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Abstract Multiple lines of evidence confirm a widespread increase in vegetation growth across China
over the past few decades. The relationship between vegetation growth and water availability is thought to
be becoming stronger under climate change, that is, water constraints on vegetation growth have been
increasing. However, our understanding of how water constraints have influenced these vegetation
greening trends, especially those climate change‐driven ones, remains limited. Here, we conduct a
comprehensive evaluation of recent water constraints and their implications for vegetation growth in China
between 1982 and 2015. By analyzing the spatiotemporal patterns of the relationship between vegetation
growth and water availability, we reveal recent water constraints and their changes hidden within an
overall greening trend in China. Further analysis demonstrates that two climate change‐related categories,
defined broadly as “climate” (e.g., air temperature, precipitation, and so on) and “CO2” (i.e., atmospheric
carbon dioxide), have exerted varying levels of importance in regulating vegetation growth across different
water constraints. With increasing water constraints, the proportion of the climate‐dominated area has
significantly risen, while that of the CO2‐dominated area has sharply declined. Our findings highlight that
water constraints can mediate the dominance of climate and atmospheric CO2 on vegetation growth. This
has the great potential to exacerbate the uncertainty surrounding current and future sustainable vegetation
greening trends.

Plain Language Summary China's vegetation growth has shown a broad increase under climate
change and human activities over the past few decades. At the same time, changes in vegetation water demand,
terrestrial water availability, and climatic factors are expected to lead to increasing water constraints on
vegetation growth. However, whether water constraints have influenced climate change‐driven vegetation
greening trends remains unclear. In this study, we provide a comprehensive assessment of recent water
constraints and their implications for vegetation growth in China between 1982 and 2015. To do this, we analyze
the spatiotemporal patterns of the relationship between vegetation growth and water availability to reveal recent
water constraints hidden within China's vegetation greening. Further analysis shows that climate and
atmospheric CO2 have exerted varying levels of importance in regulating vegetation growth across different
water constraints. With increasing water constraints, more regions become climate‐dominated and fewer
become CO2‐dominated. Overall, our findings highlight that water constraints can mediate the dominance of
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climate and atmospheric CO2 on vegetation growth. This will help decision‐makers recognize the uncertainty of
sustainable vegetation greening trends.

1. Introduction
Since the Industrial Revolution, climate change and direct human activities have shown a significant impact on
water, carbon, and energy exchanges between the land surface and the atmosphere across a large part of the planet
(Novick et al., 2016; Sellers et al., 1997). Too much or too little water availability can disrupt normal vegetation
growth, both for natural and cultivated plants. Although recent studies have shown that global vegetation is
greening as a result of elevated atmospheric carbon dioxide (CO2) concentrations, nitrogen deposition, climate
warming, and changes in land‐use and land‐management at regional and continental scales, this is simultaneously
exacerbating water demands on ecosystems to some extent (Fernandez‐Martinez et al., 2019; Gonsamo
et al., 2021; He et al., 2019; Li, Ryu, et al., 2023; Lu et al., 2016; Penuelas et al., 2017; Zhu et al., 2016). Besides,
unpredictable variations in annual terrestrial water storage (TWS) are likely to further heighten the uncertainty in
water availability (Hsu & Dirmeyer, 2023; Humphrey et al., 2018; Pokhrel et al., 2021). Terrestrial vegetation
growth has encountered considerable water‐related challenges over the past decades (Jiao et al., 2021; Penue-
las, 2023; Yuan et al., 2019). Global ecosystems are projected to become increasingly vulnerable to droughts
associated with climate change in the future (Higgins et al., 2023; Sherwood & Fu, 2014; Wang et al., 2022). As a
result, we are obliged to take into account water constraints on vegetation growth when looking at the current
phenomenon of the greening of the Earth.

Satellite observations have demonstrated a vegetation greening trend in China since the early 1980s (Chen
et al., 2019; Piao et al., 2015). Climate change has extended the active growing season and enhanced photo-
synthesis, benefiting most vegetation, especially in regions with sufficient water supply (Bastos et al., 2019;
Thomas et al., 2016). As a populous country, China has extensively utilized its land for agriculture and forestry,
and policy directives such as agricultural intensification and reforestation have contributed to China's greening in
recent decades (Bueso et al., 2023; Gerlein‐Safdi et al., 2020; Piao et al., 2010, 2020; Tong et al., 2018). However,
this large‐scale ecosystem productivity increase is believed to have reduced TWS in China, potentially leading to
water constraints on vegetation growth, particularly in arid regions and for irrigated croplands (Huang et al., 2023;
Li et al., 2021, 2023c; Wang, Xiao, et al., 2020; Yang, Cui, et al., 2023). Despite elevated atmospheric CO2
concentrations improving water use efficiency, China's vegetation growth is expected to remain highly dependent
on water availability (Li et al., 2022; Wei et al., 2023; Zhang et al., 2022). Recent studies underscore the sig-
nificance of understanding how vegetation responds to water availability, particularly concerning the negative
impacts of droughts on ecosystem productivity (Ciais et al., 2005; Li et al., 2020; Zhang, Zhou, et al., 2023; Zhao
& Running, 2010), vegetation resilience to drought (Anderegg et al., 2018; Smith & Boers, 2023; Zhang, Liu,
et al., 2023), and sustainable vegetation growth under a changing climate (Berg &McColl, 2021; Jiao et al., 2021;
Song et al., 2022). For China, whether vegetation greening trends will be sustainable in the face of potentially
limited water resources is a matter of great concern for decision‐makers.

In this study, we aim to assess how recent water constraints have influenced vegetation growth trends across
China over the past three decades. The Normalized Difference Vegetation Index (NDVI) (Pinzon &
Tucker, 2014), Leaf Area Index (LAI) (Liu et al., 2012), and Gross Primary Productivity (GPP) (Wang
et al., 2021) were used as proxies for vegetation growth to demonstrate the greening of China's vegetated regions.
NDVI, LAI, and GPP are three different indicators associated with vegetation growth. The synergistic use of them
plays a crucial cross‐validation role in studying vegetation dynamics and climate change (Chang et al., 2023;
Wagle et al., 2014; Wang, Zhang, et al., 2020; Xie et al., 2019). We also employed proxies for water availability,
including the Palmer Drought Severity Index (PDSI) (Abatzoglou et al., 2018), the Standardized Precipitation‐
Evapotranspiration Index at the 3‐month time scale (SPEI03) (Vicente‐Serrano et al., 2010), and TWS (Döll
et al., 2014). The relationship between vegetation growth and water availability was used to evaluate different
water constraints on vegetation growth and to identify water deficit and water surplus regions within China.
Moreover, we tracked trends in the relationship between vegetation growth and water availability over time using
10‐year moving windows to exhibit any underlying spatiotemporal patterns. Furthermore, we conducted an
ensemble of analyses to reveal the implications of recent water constraints for vegetation growth. We used two
climate change‐related categories, defined broadly as “climate” (including air temperature, precipitation, and so
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on) and “CO2” (i.e., atmospheric CO2), to investigate potential shifts in their dominant roles on vegetation growth
across different water constraints. Land use change, nitrogen deposition, management practices, and so on were
considered in an additional category, “other factors” (Chen et al., 2019; Piao et al., 2015; Zhu et al., 2016). To
enhance the robustness of our core findings, we applied partial correlation, machine learning, and multi‐scenario
modeling simulations to achieve the attribution analysis, respectively (Fernandez‐Martinez et al., 2019; Hutley
et al., 2022; Jiao et al., 2021; Obermeier et al., 2021).

2. Materials and Methods
2.1. Satellite Observation Data

The third‐generation Global Inventory Monitoring and Modeling System (GIMMS) NDVI data (GIMMS
NDVI3g, Version 5) (Pinzon & Tucker, 2014), the consistent long‐term global LAI product (GLOBMAP LAI,
Version 3) (Liu et al., 2012), and the long‐term GPP data set based on NIRv (GPPNIRv, Version 2) (Wang
et al., 2021) were used in this study as proxies for vegetation growth during the 1982–2015 period. We used the
three different proxies for vegetation growth for cross‐validation with the aim of reinforcing the robustness of our
core findings. All the satellite observation data were aggregated to a 0.05° × 0.05° spatial resolution and a
monthly temporal resolution using the nearest neighbor resampling method and the mean value composite
method, respectively. We calculated their mean growing‐season values for April to October as the annual
vegetation growth indicators. The maximum value composite method was used to obtain the annual peak
growing‐season values to test the robustness of using a fixed‐length growing season.

2.2. Eddy‐Covariance Flux Tower‐Based GPP Data

The eddy‐covariance flux tower‐based GPP data from ChinaFLUX were used to evaluate the robustness of our
satellite‐based vegetation growth trend analysis. Limited by the low availability of open‐source eddy‐covariance
flux tower data in China, only the nine sites with at least 6 years of valid GPP estimates during our study period
were selected for this study, that is, Xishuangbanna (BNF, forest, 2003–2010), Yucheng (YCA, cropland, 2003–
2010), Changbaishan (CBF, forest, 2003–2010), Dinghushan (DHF, forest, 2003–2010), Damxung (DXG,
grassland, 2004–2010), Haibei (HBG1, grassland, 2003–2010; HBG2, grassland, 2004–2009), Inner Mongolia
(NMG, grassland, 2003–2010), and Qianyanzhou (QYF, forest, 2003–2010). Since these data were short‐term,
more analyses based on them could be not statistical significant. After attempting to do so, we discarded all the
other analyses using eddy‐covariance flux tower‐based data except for the trend analysis.

2.3. Dynamic Global Vegetation Models

We used the monthly GPP data estimated by dynamic global vegetation models (DGVMs) from the TRENDY
project (TRENDYv8, Version 8) (Friedlingstein et al., 2019). The three DGVMs with a fine spatial resolution
were selected for this study, that is, ORCHIDEE (Krinner et al., 2005), SDGVM (Walker et al., 2017), and VISIT
(Kato et al., 2013). The GPP outputs were derived from the S0 (pre‐industrial climate and CO2), S1 (pre‐industrial
climate and observed CO2), S2 (observed climate and CO2), and S3 (observed climate and CO2 and land use/land
cover) simulation scenarios (Fernandez‐Martinez et al., 2019; Friedlingstein et al., 2019). We resampled the
simulated GPP data into a 0.05° × 0.05° spatial resolution using the nearest neighbor resampling method to match
the satellite observation data.

2.4. Land Vegetated Area Data

The global land use change data obtained from the HIstoric Land Dynamics Assessment+ (HILDA+) project
were used to determine China's vegetated regions (Winkler et al., 2021). To focus on our goals, we ignored the
transformation between vegetated and non‐vegetated regions, thereby reducing the effect of land cover change on
vegetation growth. That is, we used the intersection of all the vegetation layers to ensure that each grid cell was a
vegetated region from the beginning to the end for the 1982–2015 period. Finally, the China vegetation cover map
was aggregated to a 0.05° × 0.05° spatial resolution using the nearest neighbor resampling method to match the
satellite observation data.
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2.5. Gridded Water Availability Indices

The PDSI, calculated with temperature and precipitation data, is widely used to estimate relative dryness. A PDSI
value > 4 represents very wet conditions, while a PDSI < − 4 represents an extreme drought. The global monthly
PDSI data with a 0.05° × 0.05° spatial resolution were provided by the TerraClimate high‐spatial‐resolution
climate data set (Abatzoglou et al., 2018). The SPEI and TWS data as complementary water availability
indices were used to evaluate the robustness of the results based on PDSI. The SPEI03 data obtained from
SPEIbase (Version 2) (Vicente‐Serrano et al., 2010), representing the 3‐month cumulative water balance, were
widely used to study the relationship between vegetation growth and drought events (Au et al., 2022; Jiang
et al., 2019; Jiao et al., 2021; Wu et al., 2017). We used SPEI03 to reduce the uncertainty associated with the fixed
time‐scale water availability index. The TWS data were obtained from the global hydrological model, WaterGAP
(Version 2.2 d) (Döll et al., 2014). The Aridity Index (AI) obtained from Zomer et al. (2022), was used to identify
arid, semi‐arid, sub‐humid, and humid zones in China. The SPEI and AI data were resampled into a 0.05° × 0.05°
spatial resolution using the nearest neighbour resampling method to match the satellite observation data.

2.6. Forcing Data Sets

We obtained the monthly gridded climate data with a 0.05° × 0.05° spatial resolution from the TerraClimate high‐
spatial‐resolution climate data set (Abatzoglou et al., 2018), including air temperature (Tmp), precipitation (Pre),
vapor pressure deficit (VPD), downward surface shortwave radiation (Rad), and soil moisture (SM). The monthly
gridded atmospheric carbon dioxide (CO2) data, that is, CO2 dry mole fractions, were provided by the European
Center for Medium‐Range Weather Forecasts (ECMWF). We categorized climate factors as “climate” and at-
mospheric CO2 as “CO2,” respectively. The CO2 data were resampled into a 0.05°× 0.05° spatial resolution using
the nearest neighbor resampling method to match the other gridded climate data.

2.7. Trend Analysis

To examine the greening of China's vegetated regions, we used the Theil‐Sen estimator with the non‐parametric
Mann‐Kendall test to estimate the linear trends of NDVI/LAI/GPP for each grid cell during the 34 active growing
seasons (i.e., April–October in each year) from 1982 to 2015. Compared to the fixed growing season described
above, we recalculated the trends in NDVI/LAI/GPP for each grid cell based on their maximum growing‐season
values to reduce the effect of changes in growing‐season length. The Theil‐Sen estimator with the non‐parametric
Mann‐Kendall test was also used to calculate the trends of the relationship between vegetation growth and water
availability over 25 consecutive 10‐year moving windows spanning from 1982 to 2015 (i.e., 1982–1991, 1983–
1992, …, 2006–2015). The trends in eddy‐covariance flux tower‐based GPP at the nine sites were calculated by
the simple linear regression method. In addition, we used the simple linear regression method to calculate the
trends in the climate‐, CO2− , and “other factors”‐dominated area across different water constraints.

2.8. Correlation Analysis

To examine vegetation growth responses to water availability, we evaluated the relationship between NDVI/LAI/
GPP and PDSI for the 34 active growing seasons during the 1982–2015 period. The Spearman's rank correlation
coefficient (r‐value) between NDVI/LAI/GPP and PDSI was used to represent the relationship between vege-
tation growth and water availability. A significant positive correlation coefficient (two‐tailed t‐test: p < 0.05)
between NDVI/LAI/GPP and PDSI is interpreted as vegetation growth being constrained by water deficit.
Conversely, a significant negative correlation coefficient (two‐tailed t‐test: p < 0.05) suggests that vegetation
growth is constrained by water surplus. The grid cells with non‐significant correlation coefficients indicate that
vegetation growth is not clearly constrained by water availability. For vegetation growth under water deficit,
vegetation growth is increasing with wetting and decreasing with drying. Water stress such as drought can limit
vegetation growth. For vegetation growth under water surplus, vegetation is less productive under wetter con-
ditions and more productive under drier‐than‐normal conditions. Water surplus can limit vegetation growth as a
result of waterlogging or insufficient temperature and solar radiation due to excessive rainfall. Here, we refer to
those grid cells exhibiting significant positive and significant negative correlation coefficients (two‐tailed t‐test:
p < 0.05) as “vegetation water deficit regions” and “vegetation water surplus regions,” respectively (Jiao
et al., 2021). To further decouple the effects of water availability and climate change on vegetation growth, we
divided the significant r‐value between NDVI/LAI/GPP and PDSI for the 34 active growing seasons into six bins
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(i.e., r≤ − 0.5, − 0.5< r≤ − 0.4, − 0.4< r≤ − 0.3, 0.4> r≥ 0.3, 0.5> r≥ 0.4, and r≥ 0.5), and the non‐significant
part (i.e., − 0.3< r< 0.3) was excluded (Liu et al., 2020). In addition, to reduce the effects of the long‐term NDVI/
LAI/GPP trends and the growing‐season length changes, we recalculated the correlation coefficients of the
detrended, the maximum, and the detrended maximum NDVI/LAI/GPP with PDSI. We also used SPEI03 as an
alternative water availability indicator to further evaluate the robustness of our PDSI‐based results (Vicente‐
Serrano et al., 2013).

2.9. Attribution Analysis

To further reveal the implications of recent water constraints for changes in vegetation growth across China over
the past three decades, we evaluated the importance of climate and atmospheric CO2 for vegetation growth using a
partial correlation algorithm (Jiao et al., 2021). The factor with the highest absolute value of the significant partial
correlation coefficient (two‐tailed t‐test: p < 0.05) was identified as the dominant driver of vegetation growth in
that grid cell (Jiao et al., 2021). We analyzed the partial correlation of NDVI/LAI/GPP with one of those forcing
factors (i.e., air temperature, precipitation, vapor pressure deficit, downward surface shortwave radiation, soil
moisture, and atmospheric CO2) by excluding the effects of the other forcing factors. The two climate change‐
related categories, “climate” and “CO2,” were used to investigate potential shifts in their importance for vege-
tation growth across different water constraints. We categorized the climate‐related factors as “climate” to avoid
differences in data or methods that could lead to differences in attributing these climate factors as the primary
drivers of vegetation growth. Land use change, nitrogen deposition, forest management, grazing, changes in
cultivation practices and varieties, irrigation, extreme events, and so on were considered in an additional category,
“other factors” (Zhu et al., 2016). Moreover, to test the robustness of our partial correlation analysis, we employed
random forest (RF) models to gauge the dominance of climate and atmospheric CO2 on NDVI/LAI/GPP.We used
the function “TreeBagger” inMATLAB R2023a software (TheMathWorks, Inc., Natick, MA, USA) to create the
RF models. The “numTrees” parameter was set to “200” to meet our requirements for accuracy and robustness.
The RF models were trained pixel by pixel, and then the dominant driver for each grid cell was extracted by
ranking the feature importance. This approach is widely recognized for its effectiveness in mitigating the mixing
effect of the “other factors” category via nonlinear modeling (Hutley et al., 2022). Furthermore, we performed
another analysis using different TRENDYv8 simulation scenarios to reinforce our satellite‐based findings. The
GPP outputs derived from the S0, S1, S2, and S3 simulation runs were used to isolate the effects of climate and
atmospheric CO2 on vegetation growth (Fernandez‐Martinez et al., 2019; Friedlingstein et al., 2019; Obermeier
et al., 2021). We defined the trends in simulated GPP derived from S1 minus S0 (S1− S0), S2 minus S1 (S2− S1),
and S3 minus S2 minus S1 (S3− S2− S1) as being driven by the “climate,” “CO2,” and “other factors” categories,
respectively. The category with the highest absolute value of these trends was considered to be the dominant
driver of vegetation growth in that grid cell. Overall, we used the three attribution analyses for cross‐validation
with the aim of reinforcing the robustness of our core findings.

3. Results and Discussion
3.1. Widespread Greening of China's Vegetated Regions Over the Past Three Decades

Here we employed the Theil‐Sen estimator in conjunction with the non‐parametric Mann‐Kendall test to assess
the changes in NDVI, LAI, and GPP (hereinafter referred to as “NDVI/LAI/GPP”) for each grid cell across
China's vegetated regions over the course of 34 active growing seasons (i.e., a fixed time period from April to
October each year) from 1982 to 2015. We found that 79.93%, 83.57%, and 65.42% of vegetated grid cells
exhibited an increase in NDVI/LAI/GPP during this period (51.49%, 63.31%, and 29.95% with a significant
increase, Mann‐Kendall test: p < 0.05) (Figures 1a–1c). The NDVI, LAI, and GPP‐based results showed com-
parable spatiotemporal patterns of vegetation growth across China over the past three decades. The relative
frequency distributions of the various trends were similar. However, we also found some differences in the trends
derived from different vegetation growth proxies (Figure S1 in Supporting Information S1). Considering that
NDVI, LAI, and GPP represent different vegetation characteristics (e.g., greenness, cover, and productivity), their
asynchronous changes in some regions may present different estimates of vegetation growth trends when using
them as proxies (Ding et al., 2020; Piao et al., 2019; Zhang et al., 2017). To ensure the reliability of our satellite‐
based analysis, we incorporated available eddy‐covariance flux tower‐based GPP data to validate our results
(Figure 1d). Seven out of the nine sites experienced an increase in GPP (two sites with a significant increase, two‐
tailed t‐test: p < 0.05). In contrast, only two sites exhibited a non‐significant decrease in GPP (two‐tailed t‐test:
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p > 0.05) (Figure 1e). To further validate our analysis based on the fixed growing season shown above, we
recalculated the trends in NDVI/LAI/GPP for each grid cell based on their maximum growing‐season values as
indicators of vegetation growth (Figure S2 in Supporting Information S1). Importantly, the widespread greening
of China's vegetated regions has been confirmed, regardless of whether we used mean or peak growing‐season
NDVI/LAI/GPP values to characterize vegetation growth for each year. In addition, we also incorporated the
simulated GPP data derived from three widely used DGVMs with a fine spatial resolution, ORCHIDEE (Krinner
et al., 2005), SDGVM (Walker et al., 2017), and VISIT (Kato et al., 2013), as part of the TRENDY v8 project
(Friedlingstein et al., 2019). The GPP data employed herein was run under the S3 simulation scenario (observed
climate and CO2 and land use/land cover, close to historical conditions). These simulated GPP results consistently
affirmed that vegetation growth has increased in most of China's vegetated regions during the study period,
whether based on the mean (Figure S3 in Supporting Information S1) or peak (Figure S4 in Supporting Infor-
mation S1) growing‐season values. Overall, whether using satellite and in‐situ observations or model‐simulated
data, multiple lines of evidence confirm that China's vegetation growth has been broadly enhanced over the past
three decades. This is also in line with an overall trend of greening of the Earth, as noted in previous studies (Chen
et al., 2019; Cortés et al., 2021; Piao et al., 2020; Zhu et al., 2016).

3.2. Spatiotemporal Patterns of the Relationship Between Vegetation Growth and Water Availability

While we observed widespread increases in NDVI/LAI/GPP across China over the past three decades, such a
surge in vegetation growth is anticipated to place greater demands on terrestrial water resources (Liu et al., 2023;
Yang, Roderick, et al., 2023), leading to increasing water constraints on ecosystems in regions with limited water
availability. To delineate vegetation‐associated water deficit and water surplus regions in China, we conducted an

Figure 1. Spatiotemporal patterns of vegetation growth across China over the past three decades. (a–c) Spatial distribution of the trends in the Normalized Difference
Vegetation Index (NDVI), Leaf Area Index (LAI), and Gross Primary Productivity (GPP) across China over the 1982–2015 period. The black crosses in panels (a–c)
indicate a significant trend with p < 0.05 (Mann‐Kendall test). The bar charts in panels (a–c) show the relative frequency distribution of significant increases (Mann‐
Kendall test: p < 0.05), increases, decreases, and significant decreases (Mann‐Kendall test: p < 0.05). (d) Spatial distribution of the nine eddy‐covariance flux towers in
China. e Trends in eddy‐covariance flux tower‐based GPP at the nine sites (*, two‐tailed t‐test: p < 0.05). The error bars in (e) show the standard deviation of the trends
in GPP derived from a simple linear regression method. BNF: Xishuangbanna (forest, 2003–2010), YCA: Yucheng (cropland, 2003–2010), CBF: Changbaishan (forest,
2003–2010), DHF: Dinghushan (forest, 2003–2010), DXG: Damxung (grassland, 2004–2010), HBG1: Haibei (grassland, 2003–2010), HBG2: Haibei (grassland,
2004–2009), NMG: Inner Mongolia (grassland, 2003–2010), QYF: Qianyanzhou (forest, 2003–2010).
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assessment of the relationship between vegetation growth and water availability for each grid cell during the 34
active growing seasons spanning from 1982 to 2015. We refer to the areas exhibiting significant positive and
significant negative Spearman's rank correlation coefficient (r‐value) (two‐tailed t‐test: p< 0.05) between NDVI/
LAI/GPP and PDSI as “vegetation water deficit regions” and “vegetation water surplus regions,” respectively
(Jiao et al., 2021). This approach allows us to examine the spatiotemporal patterns of water constraints on
vegetation growth across China over the past three decades.

The spatial distribution of the relationship between NDVI/LAI/GPP and PDSI showed that more than half of
China's vegetated regions were under water constraints. Specifically, 58.03%, 61.36%, and 69.65% of vegetated
grid cells exhibited a positive correlation between NDVI/LAI/GPP and PDSI (18.26%, 22.40%, and 20.31% with
a significant correlation coefficient, two‐tailed t‐test: p < 0.05) (Figures 2a–2c). Meanwhile, 5.05%, 2.95%, and
1.78% of vegetated grid cells showed a significant negative correlation (two‐tailed t‐test: p < 0.05). Since the
trends in NDVI, LAI and GPP as well as their sensitivities to water availability may be different, our results
showed differences in some regions (Figure S5 in Supporting Information S1). Despite this, our NDVI‐, LAI‐, and
GPP‐based findings were comparable in general. We also found that the regions with vegetation water deficits
(i.e., the areas with a significant positive correlation coefficient) were predominantly situated in arid, semi‐arid,
and dry sub‐humid zones (Figure 2d). Specifically, 95%, 95%, and 86% of the vegetation water deficit regions
were located within China's drylands where the AI was less than 0.65, aligning with the expectation that droughts
can constrain vegetation growth (Figure 2e). To corroborate our above analysis, we examined the spatial dis-
tribution of the relationship between NDVI/LAI/GPP and PDSI using additional analyses. The results based on
detrended, maximum, and detrended maximum NDVI/LAI/GPP values were consistent with those derived from

Figure 2. Spatial distribution of the relationship between vegetation growth and water availability across China over the past three decades. (a–c) Spatial distribution of
the Spearman's rank correlation coefficient (r‐value) between the Normalized Difference Vegetation Index (NDVI)/Leaf Area Index (LAI)/Gross Primary Productivity
(GPP) and the Palmer Drought Severity Index (PDSI) across China over the 1982–2015 period. The black crosses in panels (a–c) indicate a significant r‐value with
p < 0.05 (two‐tailed t‐test). The bar charts in panels (a–c) show the relative frequency distribution of significant positive (two‐tailed t‐test: p < 0.05), positive, negative,
and significant negative (two‐tailed t‐test: p < 0.05) correlations. (d) Spatial distribution of arid, semi‐arid, dry sub‐humid, and humid zones in China according to the
Aridity Index (AI). (e) Statistical distribution of the significant correlations between NDVI/LAI/GPP and PDSI (two‐tailed t‐test: p< 0.05) across climate zones colored
according to (d).
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non‐detrended analysis using the mean growing‐season values (Figure S6 in Supporting Information S1). This
demonstrated that the relationship between vegetation growth and water availability was not influenced by long‐
term trends in NDVI/LAI/GPP or variations in growing‐season length. In addition, we employed SPEI03 and
TWS as alternative indicators of water availability in place of PDSI. The SPEI03‐ and TWS‐based results showed
similar patterns to those derived from PDSI (Figure S7 in Supporting Information S1). Taken together, these
findings underscore the presence of numerous vegetation water deficit regions, revealing different water con-
straints on vegetation growth hidden within the greening of China over the past three decades.

Moreover, we tracked the evolving trends in the relationship between vegetation growth and water availability
over 25 consecutive 10‐year moving windows spanning from 1982 to 2015 (i.e., 1982–1991, 1983–1992,…,
2006–2015). The outcomes revealed that 48.35%, 61.93%, and 49.02% of vegetated grid cells exhibited an in-
crease in the correlation coefficient between NDVI/LAI/GPP and PDSI (23.93%, 35.41%, and 23.97% with a
significant increase, Mann‐Kendall test: p < 0.05) (Figures 3a–3c). Conversely, 51.65%, 38.07%, and 50.98% of
vegetated grid cells experienced a decrease (22.43%, 15.61%, and 24.83% with a significant decrease, Mann‐
Kendall test: p < 0.05). The regions where the correlation coefficient between NDVI/GPP and PDSI increased
were roughly equivalent in size to those where it decreased, whereas more regions exhibited an increase in the
correlation coefficient between LAI and PDSI. NDVI, GPP, and LAI appear to be asynchronous in proxying
vegetation growth in response to water constraints (Gupta et al., 2020; Li, Pacheco‐Labrador, et al., 2023).
Considering NDVI, GPP, and LAI represent different characteristics associated with vegetation growth, the
differences between their results are acceptable (Chang et al., 2023; Wagle et al., 2014; Wang, Zhang, et al., 2020;
Xie et al., 2019). However, these differences in detail suggest that using only one or two of NDVI, LAI, GPP as

Figure 3. Spatiotemporal patterns of the relationship between vegetation growth and water availability across China over the past three decades. (a–c) Spatial
distribution of the trends in the Spearman's rank correlation coefficient (r‐value) between the Normalized Difference Vegetation Index (NDVI)/Leaf Area Index (LAI)/
Gross Primary Productivity (GPP) and Palmer Drought Severity Index (PDSI) for the 25 10‐year moving windows across China over the 1982–2015 period. The black
crosses in panels (a–c) indicate a significant trend with p < 0.05 (Mann‐Kendall test). The bar charts in panels (a–c) show the relative frequency distribution of
significant increases (Mann‐Kendall test: p < 0.05), increases, decreases, and significant decreases (Mann‐Kendall test: p < 0.05). (d) Scatter plots of the significant r‐
value between NDVI/LAI/GPP and PDSI for the entire study period (two‐tailed t‐test: p < 0.05) versus the significant trend of the r‐value between NDVI/LAI/GPP and
PDSI for the 25 10‐year moving windows (Mann‐Kendall test: p < 0.05). The histograms in panel (d) represent the count of grid cells on each axis.
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proxies for vegetation growth may lead to misunderstanding of the results. The comparison of the different results
derived from NDVI, LAI, GPP data is shown in Figure S8 in Supporting Information S1. Further analysis
revealed that approximately half of the vegetation water deficit regions had a significant increase in the corre-
lation coefficient, while the other half had a significant decrease (Figure 3d). The regions showing both increasing
and decreasing water constraints exhibited comparable trends over the past three decades, particularly within
China's vegetation water deficit regions. Consequently, not all regions have witnessed an increasing water
constraint on vegetation growth in China, as previously anticipated (Denissen et al., 2022; Feng & Fu, 2013;
Huang et al., 2016; Li et al., 2021). Regional wetting and human interventions may be mitigating water stress in
plants (Abel et al., 2023; Li, Pacheco‐Labrador, et al., 2023; Liu et al., 2023). Alternatively, rising atmospheric
CO2 concentrations are expected to increase the water use efficiency of plants in vegetation water deficit regions
(Donohue et al., 2013; Lu et al., 2016). By counting for year‐to‐year changes in area, we found that China's water
deficit regions underwent cycles of contraction and expansion in terms of their spatial extent (Figure S9 in
Supporting Information S1). The occurrence of climate phenomena (e.g., El Niño‐Southern Oscillation, ENSO)
and the update of government policies may explain these cyclical variations in water constraints on vegetation
growth. To affirm the robustness of our above findings, we also took into account the effects of long‐term trends
in NDVI/LAI/GPP and variations in growing‐season length on the analysis (Figure S10 in Supporting Infor-
mation S1). Besides, we employed SPEI03 and TWS as alternative indicators of water availability instead of
PDSI to validate our results (Figure S11 in Supporting Information S1). These findings exhibited consistent
patterns with those derived from mean growing‐season NDVI/LAI/GPP values with PDSI. Overall, our findings
imply that different water constraints on vegetation growth may introduce further uncertainty to China's sus-
tainable vegetation greening trends.

3.3. Implications of Different Water Constraints for Vegetation Growth Trends

Determining whether different water constraints can mediate vegetation growth trends across China over the past
three decades is a key motivation of this analysis. To do this, we divided the significant correlation coefficients
between vegetation growth and water availability (i.e., the significant positive and negative correlation co-
efficients between NDVI/LAI/GPP and PDSI, two‐tailed t‐test: p < 0.05) into six bins (i.e., r ≤ − 0.5,
− 0.5 < r ≤ − 0.4, − 0.4 < r ≤ − 0.3, 0.4 > r ≥ 0.3, 0.5 > r ≥ 0.4, and r ≥ 0.5). These bins represent different water
constraints on vegetation growth, including water surpluses and water deficits, allowing us to decouple the effect
of water constraints on changes in NDVI/LAI/GPP. The area of the six bins accounted for 0.14%–0.44%, 0.63%–
2.09%, 0.99%–2.52%, 4.90%–5.74%, 6.36%–7.26%, and 6.79%–7.94% of the total vegetated area, respectively
(Table S1 in Supporting Information S1). By comparison, we found a large number of statistically significant
differences between the NDVI/LAI/GPP trends across vegetation water deficit regions (ANOVA test: p< 0.005),
but almost none across vegetation water surplus regions (ANOVA test: p> 0.1) (Figure 4). The regions with more
water constraints had smaller trends in vegetation growth. Conversely, water surpluses did not explain the dif-
ferences in most NDVI/LAI/GPP trends. That is, water deficits played a vital role in slowing down vegetation
growth across China during the peroid, making any potential vegetation greening trends dependent on more water
availability (Chen et al., 2019; Denissen et al., 2022; Zhu et al., 2016).

Further analysis was conducted to examine potential shifts in the dominant driver of two climate change‐related
categories, defined as “climate” and “CO2,” on vegetation growth across different water constraints in China over
the past three decades. Land use change, nitrogen deposition, forest management, grazing, changes in cultivation
practices and varieties, irrigation, extreme events, and so on were considered in an additional category, “other
factors” (Zhu et al., 2016). The factor with the highest absolute value of the significant partial correlation co-
efficient (two‐tailed t‐test: p < 0.05) was identified as the dominant driver of changes in vegetation growth in that
grid cell (Jiao et al., 2021). Our results showed a similar spatial pattern of the dominant driver on NDVI/LAI/GPP
(Figures 5a–5c). More than 70% of vegetated grid cells were able to be explained by those factors in the “climate”
and “CO2” categories (Figure S12 and Table S2 in Supporting Information S1). Moreover, we explored the area
changes in climate‐dominated and CO2‐dominated regions across those bins. Our results indicated that the regions
with more water constraints have larger areas dominated by “climate” and smaller areas dominated by “CO2”
(Figure 5d and Table S3 in Supporting Information S1). As water constraints increased, the area dominated by
“climate” expanded significantly, while that dominated by “CO2” shrank sharply. The smallest climate‐
dominated area and the largest CO2‐dominated area were almost both found in the mildest vegetation water
surplus bin (i.e., the third bin, − 0.4 < r ≤ − 0.3). Those CO2‐dominated regions are likely to depend more on the
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Figure 4. Statistical differences in vegetation growth trends under different water constraints in China over the past three
decades. The six bins represent the significant Spearman's rank correlation coefficient (r‐value) between the Normalized
Difference Vegetation Index (NDVI)/Leaf Area Index (LAI)/Gross Primary Productivity (GPP) and the Palmer Drought
Severity Index (PDSI) for the 1982–2015 period, that is, r ≤ − 0.5, − 0.5 < r ≤ − 0.4, − 0.4 < r ≤ − 0.3, 0.4 > r ≥ 0.3,
0.5 > r ≥ 0.4, and r ≥ 0.5. *** indicates that the differences between NDVI/LAI/GPP trends are statistically significant
(ANOVA test: p < 0.005), and NS indicates that the differences are not statistically significant (ANOVA test: p > 0.1). The
cool and warm colors in panel (d) represent the bins associated with water surpluses and water deficits, respectively.

Figure 5. Spatial distribution of the dominant driver on vegetation growth across China over the past three decades. (a–c) Spatial distribution of the dominant driver
influencing the Normalized Difference Vegetation Index (NDVI)/Leaf Area Index (LAI)/Gross Primary Productivity (GPP) across China over the 1982–2015 period.
The drivers include air temperature (Tmp), precipitation (Pre), vapor pressure deficit (VPD), downward surface shortwave radiation (Rad), soil moisture (SM),
atmospheric carbon dioxide (CO2), and other factors (OF). Land use change, nitrogen deposition, management practices, and so on were considered in the “OF”
category. (d) The percentage areas where NDVI/LAI/GPP can be dominated by climate, CO2, and OF in each bin. The dashed lines in panel (d) show the trends in the
climate‐, CO2− , and OF‐dominated area across the bins. * in panel (d) indicates a statistically significant trend (two‐tailed t‐test: p < 0.05). The cool and warm colors in
panel (d) represent the bins associated with water surpluses and water deficits, respectively.
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optimal water supply, reducing in size when environmental conditions are close to “too dry” or “too wet” (Bastos
et al., 2019; Fernandez‐Martinez et al., 2019; Obermeier et al., 2017; Reich et al., 2014). Considering the sen-
sitivities of NDVI, LAI, and GPP to the forcing factors were different, their results were not completely the same
but were similar and comparable. The comparison of the different results derived from NDVI, LAI, GPP data is
shown in Figure S13 in Supporting Information S1.

To evaluate the reliability of our partial correlation analysis, we employed the RF models to gauge the dominance
of climate and atmospheric CO2 on NDVI/LAI/GPP across China over the past three decades (Figure S14 in
Supporting Information S1). RF models can estimate nonlinear interactions between variables and are relatively
insensitive to outliers. We trained RF models pixel by pixel and then extracted the dominant driver for each grid
cell by ranking the feature importance. Likewise, the area fraction of climate‐dominated and CO2‐dominated
regions in China was also contingent on the defined bins, that is, on different water constraints. The smallest
climate‐dominated area and the largest CO2‐dominated area both persisted within the − 0.4 < r ≤ − 0.3 range. Our
RF‐based findings corroborated those obtained earlier using the partial correlation algorithm. In addition, we
performed another analysis using different TRENDYv8 simulation scenarios to reinforce our findings. We
assumed that land use/land cover was the most significant driver of vegetation growth in the “other factors”
category (Chen et al., 2019; Piao et al., 2020; Zhu et al., 2016). We calculated the trends in simulated GPP under
varying CO2 concentrations, varying climate conditions, and both (Figure S15 in Supporting Information S1).
The trends in simulated GPP derived from S1 minus S0 (S1− S0), S2 minus S1 (S2− S1), and S3 minus S2 minus
S1 (S3− S2− S1) were considered to be dominated by the “climate,” “CO2,” and “other factors” categories,
respectively. The category with the highest absolute value of these trends was identified as the dominant driver of
vegetation growth in that grid cell. Similarly to our aforementioned methods, we likewise divided the significant
correlation coefficient between GPP and PDSI for the 34 active growing seasons into six bins to represent
different water constraints on vegetation growth (Figure S16 in Supporting Information S1). However, we found
strong inconsistencies in the multi‐scenario modeling simulation‐based results (Figure S17 in Supporting In-
formation S1). Only the ORCHIDEE model was able to support the results of the other two methods, while the
SDGVM and VISIT models exhibited ambiguous patterns of climate‐ and CO2‐dominated area changes under
different water constraints. Overall, given the fact that we should focus more on the similarities between the
results derived from different data and methods, this study used three different methods to achieve the attribution
analysis for the purpose of minimizing the uncertainty associated with using only one or two approaches. The
percentage areas where NDVI/LAI/GPP dominated by climate, CO2, and OF in each bin are comparable across
the three different methods. The spatial patterns of the dominant driver influencing NDVI/LAI/GPP are also
similar in general, especially for the results derived from the partial correlation‐ and machine learning‐based
methods.

4. Conclusions
In summary, we demonstrated that water constraints can mediate the dominance of climate and atmospheric CO2
on vegetation growth across China over the past three decades. Consistent with previous studies (Chen
et al., 2019; Piao et al., 2015), we found that China's vegetation growth has seen a widespread increase during the
period. However, our findings showed that recent water constraints on vegetation growth were hidden in the
overall greening of China. More than half of China's vegetated areas were regarded as vegetation water deficit
regions, with this situation being expected to worsen in the future (Denissen et al., 2022; Feng & Fu, 2013; Jiao
et al., 2021). More importantly, our study revealed that climate and atmospheric CO2 had different weights in
regulating vegetation growth across water deficit and water surplus regions. The proportion of the climate‐ and
atmospheric CO2‐dominated area has varied depending on different water constraints. Despite the fact that
previous studies have more often than not attributed vegetation greening trends to land use/land cover change
(Chen et al., 2019; Piao et al., 2015; Zhu et al., 2016), climate change remains a non‐negligible force influencing
vegetation growth. By placing those non‐climate change drivers into the “other factors” category, this study
focused as much as possible on the implications of recent water constraints for climate change‐driven trends in
vegetation growth. Overall, our findings are important for further understanding of China's land carbon sink under
climate change, highlighting the need for explicit consideration of water constraints on sustainable vegetation
greening trends. As an indirect climate change impact, water constraints on vegetation growth should be
considered by land surface models to reduce uncertainties in terrestrial water and CO2 flux projections. The next
challenge is to quantify the sensitivities of NDVI, LAI, and GPP to water availability through a plant
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physiological perspective for further understanding the mechanisms behind the differences in their responses to
water constraints. For decision‐makers, it is important to consider spatiotemporal patterns of water constraints on
vegetation growth for land use policy and food security.
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