties and establishing
precedence relations between software components. Tracing
is preferred over regular debugging, as the latter may lead
to breakpoints violating timing requirements or skewing the
observed performance.

In this work, we aim to extract timing properties of applica-
tions with complex timing behaviour, namely applications ex-
ecuted by cooperating thread pools. For that end, our proposal
utilizes a tracing mechanism. Also, we present how to visualise
these traces, and how to extract debugging information from
them, using open-source tools. An overview of our proposed
workflow is summerised in Fig.1. Our work employs the
Common Trace Format (CTF) [7] to write traces. and the
TraceCompass [8] to visualise the traces. Also, we use Babel-
trace [9] to extract timing properties from the traces. We im-
plemented our proposed tracing mechanism on an event-driven
multithreading framework, namely Tasking Framework [2]. As
our applications are intended to run on different operating
systems, primarily Linux and RTEMS, we are focused on
developing a cross-platform tracing mechanism.

In the following section, we explore the related work. In
Section III, we briefly introduce Tasking Framework and its
main features. In Section IV, we elaborate on the imple-
mentation of the tracing mechanism. Section V presents our
approach to extract timing properties. The overhead of the
proposed tracing mechanism is discussed in Section VI. We
demonstrate the applicability of the proposed approach on
a realistic case study in Section VII. Finally, Section VIII
concludes the paper.

II. STATE OF THE ART

The extraction of runtime information is vital for the de-
veloping process. Knowing the execution behaviour is key
to debugging and, later on, the optimisation of a system. An
established way of extracting runtime information is tracing.
Tracing records the behaviour of a system during its execution
by placing hooks, called tracepoints, in the code [10]. At its
core, tracing produces a trace file that can be read and analysed
after it is produced [11]. Depending on the tracepoints and
their eventual content, the runtime information gained with
tracing can vary, depending on the observed system. If the
system structure is not known or only known partially, the
focus when extracting runtime information may lie in getting
a more complete system model such as in [12], [13]. In other
cases, such as in [5], runtime information, such as response
times, is collected to aid in analysing timing behaviour.

Facing unknown behaviour in a real-time system, [12]’s
approach uses execution traces and a task definition to model
the system’s runtime behaviour as a set of independent peri-
odic tasks. All tasks occurring in a given execution trace are
categorised as either periodic or non-periodic. Furthermore,

they extract additional information on the periodic tasks such
as their period and response time profile.

Usually, traces are extracted using Tracers, tools that use
already existing or custom hooks to instrument the code for
recording during runtime. A popular tracer for Linux applica-
tions is the Linux Trace Toolkit: next Generation (LTTng) [14],
that is capable of tracing processes both in the kernel and
user space. For kernel tracing, it uses tracepoints already
embedded in the Linux kernel. For user space tracing, LTTng
needs the application to be instrumented using either LTTng-
style tracepoints or Java or Python logging statements that
are then fed to a LTTng handler. LTTng uses a binary format
called Common Trace Format (CTF) [7] to write its traces
in a compact manner. LTTng is also used as a basis for
other tracing tools, such as in [5], which presents a range
of multi-purpose tracing tools for the ROS 2 that use LTTng
as their tracing backend. LTTng is used because it has both
user and kernel space tracing capabilities, making the trace as
comprehensive as possible for Linux applications, as well its
low overhead and real-time compatibility.

[13] employs the extended Berkeley Packet Filter (eBPF)
for tracing in ROS 2. Other than LTTng, it does not require di-
rect instrumentation, which would lead to having to recompile
ROS2 standard libraries. Tracing is used in [13] to extract the
flow of information within the system, since this information
may not be directly accessible in industry scenarios. It does so
by identifying and tracking ROS 2 nodes and callbacks during
execution.

LTTng only runs on Linux systems, making it unsuitable for
cross-platform applications. However, the format that LTTng
uses, CTF, is an open standard that is intelligible to both indus-
try tools such as Tracealyzer [15] and open-source solutions
like TraceCompass [8]. Its binary nature makes CTF a very
compact format already, its high flexibility regarding form and
content of individual events, instances of tracepoints being
passed, allows to control the amount of overhead and size
of the resulting trace file.

To cope with the emerged challenges from using new
programming language like Rust, Wang et al. proposed in [16]
a context aware tracing for estimating the execution time of
asynchronous tasks. The main concern of [16] is the Rust
programs that are implemented as coroutines. Hence, the ap-
plicability of [16] is limited to Rust asynchronous programs.

III. TASKING FRAMEWORK

The Tasking Framework is an open-source1 non-preemptive,
cooperative multithreading C++ framework and execution
platform, mainly used in the development of space applica-
tions [2]. It is being developed by the German Aerospace
Center. While it supports different platforms such as Linux,

1https://github.com/DLR-SC/tasking-framework

OutPos

cam1

Cam2 Img45

Img10 craT

feaT

CraterPos

navi
FeaturePos

ter1

ter2

inputTrigger

processTriggerTask Input Channel

Fig. 2. The optical navigation subsystem in ATON [17] in Tasking Framework.

RTEMS and FreeRTOS, it can also be run on bare-
metal. Tasking Framework has been used in several space
projects, including Autonomous Terrain-based Optical Navi-
gation (ATON) [17], Euglena Combined Organic food Pro-
duction In Space (Eu:CROPIS) [18], and Scalable On-Board
Computing for Space Avionics (ScOSA) [19].

In Tasking Framework, applications are modelled as a graph
of tasks, channels and inputs, as can be seen in Fig.2, which
models the optical navigation subsystem of ATON. This task
and channel model is modelled after Petri nets, with tasks
analogous to transitions and channels likened to places. As
with Petri nets, channels and tasks are connected through
inputs. Channels can be thought of as data storage while tasks
are processing units that take their input from and push their
output to channels. Once data is pushed on a channel, the
inputs that connect tasks to the channel are notified of the
new data on the channel. This may lead to the activation of
the connected tasks. In addition, there are also events. Events
are used to either periodically trigger a task or to trigger the
task after a time-out.

The point in time at which a task is activated, that means
marked as ready to be executed, depends on the activation
model used for this task. Tasking Framework supports different
activation models, meaning the conditions of activation can be
chosen individually for each task. Thus, a task may wait for a
push on all, one or some channels that it is connected to or may
require multiple pushes on a channel before activation. The
activation model for a task is chosen at compile time, however,
the task barrier structure, a specialised kind of channel, may be
used if the amount of pushes required for task activation has
to be changed during runtime. The default call semantic for
tasks is asynchronous, however, the task group structure can
be used to implement synchronicity among a group of tasks,
meaning that a task once executed can only be executed again
after all other tasks in the group have also executed regardless
of its own activation status.

When a task is activated, it will be queued for execution.
Tasks are executed using a pool of threads, called executors,
that collaborate on the execution of tasks. Tasks are executed

by Tasking Framework in non-preemptive manner. Fig. 3
illustrates the execution model in Tasking Framework. There
are three scheduling policies supported in Tasking Framework,
namely First-In First-Out (FIFO); Last-In First-Out (LIFO);
Fixed Priority. The scheduling is work-conservative, i.e., there
is no idle executor as long as the ready queue is not empty.
Executors collaborate in a load-balancing manner and every
task can be executed by any available executor.

Currently, the application programming interface (API) of
Tasking Framework supports only C++. Developing applica-
tions using different programming languages is not supported
up to now.

IV. IMPLEMENTATION

This section outlines how a tracing mechanism was inte-
grated into Tasking Framework and how it can be displayed
with TraceCompass [8]. Tracing the Tasking Framework is
reliant on the instrumentation of its code, i.e. the hooks placed
in the source code to record a Tasking Framework application.
We use the Common Trace Format (CTF) [7], which is a
flexible and lightweight binary format, to write traces. The
Tasking Framework is large enough that it would cause too
much overhead to record every single action that is executed
during the runtime. Thus, one must identify a configuration of
points within Tasking Framework that give an accurate picture
of the inner happenings of the framework. Preferably, with as
few points as possible as to avoid causing too much overhead.
These tracepoints are:

1) A push on a channel. The push on a channel happens
whenever new data is made available to the channel.
In turn, all connected inputs are notified informing the
connected tasks that new data is available on the channel.

2) Activation of a task. The activation of a task signals that
a task is ready to be executed and has been queued by
the scheduler to wait for the next free execution slot.

3) Task starts & stops executing. This shows how long the
task had to wait before being executed and how long it
was executed.

Pushes are triggers for task activation and their presence or
absence in a trace can contribute to error searches. The timing

Fig. 3. The execution model in Tasking Framework.

information on the activation, start and stop of the execution
of a task can provide information on execution and queueing
wait times. The tracer class is implemented as a singleton to
prevent conflicting write processes, especially when multiple
threads are running and generating events at the same time.
Customising the trace format also gives control over the
amount of overhead produced by the tracer because custom
events can use only the exact amount of data needed and do
not have to fill fields with empty data to conform to standards.
Custom events pose the question of how exactly their payloads
are supposed to look like. Keeping the payload small is
imperative to keeping the overhead small. Each tracepoint
generates an event upon execution. Hence, the four custom
events are:

• push on a channel λl, denoted by πl

• activation of a task τi, denoted by αi

• start of a task execution, denoted by σ↑i
• stop of a task execution, denoted by σ↓i

We introduce the trace θ as a finite set of these events.
Each of these events requires at least the identification

number of the relevant task or channel in order to match the
events to their corresponding tasks or channels. While this is
enough to complete necessary calculations and calculate corre-
sponding graphs, these graphs are not particularly readable for
humans. The number associated to each task is not a speaking
name and would require the developer or user to look up the
numbers in Tasking Framework in a time-inefficient manner.
To prevent this, the payload of each custom event includes
not only the identification number of a task but also its four-
character name that is used for display purposes and for user
interaction.

We use TraceCompass [8] to visualise our traces. Trace-
Compass is an Eclipse Rich Client Platform (RCP) tool to
read, visualise and analyse traces. TraceCompass provides a
variety of charts. These charts allow for inspecting, measur-
ing and analysing the opened trace. Like all Eclipse RCPs,
TraceCompass can be modularly expanded with the help of

plug-ins to add more functionality. Plug-ins for TraceCompass
include plug-ins for additional analyses, scripting, global filters
and support for additional trace types by different tracers
and profilers. Since TraceCompass is built and specialised
on Linux kernel and user space traces, it does not include
many charts for custom traces. In fact, a completely custom
CTF trace imported into TraceCompass will get two charts
generated by TraceCompass, the Statistics chart, that shows
the absolute and relative frequencies of the events in the trace,
and a list of all events and their payloads contained in the trace,
that is by default chronologically ordered. While manageable
for very small traces, these two charts are not very helpful
when used with traces that contain more than a handful of
events. Additionally, while CTF does not have a limitation
on the length of individual traces, there is a limit of about
1.6 million events that can be loaded into and displayed in
TraceCompass. For traces containing more events, there are
other tools such as Babeltrace [9], that are able to handle trace
files of that size.

Making a custom graph is possible using a Python script
and the EASE scripting module integrated into TraceCompass.
The script takes the currently opened trace as input and iterates
over the events. Each event whose name can be matched to
one of the defined custom events is used to extract its quark,
which in TraceCompass stands for a unique identifier for an
object. In this case, the quark is generated from the event
name, meaning the events are sorted by task or channel name.
The event is then added to the state system using the quark
and the timestamp to sort it to the right position. Once all
eligible events are added to the state system, it is used to
create a TimeGraph. TimeGraph lists all states, in this case
tasks and channels, on the left side of the diagram while using
a timeline as x-axis. This custom TimeGraph will be referred
to as Tasking Graph. An example of a Tasking Graph can be
seen in Fig.4, which displays the Tasking Graph of a trace
of a skeleton implementation of the ATON optical navigation
subsystem shown in Fig.2. This means, each task or channel

Fig. 4. Tasking Graph of the use case shown in Fig.2.

gets its own individual timeline that displays how the object
changes states during the runtime. Activation and Execution
periods for each task (light and dark blue respectively) are
displayed on task timelines, while channel timelines display
pushes (green).

V. EXTRACTING TIMING PROPERTIES

Next to the graphical representation of the trace, which can
be useful for debugging, the generated trace can give more
insights into the system behaviour. This information can then
be used to decide whether a system needs traffic shaping or
reconfiguring. The tracepoints on task activation and start of
execution help to determine how long a task has to wait in
each instance before it gets executed while the start and end
times give insight to the execution time of a task. Let tevent

represent the timestamp of the event.
The instance k of τi experiences a queuing time qki :

qki = tσ↑i − tαi (1)

Hence, the maximum queuing time that τi suffers is:

Qi = max{qki |∀k ∈ θ} (2)

The instance k of τi experiences an execution time cki :

cki = tσ↓i − tσ↑i (3)

The longest observable execution time of τi is:

Ci = max{cki |∀k ∈ θ} (4)

When tracing the activations and executions of a task, one
can also analyse the trace to study possibly emerging patterns
in the task behaviour and use them to predict system behaviour.
For systems that run, ideally, in perpetuity or for very long
stretches of time, tracing can only offer a snapshot of the
system behaviour. However, graphical analysis is not the only
analysis that can be applied to a trace. The recorded events
of a Tasking Framework trace allow for the extraction of the
following information: execution time of every instance of a
particular task, activation times and queuing times, as well as
push behaviour.

In practice, we use Babeltrace and its python bindings to
iterate over the trace. This allows us to extract execution and

0.085 0.304 0.522 0.741 0.959 1.178 1.397 1.615 1.834 2.052 2.271 2.489 2.708 2.927
Maximal Interval (ns) 1e10

0

10

20

30

40

50

60

70

80

90

100

Nu
m

be
r o

f A
ct

iv
at

io
ns

Fig. 5. Arrival curve η+(∆t) of the navigation task (navi) of ATON.

queuing times, as well as compute arrival curves and distance
functions.

A. Arrival Curves

An arrival curve is a function that can be applied to a
trace or any other timeline of events. The minimum and
maximum arrival curves η−(∆t) and η+(∆t), are defined as
functions on R+ → N+, so that for any half-open time interval
[t, t + ∆t) they return respectively either the minimum or
maximum number of task activations α that can occur within
the interval [20], [21]. An example of a maximum arrival
curve can be seen in Fig.5. Arrival curves are non-decreasing,
with η+(∆t) being sub-additive, meaning that the following
is always true for η+(∆t):

∀∆t,∆t′ ∈ R+ : η+(∆t+∆t′) ≤ η+(∆t) + η+(∆t′) (5)

B. Distance Functions

Distance functions are the pseudo-inverse of arrival curves.
The minimum (maximum) distance function δ−(n) (respec-
tively δ+(n)) is defined on N+ → R+ and returns the smallest
(largest) time interval ∆t that contains at least (at most) n

events. An example for a minimum distance function can be
seen in Fig.6. Minimum distance functions are non-decreasing
and super-additive [21], meaning that every minimum distance
function fulfils the following:

∀n, n′ ∈ N+ : δ−(n) + δ−(n′) ≤ δ−(n+ n′) (6)

C. Extrapolating Trace Data

Exploiting the sub-additive and super-additive properties of
η+(∆t) and δ−(n), it is possible to extrapolate data for the
behaviour of a traced system under the following assumption:
the δ−(2), which was observed within the trace, is also the
global minimum. With this assumption in mind, distance
functions can be extrapolated as follows:

δ−(n+ 1) = δ−(n) + δ−(2). (7)

While arrival curves can be extrapolated with:

η+(∆t+∆t′) = η+(∆t) + η+(∆t′) (8)

0 10 20 30 40 50 60 70 80 90 100
Number of Activations

0.000
0.221
0.443
0.664
0.886
1.107
1.329
1.550
1.771
1.993
2.214
2.436
2.657
2.879

M
in

im
al

 In
te

rv
al

 (n
s)

1e10

Fig. 6. Distance function δ−(n) for the navigation task (navi) of ATON.

When using this extrapolation, it has to be noted that this is
a safe extrapolation. Meaning, the extrapolated data has to be
treated as lower or upper bound for the distance function and
arrival curve respectively, meaning in case of a distance func-
tion that the extrapolated values represent the smallest possible
value with no indication of an upper limit. Meanwhile, for the
arrival curve the extrapolated data represents an upper bound
with no indication for a lower bound.

VI. OVERHEAD OF TRACING

To measure the overhead caused by the tracing mechanism,
example applications were profiled, resulting in a detailed
overview of how much time the applications spent in which
function. These example applications use dummy tasks, which
are tasks with negligible computational effort, to replicate real-
world applications in their structure. The offline overhead, i.e.,
the overhead of all functions that are involved in tracing, lies at
around 15%-20%, depending on the profiler that is used. More
relevant, however, is the overhead that is actively interfering
with the timing behaviour of the tasks. The overhead of the
tracing functions that affect the timing behaviour is caused by
three functions, namely the ones that record pushes on a chan-
nel and the start and stop of a task executing. Their overhead
sums up to 5.8%-6.5%, depending on the used profiler. Note,
that the execution times of the tracing function are mostly
fixed, since they always write the same amount of data. That
means, if a task executes longer, the percentage of the overhead
goes down accordingly. We computed the overhead using
almost empty dummy tasks. Hence, the overhead shown here
is likely to be an upper boundary of the possible overhead.

VII. USE CASE

We are considering a use case inspired by the optical
navigation subsystem of the ATON project, utilizing the Linux
operating system and ARM Cortex-A53 (1.2 GHz) as an

embedded quad core processor. The aim of the experiments
in this section is to showcase the effectiveness of our pro-
posed tracing mechanism as a performance analysis approach,
focusing on extracting the timing properties of our use case.
We conducted three experiments to exemplify how our tracing-
based performance analysis is seamlessly integrated into the
design process of safety-critical applications.

We have recorded a trace of 83523 events and extracted
arrival curves and distance functions for event-driven tasks.
Figures 5 and 6 illustrate η+(∆t) and δ−(n) respectively for
the navigation task (navi). Since the task is event-driven, its
activation pattern is non-periodic. Our use case represents a
graph of tasks. Therefore, we are interested not only in the
timing properties of each task but also in the timing properties
of different chains defined within the graph, specifically the
end-to-end latency. We define a chain as the execution of a
sequence of tasks from a source to a sink. In our use case,
cam1 and cam2 are sources, and ter1 and ter2 are sinks. Hence,
there are four chains. Let χ denote a chain, thus:
χ1 : cam1 → craT → navi → ter1
χ2 : cam1 → craT → navi → ter2
χ3 : cam2 → feaT → navi → ter2
χ4 : cam2 → feaT → navi → ter1

A. Design decision 1: Platform

The goal of this experiment is to demonstrate the capability
of our tracing mechanism to be cross-platform. Hence, beside
the above mentioned settings (Linux + Cortex-A53), we com-
piled our case study to run on RTEMS using the GR712RC
board with LEON3 processor (40 MHz), which is the default
radiation-hardened processor for space systems. We present
the execution time and queuing time experienced by each task
considering FIFO scheduling with one executor in Fig. 7 for
Linux + Cortex-A53 platform. Also, in Fig. 8 we consider
FIFO scheduling with one executor for RTEMS + LEON3
platform. The end-to-end latency for both platforms is pre-
sented in Fig. 9. RTEMS, as an RTOS, produces results with
less variation and suffering from less interference thanks to the
RTOS kernel. Therefore, the range between the minimum and
maximum values is smaller compared to the results obtained
from the Linux OS. However, the maximum observable exe-
cution times are not improved, nor the queuing times. In fact,
the third quartile values using the RTEMS + LEON3 platform
for both the execution time and the queuing time are about
100 times larger than the third quartile values using Linux
+ Cortex-A53. The main reason is the very slow radiation-
hardened processor (LEON3 with 40 MHz) which is about 30
times slower than the high-performance platform (Cortex-A53
with 1.2GHz). The need for more on-board processing power
is a major concern for researchers and space companies. Many
missions aim to integrate high-performance commercial off-
the-shelf (COTS) processors alongside the radiation-hardened

cam1 cam2 craT feaT navi ter1 ter2
100

101

102

103

104

E
xe

cu
tio

n
tim

e
(µ

se
c)

cam1 cam2 craT feaT navi ter1 ter2
100

101

102

103

104

Q
ue

ue
in

g
tim

e
(µ

se
c)

Fig. 7. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using one executor on the Linux + Cortex-A53 platform.

cam1 cam2 craT feaT navi ter1 ter2
100

101

102

103

104

E
xe

cu
tio

n
tim

e
(µ

se
c)

cam1 cam2 craT feaT navi ter1 ter2
100

101

102

103

104

Q
ue

ue
in

g
tim

e
(µ

se
c)

Fig. 8. The execution time and the queuing time of the tasks in the use case under the FIFO scheduling using one executor on the RTEMS + LEON3
platform.

102 103 104 105

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

102 103 104 105

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

Fig. 9. The end-to-end latency of the chains under the FIFO scheduling considering one executor. In the left figure (in red), we consider the Linux +
Cortex-A53 platform, and we consider the RTEMS + LEON3 platform for the right figure (in blue).

processors [22]–[24] to meet the required on-board processing
power.

B. Design decision 2: Scheduling policy

In this experiment, we utilize our tracing mechanism to
study the impact of scheduling policies and priority assign-
ments on the timing behavior of tasks. Accordingly, we
generated a new trace on Linux + Cortex-A53 architecture
considering fixed priority scheduling, with priorities assigned
as outlined in Table I2. The new results are presented in
Fig. 10. As the Tasking Framework executes tasks in a non-
preemptive manner, the queuing time of tasks may exceed
their execution time. However, employing priority scheduling
reduces the queuing time and improves task execution times.

2We refer here to the FIFO and priority scheduling implemented in the
Tasking Framework, as depicted in Fig. 3

TABLE I
PRIORITY ASSIGNMENTS WHERE 1 IS THE HIGHEST PRIORITY

Task cam1 cam2 craT feaT navi ter1 ter2
Priority 1 1 3 2 4 5 5

Consequently, the end-to-end latency is enhanced. Fig. 11 il-
lustrates the end-to-end latency for FIFO scheduling (depicted
in red on the left) and priority scheduling (shown in blue
on the right). Under FIFO scheduling, data processed from
cam1 to ter1, in χ1, experience the longest end-to-end latency.
Conversely, under priority scheduling, χ2 exhibits the longest
latency.

With this experiment we show that it is possible to extract
enough data using tracing to come to a sound decision regard-
ing scheduling policy. In this paper, unless stated otherwise,
we use FIFO scheduling for all other experiments.

cam1 cam2 craT feaT navi ter1 ter2
100

101

102

103

104

E
xe

cu
tio

n
tim

e
(µ

se
c)

cam1 cam2 craT feaT navi ter1 ter2
100

101

102

103

104

Q
ue

ue
in

g
tim

e
(µ

se
c)

Fig. 10. The execution time and the queuing time of the tasks in the use case under the fixed priority scheduling using one executor on Linux + Cortex-A53
platform.

102 103 104 105

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

102 103 104 105

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

Fig. 11. The end-to-end latency of the chains considering one executor on the Linux + Cortex-A53 platform. In the left figure (in red), we consider the FIFO
scheduling, and we consider the priority scheduling for the right figure (in blue).

C. Design decision 3: Number of executors

We aim to address a design question: how many cores
should be allocated to the ATON optical navigation subsystem
to strike a balance between delay and the number of cores.
To achieve this, we executed our code under FIFO schedul-
ing, considering two and three executors, respectively. The
results are presented in Fig. 12 and Fig. 13. Comparing the
results of one executor (Fig. 7) with two executors (Fig. 12),
we observed that the execution times were better with two
executors, but the maximum values increased. This can be
attributed to the increased ratio of cache misses that tasks
may experience when executed by two different executors on
different cores. Consequently, the maximum queuing time of
the tasks also increased significantly, although the minimum
values improved. Fig. 14 demonstrates that the minimum end-
to-end latency improved compared to the scenario with one
executor under FIFO and priority scheduling. However, the
maximum end-to-end latency increased significantly.

D. Comparing with static methods

Industrial embedded software are complex and formal meth-
ods cannot cope with it. Using languages like C,C++, RUST
makes the analysis even more complicated. For instance, using
virtual methods in C++ leads to indirect jumps, beside the indi-
rect jumps caused by the switch-case statements and functions
pointers in C and C++. Also, the objected-oriented program-
ming in C++ makes bounding the loop more challenging for

tools depend on the source code like oRange [25]. Solutions
that use dynamic symbolic execution, like e.g. DELOOP [26],
can help us to resolve indirect jumps and compute safe bounds
on the bounded loops. In [26], the dynamic symbolic execution
was used to compute flow facts for Tasking Framework. These
flow facts were forwarded to OTAWA [27] to compute the
WCET of the Tasking Framework functions, for instance,
the push function. The main drawbacks of dynamic symbolic
execution based solutions that they are platform dependent. As
DELOOP was developed for armv7 architecture, it cannot be
used out of the box to compute the execution time for, e.g.,
X86 architecture. Using portable tracing based solution like
our proposed solution can overcome the challenges emerged
from different programming languages and it is platform
independent. Table II shows the WCET of the push function in
all tasks of our use case for ARM Cortex-M3. The results in
Table II are more pessimistic than the results computed using
the traces because they consider the longest execution path in
the push function, which may not observable in the trace.

TABLE II
RESULTS OF THE WCET ANALYSIS FOR THE PUSH FUNCTION IN THE USE

CASE

Task WCET (cycles)
cam1 2435
cam2 2435
craT 3635
feaT 3635
navi 4800

cam1 cam2 craT feaT navi ter1 ter2
100
101
102
103
104
105
106

E
xe

cu
tio

n
tim

e
(µ

se
c)

cam1 cam2 craT feaT navi ter1 ter2
100
101
102
103
104
105
106

Q
ue

ue
in

g
tim

e
(µ

se
c)

Fig. 12. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using two executors on the Linux + Cortex-A53
platform.

cam1 cam2 craT feaT navi ter1 ter2
100
101
102
103
104
105
106

E
xe

cu
tio

n
tim

e
(µ

se
c)

cam1 cam2 craT feaT navi ter1 ter2
100
101
102
103
104
105
106

Q
ue

ue
in

g
tim

e
(µ

se
c)

Fig. 13. The execution time and queuing time of the tasks in the use case under the FIFO scheduling using three executors on the Linux + Cortex-A53
platform.

102 103 104 105 106 107

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

102 103 104 105 106 107

χ1

χ2

χ3

χ4

End-to-End Latency (µ sec)

Fig. 14. The end-to-end latency of the chains considering the FIFO scheduling on the Linux + Cortex-A53 platform. In the left figure (in green), we use two
executors, and we use three executors in the right figure (in yellow).

VIII. CONCLUSION AND OUTLOOK

With the increasing complexity of embedded software, es-
pecially on-board software, performance analysis using static
methods faces the challenge of providing tight yet safe guaran-
tees. Extracting timing properties using tracing is a promising
technique to assist static methods to cope with the growing
complexity of embedded software. In this work, we presented
a tracing mechanism for performance analysis of data flow
space applications that reuses open-source tools to offer a
cross-platform solution. We showed how to use our solution to
extract debugging and timing properties of a use case inspired
by the optical navigation subsystem. Also, we studied the
overhead of our solution.

Any tracing solution suffers from two main points: 1) the
need for code instrumentation, 2) the overhead of the events.

As eliminating the two points is not realistic, reducing the
overhead or the impact of the overhead on the measured pa-
rameters is a topic for future improvements. Additionally, code
instrumentation can be automated using auto-code generators
to guarantee less error-prone instrumentation. For this, we
aim to employ the Timing Modeling Language (TML) [28]
to automatically instrument the auto-generated code for our
applications. In such a step, the developer can generate the
traceable code and resulting traces with minimum effort and
minimum human errors. Fig. 15 illustrates the TML model-
ing interface that would make such an automated approach
possible.

REFERENCES

[1] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-
time analysis of ROS 2 processing chains under reservation-based

Data

Components

Task Graph

Fig. 15. The Timing Modeling Language (TML): an auto-code generator for
Tasking Framework.

scheduling,” in 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), vol. 133. Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019, pp. 6:1–6:23.

[2] Z. A. H. Hammadeh, T. Franz, O. Maibaum, A. Gerndt, and D. Lüdtke,
“Event-driven multithreading execution platform for real-time on-board
software systems,” in Proceedings of the 15th annual workshop on
Operating Systems Platforms for Embedded Real-time Applications,
July 2019, pp. 29–34. [Online]. Available: https://elib.dlr.de/128249/

[3] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in Proceedings of the Conference on Design, Automation and
Test in Europe - Volume 1, ser. DATE ’03. USA: IEEE Computer
Society, 2003, p. 10190.

[4] R. Henia, “System level performance analysis – the SymTA/S
approach,” IEE Proceedings - Computers and Digital Techniques, vol.
152, pp. 148–166(18), March 2005. [Online]. Available: https://digital-
library.theiet.org/content/journals/10.1049/ip-cdt 20045088

[5] C. Bédard, I. Lütkebohle, and M. Dagenais, “ROS2 tracing: Multipur-
pose low-overhead framework for real-time tracing of ROS2,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 6511–6518, 2022.

[6] S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean,
and R. Ernst, “Typical worst case response-time analysis and its use
in automotive network design,” in Proceedings of the 51st Annual
Design Automation Conference, ser. DAC ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 1–6. [Online].
Available: https://doi.org/10.1145/2593069.2602977

[7] M. Desnoyers. Common trace format (ctf) specification (v1.8.3).
[Online]. Available: https://diamon.org/ctf

[8] Tracecompass documentation. [Online]. Available:
https://www.eclipse.org/tracecompass/

[9] The babeltrace 2 documentation. [Online]. Available:
https://babeltrace.org/

[10] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Transactions on Software Engineering, vol. 35,
no. 5, pp. 684–702, 2009.

[11] N. Ezzati-Jivan, G. Bastien, and M. R. Dagenais, “High latency cause
detection using multilevel dynamic analysis,” in 2018 Annual IEEE
International Systems Conference (SysCon). IEEE, 2018, pp. 1–8.

[12] O. Iegorov, R. Torres, and S. Fischmeister, “Periodic task mining in
embedded system traces,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017, pp. 331–340.

[13] H. Abaza, D. Roy, S. Fan, S. Saidi, and A. Motakis, “Trace-enabled
timing model synthesis for ROS 2-based autonomous applications,” in
2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2024, pp. 1–6.

[14] The lttng documentation. [Online]. Available:
https://lttng.org/docs/v2.13/

[15] Percepio Tracealyzer. [Online]. Available:
https://percepio.com/tracealyzer/tracealyzer-for-linux/

[16] T.-Y. Wang, S.-H. Wang, C.-H. Tu, and W.-Y. Liang, “CAT: Context
aware tracing for rust asynchronous programs,” in Proceedings of the
38th ACM/SIGAPP Symposium on Applied Computing, ser. SAC ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
483–492. [Online]. Available: https://doi.org/10.1145/3555776.3577669

[17] S. Theil, N. A. Ammann, F. Andert, T. Franz, H. Krüger, H. Lehner,
M. Lingenauber, D. Lüdtke, B. Maass, C. Paproth, and J. Wohlfeil,
“ATON (autonomous terrain-based optical navigation) for exploration
missions: recent flight test results,” CEAS Space Journal, March 2018.
[Online]. Available: https://elib.dlr.de/119557/

[18] O. Maibaum and A. Heidecker, “Software evolution from TET-1 to
Eu:CROPIS,” in 10th International Symposium on Small Satellites for
Earth Observation, R. Sandau, H.-P. Röser, and A. Valenzuela, Eds.
Wissenschaft & Technik Verlag, April 2015, pp. 195–198. [Online].
Available: https://elib.dlr.de/100859/

[19] A. Lund, Z. A. Haj Hammadeh, P. Kenny, V. Vishav, A. Kovalov,
H. Watolla, A. Gerndt, and D. Lüdtke, “ScOSA system software: the
reliable and scalable middleware for a heterogeneous and distributed
on-board computer architecture,” CEAS Space Journal, vol. 14, no. 1,
pp. 161–171, 2022.

[20] S. Künzli and L. Thiele, “Generating event traces based on arrival
curves,” in 13th GI/ITG Conference-Measuring, Modelling and Eval-
uation of Computer and Communication Systems. VDE, 2006.

[21] Z. A. Haj Hammadeh, “Deadline miss models for temporarily over-
loaded systems,” Ph.D. dissertation, Technische Universität Braun-
schweig, 2019.

[22] G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou,
D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and
G. Furano, “High-performance embedded computing in space:
Evaluation of platforms for vision-based navigation,” Journal of
Aerospace Information Systems, vol. 15, no. 4, pp. 178–192, 2018.
[Online]. Available: https://doi.org/10.2514/1.I010555

[23] D. Keymeulen, S. Shin, J. Riddley, M. Klimesh, A. Kiely, E. Liggett,
P. Sullivan, M. Bernas, H. Ghossemi, G. Flesch, M. Cheng, S. Dolinar,
D. Dolman, K. Roth, C. Holyoake, K. Crocker, and A. Smith, “High
performance space computing with system-on-chip instrument avionics
for space-based next generation imaging spectrometers (ngis),” in 2018
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2018,
pp. 33–36.

[24] D. Lüdtke, T. Firchau, C. G. Cortes, A. Lund, A. M. Nepal, M. M. Elbar-
rawy, Z. H. Hammadeh, J.-G. Meß, P. Kenny, F. Brömer, M. Mirzaagha,
G. Saleip, H. Kirstein, C. Kirchhefer, and A. Gerndt, “Scosa on the way
to orbit: Reconfigurable high-performance computing for spacecraft,” in
2023 IEEE Space Computing Conference (SCC), 2023, pp. 34–44.

[25] A. Bonenfant, M. de Michiel, and P. Sainrat, “oRange: A tool for static
loop bound analysis,” in Workshop on Resource Analysis, University of
Hertfordshire, Hatfield, UK, vol. 9, no. 09, 2008, p. 08.

[26] H. Abaza, Z. A. Haj Hammadeh, and D. Lüdtke, “DELOOP: Automatic
flow facts computation using dynamic symbolic execution,” in 20th
International Workshop on Worst-Case Execution Time Analysis (WCET
2022), ser. Open Access Series in Informatics (OASIcs), C. Ballabriga,
Ed., vol. 103. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022, pp. 3:1–3:12. [Online]. Available: https://drops-
dev.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2022.3

[27] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an
open toolbox for adaptive WCET analysis,” in IFIP International Work-
shop on Software Technolgies for Embedded and Ubiquitous Systems.
Springer, 2010, pp. 35–46.

[28] T. Franz, A. M. Nepal, Z. A. Haj Hammadeh, O. Maibaum, A. Gerndt,
and D. Lüdtke, “Tasking Modeling Language: A toolset for model-based
engineering of data-driven software systems,” in OBDP2021 - 2nd
European Workshop on On-Board Data Processing, no. 2, June 2021.
[Online]. Available: https://elib.dlr.de/145077/

