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ABSTRACT
While drilling, the interaction with the rock can generate sig-
nificant vibrations, resulting in an inefficient rate of penetra-
tion. Control strategies based on accurate distributed dynam-
ics of the drill string have proven more efficient than classical
approaches to prevent stick-slip apparition during operations.
However, implementing such strategies requires knowledge
of the physical parameters and state estimations and predic-
tions. To overcome this limitation, we propose a dual ar-
chitecture of transformer-based physics-informed neural net-
works. We obtain physics-guided estimations of the angular
velocity and torque by adding physical constraints during the
training. Experimental results are given on simulated data.

Index Terms— Physics-informed neural networks, pa-
rameter estimation, drilling optimization

1. INTRODUCTION

This study focuses on machine learning-based solutions for
parameter estimation and drilling optimization in the context
of closed-loop geothermal systems (CGS). Geothermal en-
ergy, offering significant potential as a renewable electric-
ity source, has recently garnered increased attention. New
closed-loop geothermal power plants have been developed to
address the limitations of conventional open-loop systems. To
maximize their efficiency, these plants often require a devi-
ated well path with an extensive horizontal section at depths
greater than 2.5 km [1]. Advanced drilling control strategies
are essential for designing such complex wells, as undesir-
able vibrations can occur even during transient off-bottom
phases. Notably, torsional oscillations, which cause damage
and lower the rate of penetration, must be mitigated. This
phenomenon, known as stick-slip, arises from significant fric-
tion between the drill string and the borehole [2]. To avoid
the apparition of such oscillations before the beginning of the
drilling operation, advanced control approaches have been de-
veloped. Incorporating the underlying distributed dynamics
into controller design is highly beneficial [3]. More precisely,
the field-validated model given in [4] accurately describes the
evolution of the angular velocity and torque (ω(t, x), τ(t, x))

along the drilling device, using a set of coupled hyperbolic
partial differential equations (PDE). Utilizing this model, a
motor torque control input designed through a recursive dy-
namics interconnection framework in [3, 5] has demonstrated
a faster convergence rate to a reference trajectory compared to
state-of-the-art controllers while preventing the apparition of
stick-slip oscillations. However, such a control law requires
the knowledge of the distributed state along the drill string.
On the field, the available measurements mainly consist of
surface data, for instance, surface rotation per minute (RPM)
or motor torque. Estimation strategies using predictors based
on the aforementioned distributed model require a high com-
putational effort, such that the estimated state may not be ob-
tained in real-time, preventing these approaches from being
used in the field. Moreover, these estimation methods require
all parameters of the system (and, in particular, subsurface
physical properties) to be known [6, 7]. In Geoscientific ap-
plications, such as seismic imaging and full-waveform inver-
sion or drilling optimization, we usually deal with a physi-
cal system that requires solving partial differential equations
with boundary constraints. Also, in real-world applications,
it is rare to find solutions or labels to train the physical net-
work based on pure data-centric methods. Hence, we take ad-
vantage of the model-based solutions, especially in the back-
propagation stage of the neural network, to honor the physi-
cal constraints. In other words, the theory or physics-guided
neural networks use the hybrid approach and incorporate the
physics of the system and the available datasets to train the
physics-consistent networks [8, 9].

In this paper, we tackle these issues by proposing an in-
novative dual architecture of physics-informed transformer-
based neural networks [10]. Indeed, recent advances have
shown that deep neural networks can be used to learn dis-
tributed dynamics from measurements [11, 12, 13]. Physics-
informed neural networks have improved the generalization
capacity of the different solutions [14, 15]. They considered
the underlying physics as a priori knowledge in the training
process. Therefore, such physics-informed neural networks
can take advantage of the available field-validated model de-
scribing the dynamics of the drilling device [2] and lead to



better performance compared to classical neural network al-
gorithms, as the ones proposed in [16]. In our architecture, the
first branch estimates the evolution of the physical parameters
used in the physical model from the available surface mea-
surements. Then, the second branch estimates the distributed
states (ω(t, x), τ(t, x)), using a recurrent network trained us-
ing the model from [2].

2. METHODOLOGY

2.1. Distributed model for torsional dynamics

In this work, we consider that the torsional motion of a
drilling device of length L corresponds to the dominating
dynamic behavior. The bit is assumed to be off-bottom, i.e.,
there is no bit-rock interaction. An off-bottom bit occurs in
transient phases when the bit is not in contact with the rock.It
was observed that stick-slip oscillations may appear during
this transient phase [4]. For the sake of clarity, we briefly
present the field-validated distributed torsional model given
in [4]. For (t, x) ∈ [0, T ]× [0, L] (where T > 0 is the chosen
time window and L > 0 is the length of the drilling device),
we denote ω(t, x) the angular velocity and τ(t, x) the torque
at any point of the drill string. The states satisfy the following
equations

∂τ(t, x)

∂t
+ JG

∂ω(t, x)

∂x
= 0, (1)

Jρ
∂ω(t, x)

∂t
+

∂τ(t, x)

∂x
= −F(t, x), (2)

where J is the polar moment for inertia, G is the shear mod-
ulus, and ρ is the mass density, averaged for a drill string sec-
tion and supposedly known. The source terms F is due to
frictional contact with the borehole. After neglecting the vis-
cous shear stresses, the source term can be modeled using the
following differential inclusion (equation (3)){

F(t, x) = sign(ω(t, x))Fk(x), |ω(t, x)| > ωc,

F(t, x) ∈ ±ro(x)µsFN (x), |ω(t, x)| ⩽ ωc,
(3)

where the function F(ω) = −∂τ(t,x)
∂x ∈ ±ro(x)µsFN (x) de-

notes the inclusion. The functions Fk(x)
.
= ro(x)µkFN (x)

(resp. Fs(x)
.
= ro(x)µsFN (x)) corresponds to the dynamic

(resp. static) Coulomb torque. The expression of the normal
force acting between the drill string and the borehole wall
FN (x) depends on the well geometry [17]. While the outer
drill string radius ro(x) is known, the static and kinetic fric-
tion coefficients (µs, µk) and the angular velocity threshold
ωc are not. At the surface level, the top drive is actuated by
an electrical motor that imparts torque to the drill string. The
evolution of the angular velocity at the surface level and the
downhole torque follows

d

dt
ω(t, 0) =

1

ITD
(τm(t)− τ(t, 0)), τ(t, L) = 0 (4)

where ITD corresponds to the top-drive inertia and τm to the
motor torque, which may be expressed in closed-loop as a
PI feedback [18] or through more advanced control strate-
gies [2, 3, 5]. However, such advanced mitigation laws re-
quire the knowledge of the whole distributed angular state.
On the field, we usually have access to the top-drive angular
velocity and to the motor torque (ω(t, 0), τm(t)) measured
with a frequency of 1Hz. It is, therefore, necessary to recon-
struct the whole state from these measurements, as proposed
in [19]. Nevertheless, reconstructing the state may require
the knowledge of unknwon physical parameters (as the static
and kinetic friction coefficients) In the following, we denote
Y = (P, {(ω(ti, 0), τm(ti))i∈[1,N ]}) ∈ Y = RNp ×R2×N an
input data containing a set of Np known physical parameters
(depth of bit L, collar and pipes mechanical properties) con-
catenated in the vector P and N sequential pairs of surface
measurements.

2.2. Problem setup

From surface measurements, our objective is now twofold:
1. Estimate the physical parameters (µs, µk) of the model

from the surface data Y ,
2. Estimate the distributed state (ω(t, x), τ(t, x)) at time t

using sequences of past measurements.
Several state and parameter estimation procedures have been
presented in [16], emphasizing their advantages and draw-
backs. Here, we propose a new learning methodology based
on a dual architecture. The network takes the sequences Y
as input. A first transformer-based neural network estimates
the physical parameters (µs, µk). We choose the transform-
ers [10] over recurrent neural networks to increase speed and
reduce the computational cost of the training. Then the esti-
mated physical parameters (µs, µk) and original input Y are
fed to the second transformer-based neural network, aiming to
provide the distributed state (ω(t, x), τ(t, x)) along the drill
string. A schematic representation is given in Figure 1.

Following [20, 21], we incorporate the physical laws in
the training loss functions to improve the performance of the
proposed estimation algorithms. To compute them, the output
of the first network is necessary. Both networks are trained
simultaneously using an exhaustive training dataset of simu-
lated data, as detailed in Section 3.

2.3. Transformer-based dual architecture network

In this section, we present our network architecture for esti-
mating the physical parameters and the distributed state for
the drill string system. The proposed network is schemati-
cally illustrated in Figure 2.

2.3.1. Estimation of physical parameters

The first neural network aims at estimating the physical pa-
rameters M = (µk, µs) ∈ R2. This neural network is a



Fig. 1: Schematic representation of the overall approach

transformer [10] characterized by trainable parameters θ, and
denoted Tθ(.). It aggregates the sequence of inputs Yi ∈
RNp+2Nt and gives as an output M̂ ∈ R2. We obtain the
trainable parameters θ by minimizing the following L2− loss
function LL2

(θ) = 1
Nb

∑Nb

i=1 ∥Mi − Tθ(Yi)∥22.

2.3.2. Estimation of the distributed state

Inspired by [11], we propose to tackle the second objective
using a two-branch architecture. Let us denote X = [0, L],
the space domain, and T = [0, T ] the temporal domain where
the state is defined. We aim to select the most appropriate
state representation concerning physical constraints using sets
of discrete inputs Yi. Thus, we ought to approximate

S :
Y −→ C∞(T × X ,R2)
Y 7→ SY,Θ(·, ·)

,

where C∞ is the set of infinitely differentiable functions from
T × X to R2 (the regularity could be leveraged). This de-
fines a class of parametric functions SY,Θ, which we use for
approximating the real states (ω(t, x), τ(t, x)). The corre-
sponding approximations is denoted as (ω̂(t, x), τ̂(t, x)). In
our design, the first branch of the proposed architecture re-
lies on a transformer encoder to aggregate the input sequences
Yi augmented with M̂ (obtained following the procedure de-
scribed in Section 2.3.1). It produces an abstract represen-
tation of the system when combined with an abstract repre-
sentation of the requested coordinates. Inspired by Fourier
Neural Operators [13], it is then used to output the intensity,
frequency, and phase of the Fourier decomposition represent-
ing the distributed state X(t, x)

.
= (ω(t, x), τ(t, x)) along the

drill string. The second branch builds the spatiotemporal grid
mesh (t, x) ∈ T × X , where the estimation is evaluated.

Fig. 2: Detailed view of the neural network architecture

2.4. Physic-informed neural networks

Following [21, 20, 14], we define a composite loss that takes
into account experimental data (LD) as well as a physical er-
ror. While the former is the usual error term when training
a neural network on a dataset, the latter ensures that the so-
lution verifies theoretical PDEs (LPDE) and boundary condi-
tions (LBC).

L(Θ) = LD(Θ) + LPDE(Θ) + LBC(Θ) (5)

It should be seen as data and physics-driven losses. This adds
a priori knowledge of the underlying dynamics (1)-(4) during
training. As before, the first loss term corresponds to the
state estimation residual in the squared L2−norm: LD(Θ) =
1
Nx

1
Nt

1
Nb

∑Nb

i=1

∑Nx

j=1

∑Nt

k=1 ∥Xi(tk, xj)− SYi,Θ(tk, xj)∥22.
The following term ensures that (1)-(2) are satisfied LPDE(Θ) =
1
Nx

1
Nt

1
Nb

∑Nb

i=1

∑Nx

j=1

∑Nt

k=1 ∥O(fYi,Θ(tk, xj))∥22 with

O(SYi,Θ(t, x)) =

(
∂τ̂ i

∂t (t, x) + JG∂ω̂i

∂x (t, x)
∂τ̂ i

∂x (t, x) + Jρ∂ω̂i

∂t (t, x) + F(ω̂i, x)

)
.

Finally, we want the solution to meet the boundary condition
(4), which induces the error term

LBC(Θ) =
1

Nt

1

Nb

Nb∑
i=1

Nt∑
k=1

∥B(SYi,Θ(tk))∥22 + |τ̂ i(tk, L)|2,

with B(SYi,Θ(t)) =
∂τ̂ i

∂t (t, 0)−
1

ITD
(τ im(t)− τ̂ i(t, 0)).

3. EXPERIMENTAL SETTING

3.1. Generation of dataset

To train and validate our estimation algorithm, we generate
a wide dataset following the numerical scheme1 presented in

1The Matlab implementation can be found on https://github.com/Open-
Source-Drilling-Community/Aarsnes-and-Shor-Torsional-Model.



[4]. To obtain representative data, we use the real well ge-
ometry (J1), illustrated in Figure 3. We generated 1000 se-
quences of 100s of 20Hz surface measurements (motor torque
and surface angular velocity), for L ∈ [2500, 4000]m, µs ∈
[0.2, 0.8], µk ∈ [0.06, 0.72].
Remark The first limitation is that this dataset contains only
samples for a single value of angular velocity threshold ωc =
1.5rad.s−1 and zero initial conditions. The reference trajec-
tory is constant (60RPM with slope). The implemented con-
trol input is a PI control with fixed gains.

Fig. 3: Schematic profile of well J1.

3.2. Training parameters

The dataset is split 80% − 20% as training and validation
datasets. To obtain the parameters (θ,Θ) minimizing the
losses LL2(θ),L(Θ), we use AdamW [22] with an initial
learning rate of 10−3. The training is done on 100 epochs,
with a batch size Nb = 16. We use automatic differentiation
techniques [23] to compute the derivatives.

3.3. Simulation results

Both networks are trained simultaneously using an exhaus-
tive training dataset of simulated data generated using the pro-
posed well geometry. The performance of the trained neural
networks is evaluated on a different set of simulated data (val-
idation dataset) as explained in [16]. We compare the results
with the estimation obtained using the convolutional neural
network-based strategy proposed in [16]. The friction coef-
ficients were estimated on the validation dataset with an av-
erage relative error of δ(µk) = 2.3% (resp. δ(µs) = 3.3%)
and a standard deviation of 5.2e−3(resp. 1.8e−2) after 2500
steps. As illustrated in Figure 4, our proposed method outper-
formed the existing estimation methods presented in [16], as
the standard deviation is reduced, and the average estimated
value is closer to the true value. We also obtained promising
results for the state estimation with an average absolute error
of 2.3 on 200 validation examples. We have plotted in Fig-
ure 5 the obtained estimation for τ and ω and compared them

Fig. 4: Regression performance for the estimation of (µk, µs)
using the algorithm from [16] (left) and our approach (right).

Fig. 5: Example of state prediction for the validation set after
training and comparison with real values.

with their real values. We used color plots to picture these
2D data (red corresponding to higher values, the horizontal
axis being time, and the vertical axis being the curvilinear ab-
scissa). As expected, the solutions predicted by the proposed
networks are consistent with the physics.

4. CONCLUSIONS

Using a combined transformer approach, we achieved real-
time estimation of the distributed torsional states by utilizing
available top-drive measurements. Our approach enabled ac-
curate estimations of unknown underground physical param-
eters. Due to the limited availability of field data from similar
subsurface environments and drilling assemblies, we relied on
synthetic training data. However, with additional field data, it
is feasible to construct a hybrid physics-data model. The cur-
rent architecture includes numerous hyperparameters that can
be optimized to enhance estimation performance, particularly
by balancing the empirical loss of model predictions, model
complexity, and physical loss. This strategy could improve
generalization performance, especially since the field train-
ing data are limited and not fully representative. In future
work, state estimations will be used to compute control laws
that efficiently mitigate undesired stick-slip oscillations, with
a primary focus on the robustness of the control law concern-
ing state estimation errors. Additionally, this approach will
be combined with Fourier neural operators to predict future
values of the distributed state.
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