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Abstract – Several adaptations of Transformers models have been developed in various domains since its breakthrough in Natural
Language Processing (NLP). This trend has spread into the field of Music Information Retrieval (MIR), including studies processing
music data. However, the practice of leveraging NLP tools for symbolic music data is not novel in MIR. Music has been frequently
compared to language, as they share several similarities, including sequential representations of text and music. These analogies are
also reflected through similar tasks in MIR and NLP.

This survey reviews NLP methods applied to symbolic music generation and information retrieval studies following two axes.
We first propose an overview of representations of symbolic music adapted from natural language sequential representations. Such
representations are designed by considering the specificities of symbolic music. These representations are then processed by models.
Such models, possibly originally developed for text and adapted for symbolic music, are trained on various tasks. We describe these
models, in particular deep learning models, through different prisms, highlighting music-specialized mechanisms. We finally present a
discussion surrounding the effective use of NLP tools for symbolic music data. This includes technical issues regarding NLP methods
and fundamental differences between text and music, which may open several doors for further research into more effectively adapting
NLP tools to symbolic MIR.

Keywords: Music Information Retrieval, Natural Language Processing, Symbolic music, Music generation, Music analysis, Deep
learning.
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1 INTRODUCTION

The evolution of Natural Language Processing (NLP) has been marked by a substantial journey, progressing from
rudimentary rule-based systems like ELIZA [195] in 1966 to the widespread adoption of sophisticated deep learning
models by the general public, such as ChatGPT. In parallel with these advancements, computational music research has
been adapting NLP methods for musical data for various analysis and generative tasks. This transfer of NLP methods
to symbolic music data has become more and more prevalent in the Music Information Retrieval (MIR) community,
especially with the breakthrough of Transformer models.

Natural Language Processing (NLP) is a field at the crossroads between linguistics and computer science that focuses
on the interaction between computers and human language. Its main purpose is to understand, interpret, and generate
human language taking into account its characteristics, such as syntactic or semantic properties. Through various
techniques, in particular, by training deep learningmodels, multiple tasks are tackled from text analysis such as sentiment
analysis, part-of-speech tagging, text similarity or language identification to generative tasks such as summarization,
question answering, chatbot conversation, or machine translation.

The field of Music Information Retrieval (MIR) combines aspects of musicology and computer science to develop
techniques to analyze music, retrieve music-related data, or generate music. While audio files capture music as sound,
seen at a low level and described by objects such as waveforms or spectrograms, symbolic music depicts music as
abstract notations operating on concepts such as notes, chords, intervals, etc. that compose musical scores. Although
requiring more sophisticated notation systems, symbolic music representations allow for the study of music at a higher
level, such as analysis of harmony, form, or texture. In practice, symbolic music remains prevalent in digital music
production mainly relying on the MIDI format, which stands as a ubiquitous standard within digital audio workstations
(DAWs). This survey will only consider music viewed as symbolic representations.

1.1 Music and natural language: similarities and specificities

Beyond computer science studies, parallels between music and natural language are often drawn, as music is often
considered as a linguistic system [87], sharing communication purposes as well as structural similarities with natural
language. These parallels are also found in terms of tasks studied in the NLP and MIR fields.

Music seen as a linguistic system · Text representations and symbolic music representations are both semiotic
systems [22] based on arrangements of symbols. Text is built on characters and written music can be retranscribed with
a variety of symbols derived from various notation systems such as standard notation, numbered notation or tablatures.
Both can be represented as sequences of elements which can be segmented or grouped at different levels. Text can be
segmented into characters, syntactic phrases and sentences, while music can typically be segmented into temporal
units such as notes, motifs, musical phrases, or sections [113] as represented in Figure 1.

Inspired by higher-level concepts in natural language such as grammar or syntax, multiple models of musical
syntaxes have been proposed [6, 8]. Such musical grammars rely on intrinsic musical concepts such as tension and
relaxation [114] or harmony [166]. These grammatical or syntactic rules lead to expectancy in both language and
music [87, 153], inducing similar cognitive reactions for the interlocutor or the listener when they are being transgressed
in both language [157] and music [7]. Beyond its formal description, both are specific to human species and are learned
through imitation. Both can also be perceived as elements unfolding in time [210] and can be deployed under two
modalities: an annotated form (text, sheet music) and an auditory form (speech, musical performance) [53].
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Fig. 1. An oversimplified example of segmentation levels in text and symbolic music. Such segmentations can, however, include more
or less fine-grained levels and their delimitations can be ambiguous (Section 4).
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Fig. 2. Evolution of the number of articles containing NLP-related words. (Left) Number of ISMIR papers containing NLP-related
words in their abstracts from 2000 to 2023. (Right) Number of arXiv preprints returned by the API query “music AND <term>”.

However, major distinctions and particularities still persist between music and text (Section 4), including polyphony
(simultaneous musical events), rhythm (rigorous musical time grid) and the multimodal aspect of notes being character-
ized by multiple musical features (pitch, dynamics, etc.).

Symbolic MIR and NLP tasks · Beyond these parallels between text and symbolic music representations, the
Natural Language Processing and Music Information Retrieval research fields are also related by similar tasks they
address. On the one hand, commong tasks on labeled data in classification of whole textual document or music piece
are common tasks, such as music composer classification [156] and text authorship attribution [177], folk song origin
classification [75] and language detection [88], music genre [32] and text style [100] classification, or music emotion [86]
and sentiment [194] classification. At a lower level, such labels can also describe textual or musical segments which
naturally leads to a variety of segmentation tasks in both domains, including musical phrase retrieval [65] or musical
form analysis [218] in MIR and discourse parsing [125] or phrase segmentation [84] in NLP.

On the other hand, tasks can rely on unlabeled music and text datasets. Apart from clustering tasks in text [206] and
music [27], these datasets are usually used to train generative systems following a self-supervised way (i.e. predicting
parts of the input itself, by learning representations and patterns without external annotations). These models can
be trained on tasks such as symbolic music infilling [66] and text infilling [42], or music priming [82] and text
continuation [161]. At the scale of a piece or a document, style transfer is performed in both MIR, through musical
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genres [203], and NLP, through language high-level elements such as formality or toxicity [94]. More recently, text-
conditioned generation has become more and more popular for the general public, including chatbot dialog1 in NLP,
and text-conditioned music generation [132].

These two fields also include numerous tasks that are inherent to one field, as depicted in Figure 3. These tasks
specific to each field also reflect the inherent differences between these two types of data, including semantics in text
which is key in an entailment task, or polyphony in music which is at the heart of harmonization and accompaniment
generation tasks.

1.2 Applying NLP methods in symbolic MIR

Tasks & Evaluation

Representations Models

MIR NLPFree generation
Priming
Infilling

Style transfer
Composer/author detection
Style/genre classification

Emotion/sentiment classification

Harmonic analysis
Harmonization
Accompaniment generation
Text-to-MIDI
...

Summarization
Translation
Entailment

Part-of-speech tagging
Named entity recognition

Dependency parsing
Word sense disambiguation

...

Vectorization

Recurrent models

Training paradigm:
- End-to-end / Pre-training

M
ec
ha
ni
sm

sf
or

M
IR

Tokenization strategy

Event-based
tokenization

Time-slice-based
tokenization

Static embeddings Contextual embeddings

⇝ Elementary tokens
⇝ Composite tokens

Model architecture:
- Encoder / Decoder
- Multimodal models

Attention-based models

Fig. 3. Overview of the survey, organized around two axes: similarities and specificities of NLP andMIR tasksmotivating representations
of symbolic music inspired by NLP and models adapted from NLP for symbolic music.

In the field of symbolic Music Information Retrieval, multiple surveys have been published with a clear focus on
music generation. Two main classes of surveys seem to emerge: ones presenting systems through their technical
aspects, and ones organizing them based on their musical purpose or task. Firstly, various surveys are driven by the
system’s technical aspects [51]. More recent surveys now specifically focus on deep learning methods [12]. These
surveys organize deep learning generative models following multiple axes such as model architecture [191], types of
generation conditions [224], and emotion-driven generation [37]. Instead, several overview articles focus on musical
tasks [74] and categorize them based on the nature of the generated content [126] or by the conditions imposed for
generation tasks [90].
1https://chat.openai.com
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An observation drawn from these surveys indicates that the MIR community is closely following new advances in
NLP by adapting their tools for music purposes. MIR studies are used to adapting techniques from other fields, such as
image processing [80], resulting in this current trend regarding NLP methods for symbolic MIR. Figure 2 describes
the number of publications from the ISMIR conference that include NLP-related terms in their abstract as well as
music/NLP-related arXiv preprints. In particular, from 2017 with the introduction of Transformers, references to NLP
techniques or models have increased drastically so that most of the state-of-the-art models in symbolic music tasks are
now based on this model. This phenomenon has encouraged dedicated initiatives in the MIR community, such as the
organization of the workshop NLP4MuSA (Workshop on NLP for Music and Spoken Audio)2 held in 2020 and 2021. In
addition, more and more overviews of deep learning approaches for music generation, including NLP-based methods,
are presented as tutorials at conferences such as ISMIR3 or CMMR4.

The original approach introduced in this survey emphasizes the adaptation of Natural Language Processing methods
for music generation and information retrieval within the domain of symbolic music. These encompass tools and
methods not only for symbolic music generation but also for existing analysis tasks. From a more epistemological point
of view, we hope that analyzing NLP approaches to process symbolic music representations brings an original and
promising approach to reconsider the question of what music shares with natural language.

We present an overview of NLP methods adapted for symbolic MIR by proposing taxonomies of two technical aspects
(Figure 3): representations (Section 2) and models (Section 3).

• Choosing a representation refers to encoding content (text or symbolic music) into a format suitable for
computational processing. Adapting NLP models to symbolic MIR involves mainly sequential representations.

• Themodel performs the task by processing a representation of the input content. Such a model can be based on
recurrent layers or attention heads, with specific architectures or training paradigms, and potentially implements
mechanisms tailored for symbolic music data.

We then discuss the use of such NLP techniques for symbolic MIR by raising possible technical limitations when
employing these methods and numerous differences between music and text. We finally outline future directions in
which NLP methods can be implemented and adapted for symbolic music (Section 4).

New models or methods adapted from NLP to MIR are released extremely frequently: this survey includes such
developments up until the end of 2023. To facilitate continuous updates with these newly released tools, we maintain a
collaborative repository accessible at: https://github.com/dinhviettoanle/survey-music-nlp.

2 REPRESENTATIONS OF SYMBOLIC MUSIC AS SEQUENCES

Text data inherently follows a sequential structure composed of elements spanning from individual characters to full
sentences. In contrast, representing musical content as a sequence of homogeneous elements is not as straightforward.
The multiplicity of information included in a single note (pitch, duration, position, etc.) and the common occurrences of
simultaneous notes (polyphony, chords and melody, etc.) make the problem more complex than with text. However,
this sequential representation is necessary for the musical data to be subsequently processed by sequential models,
which were initially designed to handle text data. This section presents various methods that have been developed to
represent music as sequences of elements.

2https://sites.google.com/view/nlp4musa
3http://ismir2023program.ismir.net/tutorials.html#T3
4https://cmmr2023.gttm.jp/keynotes/#Yang_abst
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2.1 Tokenization strategies

Tokenization refers to the process of representing complex content into a sequence of elements for computational
processing. In NLP, tokenization is the task of segmenting a sequence of atomic elements - characters - by grouping
them together into informative tokens [140], such as subwords, words, or multiple-word expressions. The rise of NLP
models in MIR has naturally encouraged the adoption of this term in music representations. We propose a taxonomy of
tokenization strategies in symbolic MIR represented in Figure 4.

We organize tokenization strategies within two classes: time-slice-based tokenization and event-based tokenization.
Time plays a special role in music since the time position of notes fundamentally contributes to the conveyed information.
Musical elements are intended to occur on an isochronic grid [87] in which notes have rigorous annotated timings on
sheet music5. Representing time properties of musical elements has led to multiple approaches [12, §4.8] including
representations based on regular time steps (Section 2.1.1), or driven by events occurring through time (Section 2.1.2).

Tokenization strategies

Event-based tokenization
Composite tokens

Alphabet Grouping

Time-slice-based
tokenization Elementary tokens

Fig. 4. Taxonomy of tokenizations for symbolic music. Tokens are either based on regular time-slices or events. Among event-based
tokenization strategies, tokens encode various features of these events: composite (or multidimensional) tokens encapsulate all these
features in a single token, in contrast with elementary tokens where each musical feature is processed one after the other.

2.1.1 Time-slice-based tokenization.

Dividing time at evenly spaced timings is a natural approach to representing music since musical elements are notated
on scores at specific timings according to particular rhythms. The approaches described in the following section
represent symbolic music as a sequence of fixed-time interval tokens.

DeepBach [69] is a model that aims to generate 4-part chorales, for which time is evenly divided at the level of
16th notes. As the number of simultaneous notes is upper-bounded in 4-part chorales, a time step can be represented
as a vector containing 4 pitches. In the same way, a concept of “musical words” defined by slices of three beats is
proposed [73, 24] to model musical context and semantic relationships in polyphonic music. Beyond pitches, this
time-slice representation can be used in the context of drum music [213]. More generally, these representations can be
seen as specific cases of piano rolls. This representation relies on matrices in which the horizontal axis represents time,
and pitches are encoded along the vertical axis, with additional characteristics such as velocity as a third dimension.
Piano rolls are usually portrayed as an alternative to sequential representations by using matrices. However, a piano roll
can be converted into a sequential format by considering it as a sequence of piano roll slices - i.e. fixed-size multi-hot
vectors containing pitches quantized at a specific duration. These serialized piano rolls consider tokens which can
represent a small window of slices around a middle piano roll slice [20], or a full musical bar [14].

2.1.2 Event-based tokenization.

Unlike time-slice-based tokenization in which tokens are triggered at each time step, event-based tokenization strategies

involve tokens occurring when a specific event takes place (e.g. a note being played, the start of a measure, etc.). Most
5Such exact timings can, however, be altered in a performance context where musicians have the freedom to distort this time grid leading to expressive
effects such as rubato, accelerando, or ritardando.
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tokenization strategies have shifted towards this event-centric approach, helped by the increasing amount of available
MIDI data. The MIDI protocol (Musical Instrument Digital Interface) was first developed to handle communication
between music software and hardware. The serial transmission of MIDI messages provides a natural way to encode
music as sequences of events. The large adoption of this format in the music community has led to the availability of
multiple datasets [90] which are essential for training deep learning models.
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Fig. 5. Artificial sequentiality possibly introduced in a tokenization strategy. By restraining the attributes of a note to pitch, duration,
velocity, and time-shift, the sequentiality of the blocks (black dashed blocks) follows the temporality, but the order of the inner
musical features is arbitrary. The sequentiality of these blocks can even be artificial for simultaneous events (red dashed block).

However, MIDI messages are of different types: unlike characters in text, musical notes include multiple features,
such as duration, pitch, or velocity. Since these features characterize a single temporal event, representing such features
sequentially may necessitate introducing an “artificial” sequentiality on top of the temporal sequentiality as illustrated
in Figure 5. This sequentiality is even more artificial when representing simultaneous notes occurring at the same time.
In the MIR field, two main classes of event-based tokens stand out that we refer to as elementary tokens (Table 1) and
composite tokens (Table 2). Sequences of elementary tokens explicitly integrate this artificial sequentiality where each
token is a single musical feature. This can possibly result in two adjacent tokens describing the same temporal event
(e.g. the pitch of a note followed by its duration). On the contrary, sequences of composite tokens partly bypass this
artificial sequentiality by considering tokens as objects aggregating all the musical features describing a temporal event
in a unique “super-token”.

2.1.2.1 Elementary tokens – Music as sequence of individual features.

The constitutive elements of a sequence composed of musical elementary tokens can be described at two levels (Table 1):
the choices of an initial alphabet of atomic elements encoding different musical features and a grouping of these atomic
elements into higher level elements, presumably more expressive.

• Alphabet – In text, tokens frequently denote words or subwords, which themselves are combinations of smaller
elements - characters. In the MIR field, tokens rather refer to the atomic elements of the sequence that constitute what
we refer to as an alphabet. This alphabet can be composed of a wide range of entities, such as chord labels, notes,
decompositions of a note (e.g. pitch, duration, etc.), or structural events such as bars. Thus, choosing an alphabet implies
choosing a level at which to describe music and a set of attributes to represent it.

• Grouping strategy – Atomic elements can be grouped together to form more informative elements. These groupings
can be established using fixed-size segmentations, statistically derived groupings, or expert-defined rules. In text, atomic
elements (characters) are directly merged together to constitute tokens (words or subwords) leading to a vocabulary
of increasing size. Similarly, music atomic elements can be grouped together to enrich the vocabulary with more
informative tokens.
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Table 1. Overview6of event-based tokenization strategies based on elementary tokens. The “alphabet” describes the types of atomic
elements constituting the alphabet with their type. The “data” corresponds to the type of music considered by the indicated article.

Tokenization
Score-based /
Perf.-based

Alphabet (Atomic elements) Grouping
Vocab.
size

Data

ABC notation [178] Score Text alphabet Bar patching [201] N/A Monophonic

MIDI-like [148] Performance <Note-ON> (MIDI value) <Note-OFF> (MIDI value)
<Time-shift> (absolute time) <Velocity> (integer)

BPE [108, 212]
Unigram [108]

388 Piano

LakhNES [43] Performance <Note-ON/OFF-[Trk]> (MIDI value) <Time-shift> (absolute time) – 630 Multi-track

REMI [85] Score
<Pitch> (MIDI value) <Duration> (music time)
<Velocity> (integer) <Chord> (class)
<Bar> <Position> (music time)

BPE [55, 108, 212]
Unigram [108]

332 Piano

REMI+ [187] Score REMI alphabet + features: <Instrument> (class)
<Time-Signature> (class) <Tempo> (integer)

– N/A Multi-track

Lee et al. [111]
ComMU

Score

REMI alphabet + metadata:
<Instrument> (class) <Key> (class)
<Time-Signature> (class) <BPM> (integer)
<Min/Max-velocity> (integer) <Rhythm> (class)
<Pitch-range> (class) <Number-of-measures> (number)

– 728 Multi-track

MusIAC [66] Score
REMI alphabet + control info: <Occupation> (class)
<Tensile-train> (class) <Cloud diameter> (class)
<Density> (class) <Polyphony> (class)

– 360 Multi-track

Wu and Yang [203]
(MuseMorphose)

Score
<Pitch-[Trk]> (MIDI value) <Duration-[Trk]> (music time)
<Velocity-[Trk]> (integer) <Position> (music time)
<Bar> <Tempo> (integer)

– 3440 Multi-track

MultiTrack [50] Performance

<Start-piece> <Start-track>/<End-track>

<Start-bar>/<End-bar> <Start-fill>/<End-fill>

<Note-ON/OFF> (MIDI value) <Time-shift> (absolute time)
<Instrument> (class) <Density level> (integer)

– 440 Multi-track

MMR [127]
(SymphonyNet)

Score

<Start-score>/<End-score> <Start-bar>/<End-bar>

<Chord> (class) <Change-track>

<Position> (integer) <Pitch> (MIDI value)
<Duration> (music time)

BPE [127] N/A Multi-track

TSD [55] Performance
<Pitch> (MIDI value) <Velocity> (integer)
<Duration> (absolute time) <Time-shift> (absolute time)
<Rest> (absolute time) <Program> (class)

BPE [55] 249 Multi-track

Structured [68] Performance <Pitch> (MIDI value) <Velocity> (integer)
<Duration> (absolute time) <Time-shift> (absolute time)

– 428 Piano

Li et al. [121] Score
<Pitch-class> (class) <Octave> (integer)
<Bar> (integer) <Position> (music time)
<Duration> (music time) <Velocity> (integer)

– N/A Monophonic

Chen et al. [18] Score (Tablatures)

<Pitch> (MIDI value) <Duration> (music time)
<Bar> (integer) <Position> (music time)
<String> (integer) <Fret> (integer)
<Technique> (class) <Grooving> (class)
<Velocity> (integer)

– 231 Guitar

DadaGP [168] Score (Tablatures)

<start>/<end> <Wait> (integer)
<Instrument:note> (MIDI value) <Drums:note> (MIDI value)
<String> (integer) <Fret> (integer)
<Effect> (class)

BPE [108]
Unigram [108]

2140 Guitar

• Building an alphabet of atomic elements to encode music · A distinction between “MIDI Score” and “MIDI
Performance” can be underlined [148]: the first one is a MIDI file converted from a sheet music format (musicXML,
kern...) exactly following a written metrical grid, while the second one is a performance encoded into the MIDI protocol.
Scores include information such as exact timings and enharmonics, whereas performance data includes velocity and

6An up-to-date and collaborative version of this table can be found at: https://github.com/dinhviettoanle/survey-music-nlp#event-based-tokenization
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performance variations such as local tempo or dynamics. In the following, we follow this distinction to organize existing
alphabets for symbolic music tokenization.

On the one hand, performance-based tokenization focuses on encoding music as sequences of performance events,
nearly translating the gesture of an on-stage performer. The MIDI-like tokenization [82] follows MIDI events from the
basic MIDI protocol, including a vocabulary of 4 event types: <note_on>, <note_off>, <time_shift>, and <velocity>.
This tokenization can be adapted for monophonic melodies [165] or a polyphonic ensemble with a fixed number of
instruments [43] by having <note_on/off> tokens specific to each instrument. TSD (Time-Shift-Duration) [55] adapts
the MIDI-like tokenization, using <duration> and <time_shift> to replace pairs of <note_on/off> The Structured
MIDI encoding [68] is similar to TSD but enforces the order of tokens describing a same event. This avoids syntax
errors in the context of live music generation and improves token sequence consistency by implicitly reducing the
vocabulary size at each generation step.

Instead, score-based tokenizations describe music as a time-structured system based on multiple discretization levels
of time. REMI (Revamped MIDI-derived events) [85] uses a set of score-related elements to tokenize musical data, in
particular <bar>, <position> and <duration> both being expressed in musical time instead of absolute timings. The
use of such time encoding appears to bring consistency in rhythm. Pitch encodings have also been adapted based on
domain knowledge, by relying on pitch classes and octaves instead of raw MIDI numbers. This pitch encoding appears
to provide better pitch distributions in both analysis [122] and generative tasks [121]. Multiple extensions of REMI have
been implemented, adding additional tokens including metadata [111], musical features [187, 176], control tokens [66],
hand positioning for piano music [63] or track information [203]. Before MIDI-based tokenization, early representations
of music as sequences rely on score elements [28]. This representation, called “viewpoints”, describes relations between
successive events, such as melodic contours or positions of events in a bar. The ABC notation has also been used as a
direct way of encoding monophonic scores [178] where tokens are considered to be text characters. Basic NLP models
can be simply trained on these textual data for generation [178].

In addition, some specificities related to the instrument or the type of music data may prompt the need for adjustments
to the tokenization strategy. Tokenization strategies for guitar tablatures have been proposed for generation tasks directly
in the tablature space [18, 168] by adding guitar-specific tokens. Moreover, unlike text in language, which consists of a
unique stream of words, the challenge of encoding multi-track music (i.e. multi-instrument, with potentially polyphonic
tracks) involves finding a way to represent simultaneous streams as a single sequence of tokens. The representations
from MMM (Multi-track Music Machine) [50], MuMIDI [164] and the MMR (Multi-track Multi-instrument Repeatable)
representation [127] deal with this issue by adding a token related to tracks. However, MMR and MuMIDI interleave the
different tracks to represent the multiple tracks into one sequence. Instead, MMM concatenates all the tracks horizontally
to get this single sequence. In other words, comparing these multi-track tokenizations, MMM has a horizontal reading
of the score by concatenating single-instrument tracks, while MMR and MuMIDI have a vertical reading of the score by
firstly concatenating simultaneous measures or events from multiple tracks.

• Grouping atomic elements for shorter sequences and more informative tokens · When comparing text and
music, textual sentences are often composed of hundreds of characters or around a dozen words, which is an amount
of tokens that models such as Transformers can handle well. In contrast, musical sequences may be considerably
longer due to various factors such as polyphony or multiple existing token types. To address this complexity issue, two
approaches can be considered: adapting the model mechanisms to handle this type of data (Section 3) or manipulating
the representation of music in order to compress the sequence length by grouping tokens together.
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A textual n-gram [96, Chap. 3] is a sequence of 𝑛 elements (characters, words, etc.) grouped together based on a fixed
number of elements to constitute a token. N-grams have been one of the earliest representations of music borrowed
from NLP [48], then improved by n-grams/skip-grams [172]. However, while grouping characters is straightforward for
text data, musical n-grams can be of a diverse nature with groupings occurring at multiple levels. Musical n-grams
can be composed of note intervals or rhythm ratios [198], musical descriptors [28], or chord n-grams to represent
music through harmony [147]. These musical n-grams also show statistical phenomena initially observed in text
data representations. Various laws such as the Heaps’ law [174] or the Zipf’s law [198, 155] can be observed with
musical n-grams. Musically-informed groupings can be derived from the musical structure of a sequence. The CLaMP
model [201], which is based on the ABC notation that includes pipe characters to represent bars, considers a measure-
based grouping. Such musically-informed groupings are, however, little studied because note-level groupings are more
suited as composite tokens (Section 2.1.2.2), and higher-level structures, such as motifs or phrases, are often not well
defined.

Finally, NLP studies have developed subword tokenizationmethods [140]where a vocabulary of subwords is statistically
learned on a training corpus. These include Byte-Pair Encoding (BPE) [58, 173], WordPiece [171] or UnigramLM [107].
Some of them have been adapted for music to create musical subwords as tokens. The BPE algorithm is adapted for
orchestral data [127] by exploiting the invariance of note order within a chord, to shorten sequence lengths. More than a
simple tool for shortening sequences, BPE has also been studied for its specific effects on musical data. Multiple studies
applied it on multiple encodings in order to examine how training Transformer models with input reduced by BPE
affects both generation and analysis tasks. Although BPE builds a more structured embedding space [55], experiments
studying the impact of BPE in music analysis tasks do not show a significant increase in performance [212], unlike
BPE applied to text [173]. Finally, UnigramLM subword tokenization is also specifically evaluated on music generation,
applied to score-based music and guitar tablatures [108]. Their findings indicate that both approaches contribute to
improved data representation, enhance the structural quality of generated music, and enable the generation of longer
sequences.

2.1.2.2 Composite tokens – Music as sequence of combinations of multiple musical features.

While sequences of elementary tokens have to introduce an artificial sequentiality by ordering musical features that
describe a single event, composite tokens encapsulate the entirety of a temporal event by combining all the musical
features of this event into a single “super-token”. The choice of the nature of the super-tokens, of which musical features
to encapsulate into them, and of how the vector representing each super-token is constructed are the main variables in
the approaches reviewed in the following. Table 2 describes the type of super-token and the list of features for each
approach.

On the one hand, homogeneous super-tokens denote a representation where each super-token contains the same set
of features no matter the nature of the event it describes. The representation developed by Zixun et al. [225] is based
on the concatenation of multiple one-hot vectors describing pitch, duration, chords, and bar. Octuple [211] is instead
based on the embedding of 8 musical features which are concatenated to form the single vector representing a single
note. Such homogeneous representations are also used by PiRhDy [122] encoding pitch classes and octave instead of
MIDI value, and MMT [44] for multi-track music. Instead of vectors, MuseBERT [192] embeds matrices derived from a
set of onset, pitch, and duration aiming at describing both musical attributes with their relations. Beyond notes, the
Chordinator model [36] encodes chords described by a root, a nature, extensions, and a set of notes composing the
chord.

11



Dinh-Viet-Toan Le, Louis Bigo, Mikaela Keller, and Dorien Herremans

Table 2. Overview7of event-based tokenization strategies based on composite tokens. The “musical features” column describes the
components of the vectors considered as tokens, in terms of musical attribute. The “embedded object” denotes the manner these
musical features are grouped together to form the super-token, including fixed-size vectors or based on event families.

Tokenization Musical features Super-token nature Data

Zhang [215] <Pitch> (integer) <Velocity> (integer)
<Program> (class)

Homogeneous Multi-track

PiRhDy [122]
<Chroma> (class) <Octave> (integer)
<Note-state> (class) <Velocity> (integer)
<Inter-onset-interval> (music time)

Homogeneous Multi-track

Zixun et al. [225] <Pitch> (one-hot) <Duration> (one-hot)
<Current/Next-chord> (one-hot) <Bar> (one-hot)

Homogeneous Lead sheet

Octuple [211]

<Time-signature> (class) <Tempo> (integer)
<Bar> (integer) <Position> (music time)
<Instrument> (class) <Pitch> (MIDI value)
<Duration> (music time) <Velocity> (integer)

Homogeneous Multi-track

Dong et al. [44]
(MMT)

<Type> (class) <Beat> (integer)
<Position> (music time) <Pitch> (MIDI value)
<Duration> (music time) <Instrument> (class)

Homogeneous Multi-track

Dalmazzo et al. [36]
(Chordinator)

<Chord-root> (class) <Chord-nature> (class)
<Chord-extensions> (class) <Slash-chord> (boolean)
<MIDI-array> (multi-hot)

Homogeneous Chord sequences

Wang and Xia [192]
(MuseBERT)

<Onset> (music time) <Pitch> (MIDI value)
<Duration> (music time) + factorized properties

Homogeneous Multi-track

MuMIDI [164]

<Bar> <Position> (music time)
<Tempo> (integer) <Track> (class)
<Chord> (class) <Pitch / Drum> (MIDI value)
<Velocity> (integer) <Duration> (music time)

Family-based Multi-track

Compound Word [78]

<Family> (class) <Time-signature> (class)
<Bar> (integer) <Beat> (music time)
<Chord> (class) <Tempo> (integer)
<Pitch> (MIDI value) <Duration> (music time)
<Velocity> (integer)

Family-based Piano

Di et al. [40]

<Type> (class) <Beat> (integer)
<Strenth> (class) <Density> (class)
<Pitch> (MIDI value) <Duration> (music time)
<Instrument> (integer)

Family-based Multi-track

Makris et al. [135]

Encoder input: <Onset> (number)
<Group> (class) <Type> (class)
<Duration> (music time or none) <Value> (any - depends on type)

Decoder output:
<Onset> (number) <Drums> (integer)

Family-based

Encoder:
Multi-track

Decoder:
Drums

On the other hand, methods separating events by families have been developed. This choice is motivated by
the fact that a note event is quite different from structural events such as the beginning of a bar. For polyphonic
music, MuMIDI [164] represents a token as a sum of the embeddings of bars, position, and tempo, with possibly
note characteristics. Similarly, Compound Word [78] gathers tokens into two families: event-related or note-related
and concatenates these embedded atomic elements to build the token. It has also been adapted for a task of drum
accompaniment generation [135]. This representation is also enhanced by Di et al. [40] in the context of video-to-music,
by incorporating a token family related to rhythm, encapsulating rhythm density and strength.

7An up-to-date and collaborative version of this table can be found at: https://github.com/dinhviettoanle/survey-music-nlp#composite-tokens
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2.2 Comparing tokenization strategies

With all these possibilities of encoding music as sequences, certain tokenization methods may demonstrate better
performance on specific tasks or data than others. In NLP, different tokenizers, which initially aim at segmenting text,
can result in different vocabularies, so that they can result in unequal performance on various tasks or languages [41].
Few studies have conducted such comparisons between multiple tokenization strategies in MIR contexts. Multiple
strategies for pitch (pitch-class vs. absolute) and time grid (time resolution) encodings are compared in the context
of monophonic music generation [120]. Fradet et al. [56] focus specifically on time encoding by comparing note
positioning and duration encoding on generative, classification, and representation tasks. Beyond tokenization, a
comparison between matrix, graph, and sequence representations of symbolic music is performed on various analysis
tasks [212].

Technically, the MidiTok Python package [54] has been developed to provide a consistent interface for handling
multiple tokenization strategies with various tools designed to manipulate sequential symbolic music data, such as data
augmentation or BPE. Multiple other tokenizers derive from this library, including a MusicXML tokenizer [212] or a
component integrated into a processing pipeline coupled with the HuggingFace library [108]. Similarly, Musicaiz [72]
offers a tokenization framework, with extensive visualization, generation, and analysis frameworks for symbolic music.

2.3 Converting music data into vectors

The previous sections describe music encoded as sequential elements and operations that can be applied to them while
keeping their high-level musical meaning. These elements need to be embedded or converted into vectors so that the
model can process them. Text, subwords, words, or documents need to be projected into a certain space in order to be
processed [119] leading to multiple distributional vector space models and embedding methods.

Earliest word representations simply relied on basic one-hot vectors, each with a length equivalent to the vocabulary
size. A document is represented by summing all these word vectors, leading to a co-occurrence counts vector, also called
bag-of-words (BoW) [96, Chap. 4]. This representation is improved by TF-IDF (Term Frequency–Inverse Document
Frequency) [96, Chap. 6] that takes into account the total number of documents in which a word appears. In symbolic
music, such BoWs or TF-IDFs have been implemented for music similarity analysis [197], mode classification in
Gregorian chant [31], or Chinese folk music clustering [214]. However, these approaches do not capture any sequential
information and the resulting space is often sparse, preventing the ability to capture possible proximity between musical
elements. Therefore, multiple methods have been developed in the NLP field aiming at projecting words into a dense
space including static and contextual embeddings.

Static embeddings assume that each word can be encoded using the same vector regardless of the surrounding context
in which the word occurs. Word2Vec [141] is based on a neural network that builds such static embeddings. This method
has been adapted for music, implicitly leading to multiple interpretations of the definition of a musical word, including
chords or musical phrases. Multiple chord-based Word2Vec have been developed [133, 81]. Such chord embeddings
exhibit musical relations and are evaluated on downstream tasks like chord prediction and composer classification [109].
PitchClass2Vec [110] embeds chords with Fasttext [9] which relies on subwords instead of words. In particular, instead
of embedding the whole set of pitches constituting a chord, Pitchclass2vec decomposes the chord as intervals in the
same way as Fasttext breaks words into n-grams. An alternative approach considers temporal chunks of music as words.
Melody2Vec [76] uses Word2Vec on monophonic melodies by assuming such words as musical phrases segmented by
GTTM rules [114]. Word2Vec has also been adapted for polyphonic music [73], by considering words as equal-length
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and non-overlapping slices of polyphonic music. Visualizing these embeddings shows a structure and organization of
the space that follows the rules of tonal harmony [24].

Unlike static embeddings, contextual embeddings represent a same word with different vectors depending on the
context in which the word occurs because of the polysemous nature of words. Although polysemy and semantics are
not directly applicable in music, these contextual embeddings can be useful for symbolic music because the context
in which a note appear is fundamental, for instance in functional harmony. Technically, contextual embeddings are
built concurrently with model training, such as recurrent or attention-based models (Section 3). Yet, while analyses
of learned contextual embeddings are numerous in NLP [128], only very few studies have specifically observed the
contextual aspect of such embeddings when applied to symbolic music. Such contextual embeddings have been analyzed
from an LSTM model [59] or from BERT embeddings [70]. When comparing GPT-2 and BERT models, the learned
embedding space from BERT is shown to be more structured than the GPT’s [55]. Musical context can also be defined
by the relationship between simultaneous elements, extending beyond the typical temporal context encoded by classic
contextual embeddings. PiRhDy embeddings [122] encode such musical-specific context encapsulating melodic and
harmonic contexts.

3 NLP MODELS FOR SYMBOLIC MUSIC PROCESSING

An aspect that MIR studies have mainly borrowed from NLP ismodels. This transfer arises primarily from the analogous
temporal nature of music, which can be represented as a sequence (Section 2), allowing its processing by NLP-based
models. Historically, in NLP, models based on recurrent cells were first implemented in the 1990s, before the breakthrough
of attention models in the mid-2010s. MIR studies also followed these trends, adapting these models to symbolic music.

3.1 Recurrent models

Although not based on neural networks, the first sequential models applied to NLP tasks and transferred to music
include Hidden Markov Models (HMM) and Conditional Random Fields (CRF) on tasks such as style classification [185]
or music generation [183]. In parallel, neural network-based recurrent models (RNN) have been developed and applied
for symbolic music [10]. Improvements of basic RNNs have been at the root of several models, such as DeepBach [69]
implementing a bidirectional LSTM [77] for chorale harmonization, XiaoIceBand [222] being based on GRU [26] for
arrangement generation, or VirtuosoNet [89] implementing a hierarchical RNN [25] with an attention mechanism [3]
for expressive performance generation. These recurrent layers are implemented as part of various architectures, from
variational auto-encoders with PianoTree-VAE [193] to generative adversarial networks with JazzGAN [182].

However, from the end of the 2010s and the breakthrough of Transformer models [184], the vast majority of state-of-
the-art models have now been derived from this model. Although this survey focuses primarily on attention-based
models, a thorough overview of recurrent models is available in the online material.

3.2 Attention-based models

Attention is a mechanism proposed by Bahdanau et al. [3], initially as an improvement of RNNs. Vaswani et al. [184]
then introduced Transformers showing that a model based solely on attention - without using any recurrent mechanism -
can outperform state-of-the-art results. More precisely, the model is based on a self-attentionmechanism andmulti-head

attention blocks. Transformers offer two main improvements to RNNs (Section 3.1). The processing of sequences is sped
up, as the entire sequence is passed through the model once and processed in parallel. Moreover, it provides a solution
to the problem of vanishing or exploding gradients that occurs with basic RNNs and the issue of hard training with

14



N
LP

M
ethods

for
Sym

bolic
M
usic

G
eneration

and
Inform

ation
R
etrieval:a

Survey
Table 3. End-to-end Transformer-based models applied to symbolic music8: such models are directly trained on specific tasks. Models are grouped by architecture. Precisions
indicated in the Representation column depict the specific adaptations brought to an initial tokenization strategy. The last column indicates if the code is publicly available.

Model Base model MIR mechanism Data Representation Tasks Code

Decoder-only architecture

Music Transformer
Huang et al. [82]

(2018) Tf. decoder Relative attention Piano / Choral MIDI-like
Priming
Harmonization

✓

Chen et al. [18] (2020) Transformer-XL – Guitar tabs
REMI-derived
(Tablatures)

Free tabs generation ✗

Pop Music Transformer
Huang and Yang [85]

(2020) Transformer-XL – Piano REMI
Priming
Free generation

✓

Jazz Transformer
Wu and Yang [204]

(2020) Transformer-XL – Lead sheet
REMI-derived
(Chords)

Free generation ✓

PopMAG
Ren et al. [164]

(2020) Transformer-XL – Multi-track MuMIDI Accompaniment generation ✗

Wu et al. [205] (2020) Transformer-XL – Piano
MIDI-like-derived
(composite tokens)

Free generation ✗

Di et al. [40] (2021) Tf. decoder – Multi-track
CPWord-derived
(Rhythm family)

Video-to-music ✓

Chang et al. [17] (2021) XLNet Relative bar encoding Piano Compound Word Infilling ✓

Compound Word Tf.
Hsiao et al. [78]

(2021) Linear Tf. decoder – Piano Compound Word
Priming
Free generation

✓

Sarmento et al. [168] (2021) Transformer-XL –
Guitar tabs
+ multi-track

DadaGP Metadata-conditioned gen. ✓

Sulun et al. [179] (2022) Music Transformer – Multi-track MIDI-like Emotion-conditioned gen. ✓

ComMU
Lee et al. [111]

(2022) Transformer-XL – Multi-track REMI + metadata
Metadata-conditioned gen.
Multi-track combination

✓

SymphonyNet
Liu et al. [127]

(2022) Linear Tf. 3-D positional encoding Orchestral MMR
Chord-conditioned generation
Priming
Free generation

✓

Li et al. [121] (2023) Transformer-XL – Lead sheet
REMI-derived
(pitch class)

Free generation ✗

Multitrack Music Tf.
Dong et al. [44]

(2023) Tf. decoder – Orchestral MMT
Free generation
Instr.-conditioned generation
Priming

✓

GTR-CTRL
Sarmento et al. [169]

(2023) Transformer-XL –
Guitar tabs
+ multi-track

DadaGP
Instr.-conditioned generation
Genre-conditioned generation

✗
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Table 3. (Continued) End-to-end Transformer-based models applied to symbolic music.

Model Base model MIR mechanism Data Representation Tasks Code

ShredGP
Sarmento et al. [170]

(2023) Transformer-XL – Guitar tabs DadaGP Style-conditioned generation ✗

Choir Transformer
Zhou et al. [221]

(2023) Tf. decoder Relative attention 4-part chorales
Chord + pitch
(event-based)

Harmonization ✓

Guo et al. [67] (2023)
Tf. encoder
w/ custom attention

Fundamental music embedding
RIPO attention

Monophonic FME Priming ✓

Compose & Embellish
Wu and Yang [202]

(2023) Tf. decoder – Multi-track REMI
Lead sheet priming
Accompaniment refinement

✓

RHEPP-Transformer
Tang et al. [180]

(2023) Tf. decoder – Piano Octuple Expressive performance gen. ✓

Angioni et al. [2] (2023) Tf. encoder – Multi-track TSD-like Style classification ✓

Chordinator
Dalmazzo et al. [36]

(2023) minGPT (no pre-training) – Chords
Custom chord features
(+ MIDI array)

Chord generation ✓

Encoder-only architecture

MTBert
Zhao et al. [218]

(2023) BERT (no pre-training) – 4-part chorales
Interval + duration
(event-based)

Fugue form analysis ✗

Encoder-decoder architecture

Transformer-VAE
Jiang et al. [93]

(2020) Tf. encoder-decoder – Monophonic
Pitch + duration
(time-slice-based)

Priming ✗

Harmony Transformer
Chen and Su [19]

(2021) Tf. encoder-decoder – Piano Piano roll time-slices Roman Numeral Analysis ✓

Makris et al. [134] (2021) Tf. encoder-decoder – Lead sheet
Enc.: bar features
Dec.: chord + pitch + dur.

Emotion-conditioned gen. ✓

Liutkus et al. [130] (2021) Performer Stochastic positional encoding Multi-track
REMI
MIDI-like-derived
(multi-track)

Free generation
Groove continuation

✓

Gover and Zewi [63] (2022) BART – Piano
REMI-derived
(hands tokens)

Arrangement generation ✗

Museformer
Yu et al. [209]

(2022)
Tf. encoder-decoder
w/ custom attention

Fine-/coarse-grained attention
Bar selection

Multi-track REMI Free generation ✓

Theme Transformer
Shih et al. [176]

(2022) Tf. encoder-decoder Theme-aligned pos. enc. Multi-track
REMI-derived
(theme tokens)

Theme-conditioned generation ✓

FIGARO
von Rütte et al. [187]

(2022) Tf. encoder-decoder – Multi-track REMI+ Controllable generation ✓
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Table 3. (Continued) End-to-end Transformer-based models applied to symbolic music.

Model Base model MIR mechanism Data Representation Tasks Code

MuseMorphose
Wu and Yang [203]

(2023) Tf. enc + Transformer-XL In-attention conditioning Piano
REMI-derived
(multi-track)

Style transfer
Controllable generation

✓

Accomontage 3
Zhao et al. [219]

(2023) Tf. encoder-decoder Instrument embedding Multi-track Piano roll time-slices Accompaniment generation ✓

TeleMelody
Ju et al. [95]

(2022) Tf. encoder-decoder – Monophonic
Bar + position
+ pitch + duration
(event-based)

Lyrics-to-melody ✓

MuseCoco
Lu et al. [132]

(2023)
Text2Attr.: BERT
Attr2Music: Linear Tf.

– Multi-track REMI Text-to-MIDI ✓

Model combinations

Zhang [215] (2020)
Generator: Tf. decoder
Discriminator: Tf. encoder

– Multi-track
MIDI-like-derived
(composite tokens)

Free generation ✗

Transformer-GAN
Muhamed et al. [143]

(2021)
Generator: Tf.-XL
Discriminator: BERT

– Piano MIDI-like Free generation ✓

Dai et al. [34] (2021)
Encoder: Tf. encoder
Decoder: LSTM

– Multi-track
Pitch + rhythm
(event-based)

Structure-conditioned gen.
Chord conditioned gen.

✗

Choi et al. [21] (2021)
Chord enc.: Bi-LSTM
Rhythm dec.: Tf. decoder
Pitch dec.: Tf. decoder

– Lead sheet
Pitch + rhythm + chord
(time-slice-based)

Chord-conditioned generation ✓

Bar Transformer
Qin et al. [158]

(2022)
Bi-LSTM -
Tf. decoder

– Lead sheet
Bar + position
+ melody + chord
(time-slice-based)

Free generation ✗

Makris et al. [135] (2022)
Bi-LSTM -
Tf. decoder

– Multi-track CPWord-derived Drums accomp. generation ✓

Neves et al. [145] (2022)
Generator: Linear Tf.
Discriminator: Linear Tf.

Local prediction map Piano REMI Emotion-conditioned gen. ✓

Q&A
Zhao et al. [220]

(2023)
PianoTree-VAE
Tf. decoder

Instrument embedding Multi-track Piano roll time-slices Accompaniment generation ✓

Duan et al. [49] (2023)
Generator: Tf. encoder
Discriminator: LSTM

– Monophonic
Pitch + duration + rest
(event-based)

Lyrics-to-melody ✗

Video2Music
Kang et al. [97]

(2023) GRU + Tf. encoder-decoder – Multi-track MIDI-like Video-to-music ✓

8An up-to-date and collaborative version of this table can be found at: https://github.com/dinhviettoanle/survey-music-nlp#end-to-end-models
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Table 4. Pre-trained Transformer-based models applied to symbolic music9: such models are pre-trained and then fine-tuned on downstream tasks.

Model Base model MIR mechanism Data Representation Tasks Code

Encoder-only architecture

MuseBERT
Wang and Xia [192]

(2021) BERT Generalized relative pos. enc. Multi-track MuseBERT repr.
Controllable generation
Chord analysis
Accompaniment refinement

✓

MidiBERT-Piano
Chou et al. [23]

(2021) BERT – Piano
REMI
Compound Word

Melody extraction
Velocity prediction
Composer classification
Emotion classification

✓

MusicBERT
Zeng et al. [211]

(2021) RoBERTa Bar-level masking Multi-track* Octuple

Melody completion
Accompaniment suggestion
Genre classification
Style classification

✓

DBTMPE
Qiu et al. [159]

(2021) Tf. encoder – Multi-track
Pitch combinations
+ duration (event-based)

Style classification ✗

MRBERT
Li and Sung [117]

(2023) BERT Melody/rhythm cross attention Lead sheet
Pitch + duration
(event-based)

Free generation
Infilling
Chord analysis

✗

SoloGPBERT
Sarmento et al. [170]

(2023) BERT – Guitar tabs DadaGP Guitar player classification ✗

Shen et al. [175] (2023) MidiBERT-Piano
Pre-training tasks:
Quad-attribute masking
Key prediction

Multi-track CPWord simplified

Melody extraction
Velocity prediction
Composer classification
Emotion classification

✗

CLaMP
Wu et al. [201]

(2023)
Text enc.: DistilRoBERTa
Music enc.: BERT

– Lead sheet ABC notation-derived
Text-based semantic music search
Music recommandation
Music classification

✓

Decoder-only architecture

LakhNES
Donahue et al. [43]

(2019) Transformer-XL – Multi-track MIDI-like Free generation ✓

Musenet
Payne [152]

(2019) GPT-2
Timing embedding
Structural embedding

Multi-track* MIDI-like Priming ✗

MMM
Ens and Pasquier [50]

(2020) GPT-2 – Multi-track MultiTrack repr.

Free generation
Priming
Inpainting
Controllable generation

✓

Angioni et al. [2] (2023) GPT-2 – Multi-track TSD-like Priming ✓
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Table 4. (Continued) Pre-trained Transformer-based models applied to symbolic music.

Model Base model MIR mechanism Data Representation Tasks Code

Zhang et. al [213] (2023) GPT-3 – Drums
Drumroll
time-slices

Priming ✓

Bubeck et al. [15] (2023) GPT-4 – Text ABC notation Text-to-ABC ✗

Encoder-decoder architecture

MusIAC
Guo et al. [66]

(2022) Tf. encoder-decoder – Multi-track REMI
Infilling
Controllable generation

✓

Li and Sung [118] (2023) Tf. encoder-decoder – Lead sheet
Pitch + duration
(event-based)

Harmony analysis
Chord generation

✗

Fu et al. [57] (2023) MusicBERT + Music Tf. – Multi-track Octuple

Melody completion
Accompaniment suggestion
Melody extraction
Emotion classification

✗

Multi-MMLG
Zhao et al. [217]

(2023) XLNet + MuseBERT – Multi-track CPWord-derived Melody extraction ✗

Comparative studies

Ferreira et al. [52] (2023)

GRU, Performance-RNN
GPT-2 (Tf. decoder)
Music Tf. (Tf. decoder)
MuseNet (Tf. decoder)

– Piano MIDI-like Free generation ✓

Wu and Sun [200] (2023)
BERT (Tf. encoder)
GPT-2 (Tf. decoder)
BART (Tf. enc.-dec.)

– Lead sheet ABC notation Text-to-ABC ✓

Tf.: Transformer | Enc.: Encoder | Dec.: Decoder | Pos. enc.: Positional Encoding
(*) These datasets are not publicly available.

9An up-to-date and collaborative version of this table can be found at: https://github.com/dinhviettoanle/survey-music-nlp#pre-trained-models
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LSTMs. Whereby during back propagation through time, recurrent models tend to struggle in capturing long-term
dependencies [146] between words. This phenomenon is also true for music generation [74].

Such models have been applied to symbolic music representations, but also in a variety of other domains, such
as computer vision [46] or audio [45]. The use of Transformers has been greatly facilitated with the development of
libraries, such as AllenNLP [60], FairSeq [149] or more predominantly, HuggingFace [196]. This library offers model
architectures, pre-trained models, tokenizers, and various utilities to simplify the development and deployment of NLP
applications. As a result, numerous studies in the field of MIR have started utilizing this library, adapted for musical
applications, by leveraging its tools and resources. These include implementations of subword tokenizers, discussed
in Section 2.1.2 such as Byte-Pair encoding [173] or Unigram [107] used by Kumar and Sarmento [108] and model
implementations such as BERT [39] used in MIDI-BERT [23] or GPT-2 [161] used in MMM [50].

In this section, we propose an overview of these Transformer-based models applied to symbolic music data seen
through three technical prisms. A first way of characterizing these models is based on their training paradigm,
namely end-to-end training on specific tasks, or pre-training and fine-tuning (Section 3.2.1). In a musical sense, pre-
training assumes a hypothesis of a general understanding of music. Beyond the training process, we describe various
architectures that have been implemented (Section 3.2.2). The model architecture, based on Transformer encoders,
decoders, or combining different types of data, also assumes hypotheses on how music is processed. Finally, we present
the enhancements of the Transformers’ internal mechanism to specifically process symbolic music data (Section 3.2.3).
A summary of these Transformer-based models for symbolic MIR is presented in Tables 3 and 4.

3.2.1 Training paradigms: end-to-end training and pre-training.

Models can first be categorized by their training paradigm. On the one hand, end-to-end models are models trained
directly for their specific task. On the other hand, pre-trained models, involve a pre-training of the model for a generic
task followed by a fine-tuning step on one or multiple tasks and are at the heart of large language models (LLM) in NLP.
From a musical point of view, pre-trained models aim first at modelling or understanding music globally, in the same
way as modelling language at a high level in NLP [216], from which specific tasks can then be derived via fine-tuning.

3.2.1.1 End-to-end models.

These models are specifically trained for a particular task, most often, generative tasks. These include Generative
Adversarial Networks (GANs) [61] based on Transformers, resulting in models for multi-track generation [215], or
emotion-driven generation [145]. Other systems rely on Transformer-based Variational Autoencoders (VAEs) [102]
for priming-conditioned generation [93], chord-conditioned generation [21], lyrics-conditioned generation [49] or
artistic-controllable generation [187]. This last task is also performed in a multi-track context [111], with fine-grained
control of the musical features at the scale of the tracks.

End-to-end models also include several data-specific models designed to process musical data beyond notes. The
Chordinator [36] model handles chord data and is based on a minGPT architecture10, without a pre-training process.
Several models are trained on guitar tablatures, for tasks such as tabs generation [18], metadata-conditioned genera-
tion [168], style-driven generation [170], or instrument-conditioned generation for bands [169]. Beyond generative
tasks, a few models performing analysis tasks have been developed using this end-to-end training fashion. They are
trained on labeled datasets, such as roman numeral-annotated datasets [20, 19] or style-annotated datasets [2].

10https://github.com/karpathy/minGPT
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3.2.1.2 Pre-trained models.

In contrast with end-to-end models, pre-trained models are usually not task-specific and follow two training phases.
The model is first pre-trained on a large corpus of data - generally unlabeled - via generic self-supervised tasks. Once the
model is pre-trained, it is fine-tuned on a specific downstream task by being trained on a smaller task-specific labeled
dataset. This fine-tuning step is also convenient as it requires less data than the pre-training process, and takes less
time to train the model instead of multiple trainings from scratch for each existing task. While pre-training was prior to
attention-based models, the latest state-of-the-art pre-trained models are now exclusively based on Transformers both
in NLP and MIR.

One of the state-of-the-art pre-trained language models is BERT (Bidirectional Encoder Representations from
Transformers) [39]. BERT is based on a bidirectional training approach as a masked language model: a pre-training
task includes masked word prediction by taking into account its left and right context. Multiple variations of BERT
applied to symbolic music have been proposed. MuseBERT [192] develops a specific representation merging musical
attributes and relations and processed by the attention mechanism. MusicBERT [211] is a model designed based on
RoBERTa [129] and improves the pre-training step by implementing a custom bar-level masking strategy instead of the
original token masking. A model combining this MusicBERT model with a Music Transformer has been evaluated on
several downstream tasks, resulting in better performances [57]. Instrument-specific BERTs have been implemented
such as SoloGPBERT [170] for guitar tablatures, MRBERT [117] for lead sheets or MidiBERT-Piano [23] for piano. This
model is then extended beyond piano music and improved with musically meaningful pre-training tasks [175].

GPT (Generative Pre-trained Transformer) [160] is, instead, pre-trained through an auto-regressive task, and is
more suitable for tasks involving generation. In NLP, multiple improvements of GPT have been developed such as
GPT-2 [161], GPT-3 [13] and GPT-4 [15]. For symbolic music, Musenet [152] and MMM [50] are based on GPT-2 and are
trained for conditioned generation. Another approach has been implemented for drum music generation [213]: music is
represented as textual data which and a pre-trained textual GPT-3 is fine-tuned on this textual representation of music.

Finally, beyond GPT and BERT, models that integrate pre-trained components have been developed for symbolic
music purposes. LakhNES [43] and DBTMPE [159] avoid the lack of data for their respective downstream tasks by
being pre-trained on larger corpora and then fine-tuned for chiptune music generation or genre classification.

3.2.2 Model architecture: Transformer encoder / decoder and multimodal models.

The model architecture also characterizes the existing attention-based models. In NLP, the architecture proposed by the
first Transformer model for translation [184] is based on an encoder-decoder architecture. Afterwards, several NLP
models based on either encoders [39], decoders [160], or with modified mechanisms have been proposed. MIR studies
have therefore leveraged these existing models to adapt them for symbolic music data. Additionally, unlike NLP models
that usually handle text for both input and output, MIR experiments have been conducted with multimodal models
capable of processing different types of data, in particular for tasks like text-to-symbolic music. These multimodal
models have found application in other domains such as audio processing with MusicLM [1] or image processing with
Dall-E [162].

3.2.2.1 Encoder only.

Encoders are based on a self-attention mechanism, allowing it to have knowledge of the complete sequence. Bidirectional
models, which are based on this encoder-only architecture, have led to symbolic music adaptations of BERT such as
MuseBERT [192], MusicBERT [211], MidiBERT-Piano [23], MRBERT [117], and SoloGPBERT [170]. Going further, Han
et al. [70] analyze the inner embeddings from BERT when trained on symbolic music and highlight the role of specific
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layers on the model performance. BERT is also used as an architecture without its pre-training process by MTBert [218]
aiming at analyzing the sections of a fugue form. Beyond BERT, mainly characterized by its pre-training process,
Transformer encoders have also been experimented with as a component of global encoder-decoder architecture, in
which the encoder keeps a defined role, as detailed below. Such a Transformer encoder is also widely used as the
discriminator module in GAN-based models [215, 143, 34], initially developed for generation purposes. Indeed, as most
symbolic MIR studies focus on generative tasks, such encoder-only architectures are few in number.

3.2.2.2 Decoder only.

In contrast with Transformer encoders, decoders implement amasked self-attention mechanism. Such models only have
knowledge of past tokens so that they are usually implemented for auto-regressive generative tasks. The first Music
Transformer [82] is based on a decoder-only model for priming and harmonization tasks, and is then reused by Sulun
et al. [179] for emotion-conditioned generation. Generation is tackled by the MultiTrack Music Transformer [44] for
instrument-conditioned generation, the Choir Transformer [221] for 4-part harmonization, Compose & Embellish [202]
for lead sheet and accompaniment generation, and by Tang et al. [180] for expressive performance reconstruction.
Decoder-only models can also be trained through a pre-training / fine-tuning process, in particular with GPT-based
models, such as Musenet [152] or MMM [50]. By comparing multiple decoder-only architectures, such pre-trained
decoder-only models appear to perform better in piano generation [52].

Several models combine recurrent models with Transformer decoders. Q&A [220] combines GRU-based PianoTree-
VAEs with a Transformer decoder for arrangement generation. In the same way, Choi et al. [21] use a bi-LSTM
model as a chord encoder, followed by Transformer decoders as pitch and rhythm generators. This architecture is
also implemented in the Bar Transformer model [158] for long-term structure generation, where the LSTM captures
note-level dependencies and Transformer decoders capture bar-level relations.

An issue with Transformers is the quadratic complexity of the attention mechanism with respect to the sequence
length. The Linear Transformer [98] improves the attention mechanism with a linear complexity. The Compound Word
Transformer [78] takes advantage of this computational optimization, coupled with its shorter sequence representation,
for pianomusic generation. SymphonyNet [127] is also based on this model to address the even longer length of orchestral
pieces, necessitating this lightweight attention mechanism to effectively process such data. Another improvement of
Transformers is Transformer-XL [35], also based on auto-regressive generation, which is able to take into account a
much longer context than Transformers. Therefore, such models have been used in several generation studies involving
multi-track music [205, 111], piano music [85, 143, 203], lead sheets [204, 121] or guitar tablatures [18, 168, 169, 170].
Chang et al. [17] implement an improved Transformer-XL, XLNet [207], a transformer-based model that can attend to
past and future in the same way as BERT, while maintaining an autoregressive predicting order. This model is trained
for music infilling.

3.2.2.3 Encoder-decoder.

Finally, following the architecture of the vanilla Transformer, multiple models for symbolic MIR implement an encoder-
decoder architecture for various tasks. Functional harmony analysis has been tackled by the Harmony Transformer [20,
19]. The model is based on this architecture, in which the encoder has a chord segmentation role while the decoder
infers the chord symbol.

For generative purposes, such architectures are used with an encoder which analyzes musical constraints and a
decoder that generates musical content. Li and Sung [118] and Makris et al. [134] implement similar architectures, with
an encoder analyzing chord (resp. chord valence) that conditions an auto-regressive decoder for a generation task. In the
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Theme Transformer model [176], the encoder analyzes the recurrent theme, from which the decoder generates music
depending on the conditions regarding the theme position within the generated content. MusIAC [66] is a framework
based on an encoder-decoder architecture, in which an encoder is pre-trained as a masked language model, linked with a
decoder which performs an infilling task. Multi-MMLG [217] is developed for a melody extraction task. It implements an
XLNet model aiming at classifying notes as main melody or accompaniment, followed by a modified MuseBERT model
that extracts secondary melodies. In NLP, encoder-decoder models are often implemented for translation purposes [184].
Gover and Zewi [63] implement BART [115], an encoder-decoder architecture with learned positional embeddings,
for a task analogous to language translation in the realm of music: music arrangement. This task is also performed by
Accomontage-3 [219] for multi-track music with an encoder / multiple decoders architecture. This encoder-decoder
architecture is largely used in autoencoder architectures. The Transformer VAE [93] implements a sampling step
from a latent space, from which keys and values are derived for the cross-attention mechanism. MuseMorphose [203]
and FIGARO [187] are models based on VAEs, developed for controllable generation, which use their latent space
representations as constraints.

3.2.2.4 Multimodal models.

Going beyond models handling only a specific type of data, MIR systems have been developed to deal with multiple
types of data such as text or video. In symbolic MIR, studies have explored models linking text and music, including
a task of lyric-to-melody with TeleMelody [95] processing musical high-level features or Duan et al. [49] operating
at the syllable level. Text-to-image systems have been gaining in popularity these last few years resulting naturally
in text-to-music systems in both audio [1] and symbolic music. MuseCoco [132] performs this text-to-MIDI task.
However, most text-to-symbolic-music tasks currently process an ABC notation, as this encoding is already in a textual
format [200]. GPT-4 is able to perform such a text-to-ABC task, among multiple other tasks [15] but struggle at modeling
musical concepts such as harmony. Finally, beyond generative tasks, CLaMP [201] integrates two BERT-based models
– one for text encoding and the other for music encoding – for an analysis task, namely a tune query task based on
natural language descriptions.

Multiple systems have been experimenting with symbolic music generation for video considering the use of music in
videos like soundtracks in movies. Di et al. [40] generate music for videos that are analyzed in terms of motion speed
and saliency conditioning the generated music rhythm. Kang et al. [97] add a semantic and emotion analysis of the
scene, and more specifically generate chords matching these video features.

3.2.3 Adapting attention models inner mechanisms in the context of music.

Extensive studies have been conducted regarding the mechanisms of Transformers applied to text data, including
attention and positional encoding. When applied to symbolic music, these mechanisms may be improved to be tailored
or visualized for such different data.

Given the human intuitive aspect of visualisation, visualizing different aspects of self-attention (e.g. maps, etc.)
has been studied. Such visualization can show differences between attention heads being more or less specialized in
chords or melody [79]. Self-attention has also been studied as a source of high-level interpretations, such as music
theory insights, in terms of motifs, harmony, or temporal dependencies. Such musical objects captured by attention are
numerous, including cadential passages [131], musical phrases or modulating sequences [92], or consonant musical
intervals [44].

Multiple MIR studies have also developed positional encodings and attention mechanisms customized for the
specificities of music. With the Music Transformer model [82], a relative positional self-attentionmechanism is developed
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for music generation enabling the processing of much longer sequences. Similarly, the stochastic positional encoding [130]
aims to be compatible with linear complexity attention. The specificities of multi-track music inspired the SymphonyNet
model to develop a 3-D positional embedding [127] in which the track order is permutation invariant, unlike note or
measure that must remain time-dependant. Musically meaningful positional encodings have been developed based
on notes attributes and relations [192], measures [17], musical themes [176], structure and musical time [152], or
instruments [220, 219].

The attention mechanism has also been adapted for symbolic music. The Museformer model [209] is based on a
fine-grained and coarse-grained attention aiming at reducing the complexity of the mechanism, leveraging the expected
repetitive aspect of music. The RIPO (Relative Index, Pitch and Onset) attention [67] is proposed with the fundamental

music embedding, relying on the structure of symbolic music built on relative onsets and pitches. In a context of
controllable style transfer, the MuseMorphose model [203] includes an in-attention conditioning that takes into account
constraints in the self-attention computation. For lead sheet data, a melody/rhythm cross attention is implemented in
MRBERT [117], in which these two features are merged and simultaneously processed through attention.

Training strategies with musical specificities have also been developed. Based on a GAN architecture [61], a local
prediction map [145] is proposed so that the discriminator also specifies which parts of the generated sequence is real or
generated. Pre-trained models, in particular masked language models, are usually pre-trained on a token prediction
task from a masked sequence and a next sentence prediction task [39]. For symbolic music, MusicBERT [211] is
pre-trained with a bar-level masking: instead of masking a single token and leveraging its Octuple representation, the
pre-training process masks a type of feature for all the tokens within a bar. This masking is improved with quad-attribute

masking [175]. These strategies avoid information leakage between tokens, as some musical features can be easily
inferred from adjacent tokens. Taking inspiration from the multi-task pre-training approach of the original BERT model,
Shen et al. [175] also propose an analogous pre-training task with next sentence prediction with key prediction.

4 DISCUSSIONS AND FUTURE DIRECTIONS

The previous sections outline various NLP approaches adapted to music data, resulting in the development of state-of-
the-art tools for multiple symbolic MIR tasks. While these results are shown to be empirically effective, it is worth
taking a step back on this practice by questioning the musical appropriation of tools that have originally been thought
for natural language. Such issues can either stem from technical challenges, as NLP methods have been specifically
developed and tailored for text data, or from high-level considerations, such as inherent differences between text and
symbolic music.

4.1 Technical limitations of using NLP methods for symbolic MIR

NLP tools have been developed to specifically process text data, a type of data that remains significantly different from
symbolic music, as discussed in Section 4.2. These methods tailored for text data may lead to technical specificities
inherent to the field of NLP, which can therefore be questioned when applied to symbolic MIR.

Data availability · Text data differ from symbolic music data by a much wider availability. For example, large
language models such as GPT-3 [13] are trained on datasets containing 300 billion tokens. Compared to symbolic music,
multiple models [50, 187] are trained on the LakhMIDI dataset which is composed of 175k songs, resulting in only
26M tokens using a basic MIDI-like tokenization. Beyond the quantitative side of symbolic music datasets, there is an
unavoidable bias in terms of music style diversity, as classical and pop music is much more numerous than other styles.
Moreover, while new text data are released in large amounts, contributing to extending datasets such as CommonCrawl
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based on publicly available text, symbolic music data is less likely to be released at this rate. Thus, there is a huge gap
between the amount of data needed to train text models, on which Transformers are inherently efficient with such a
large amount of data, and the availability of symbolic music data.

Latin alphabet and musical alphabet · The Latin alphabet, on which most NLP studies are based, is composed of
homogeneous elements or characters. In contrast, musical alphabets based on the MIDI protocol are heterogeneous,
consisting of multiple types of tokens, such as velocity or duration. Therefore, musical notes are based on combinations
of these atomic elements. This combinatorial aspect is fundamental in music as two slightly different combinations can
lead to radically different notes. In substance, this is comparable to Chinese characters that can be based on different
radicals, leading to entirely different meanings [199]. Such models have been developed for Chinese NLP, and take
these radicals into account [181].

4.2 Discussing parallels and contrasts between natural language and music

The use of NLP methods in MIR implies that music is associated with a kind of language, which is widely debated
in the musicological community. While sharing similarities, several differences distinguish symbolic music from
text, including low-level structural properties and organization, and high-level differences, especially regarding their
respective function.

4.2.1 Structural differences between text and symbolic music.

The adaptation of NLP tools for MIR is facilitated by several similarities between music representations and text
including their sequential organization. Yet, these analogies are limited, as some aspects such as polyphony or rhythm
remain inherent to music.

Time dimension in language and music · While speech might have a temporal dimension in terms of speech
rate [188], text does not explicitly encode any of these rhythmic modulations. In contrast, musical rhythm is based on
an isochronic grid [87] in which notes are notated with rigorous timings, in terms of onsets and durations, beyond
some microtimings linked to performance embellishments or tempo changes.

Simultaneity in music · In music, while sequence of notes in monophonic music can be compared to words in text,
polyphony adds a dimension that does not find any analogous element in text [7]. Modeling simultaneous events in a
one-dimensional sequence requires approximations. Polyphonic music can be considered in two different ways: music
can be read vertically by modeling it as a sequence of temporal events which interleaves different parts, or instead,
music can be read horizontally by concatenating each part one after the other [112].

Multimodality of music · Musical constitutive elements are less homogeneous than text data. Textual constitutive
elements are of a single type: characters and possibly punctuation. In contrast, music symbols combine structural
elements (bars, position, etc.), note-related information (pitch, duration, dynamics, etc.) and global information (tempo,
instrument, etc.). Regarding computational implementations, this possibly introduces an artificial sequentiality when
modeling music because multiple musical features describing one temporal event must be ordered.

Segmenting text andmusic ·While whitepsaces facilitate token segmentation of text in many languages, identifying
boundaries of musical motives and phrases remain subjective [124] or can even overlap [71]. In this sense, music might
be more easily compared to unsegmented languages [151] where word segmentation can be unclear [83]. Therefore, the
application of NLP models that perform well on space-delimited languages in the context of symbolic music can be
questioned.
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Musical grammar and natural language grammar ·While grammar is central for natural language, the existence
of a global grammar describing music is also not unanimously accepted, even in a specific style [38]. Multiple grammars
have been proposed to describe music from a general point of view, such as GTTM [114] or the implication-realization
model [144]. Harmonic concepts have also been modeled as a grammar for music. Such harmonic rules are established
by a specific musical style or era [103]: however, something which is considered “regular” in a style can appear as an
“irregularity” in another style, while still being considered as music. This absence of "rightness" in music consolidates
the idea that aesthetics plays the most prominent role in music [104]. Consequently, in MIR, the evaluation systems
performing generative or even analysis tasks can be delicate due to this aesthetic dimension.

4.2.2 Functions of natural language and music.

The question of defining the function of music has been extensively studied and discussed [87, 53, 210]. Communication
is central in language because it conveys ideas, thoughts, concepts or propositions. Yet, in music, communication is often
considered only one of several functions [138]. This musical communication is often seen as serving other purposes
than conveying ideas: the concept of semantics, which is pivotal in language, is missing or at least not essential to
the appreciation of music. Music may not carry any literal meaning, or at least that cannot be compared to linguistic
meaning [114]. Bernstein declared on this topic [5, p. 33]:

Music, of all the arts, stands in a special region, unlit by any star but its own, and utterly without meaning [...]

except its own, a meaning in musical terms, not in terms of words.

Instead, music is more associated with affect and serves as an emotional expression based on aesthetics [87]. Beyond
being provoked by music, this emotional characteristic is sometimes considered as intrinsic to the music: some composi-
tional process can represent or symbolize an emotion [16]. While highly influenced by culture, Cooke illustrates this
phenomenon by describing third intervals in Western music [30, p. 57]:

Western composers, expressing the ‘rightness’ or happiness by means of the major third, expressed the

‘wrongness’ of grief by means of the minor third [...].

This point of view that interprets musical meaning in terms of emotional descriptions is highly debatable, as these
considerations often originate from cultural effects [150] or musical education. Indeed, in both language and music,
textual signs also do not inherently carry meaning. Instead, meaning is attributed to these signs because a particular
community, from a specific era or culture, collectively establishes an agreement to associate a certain set of signs with a
particular concept [136, p. 21]. In music, such processes are at the root of program music [105]. The question of attaching
meaning or semantics to music has been a subject of extensive debate for centuries and is unlikely to have a universal
answer. Returning to a technical standpoint, this epistemological debate underscores the need of carefulness when
applying NLP tools for symbolic music.

4.3 Future directions

NLP studies have been developed along several axes, including various aspects that may serve as research directions for
symbolic MIR studies: lighter models, explainability of representations and models, and task benchmarks.

4.3.1 Towards lighter models.

In the field of NLP, various studies have focused on developing computationally efficient yet lighter models [223],
especially with the rise of large language models. Such optimizations leading to lighter models are desired for multiple
reasons, including reducing training or inference time, as well as energy consumption or hardware costs. Multiple studies
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have explored model compression with knowledge distillation [62]. This distillation process implements a lightweight
student network which is trained to reproduce a pre-trained teacher network. In NLP, this has led to lightweight
models such as DistilBERT [167]. In contrast with distillation, pruning methods are based on altering an initial model
by removing weights. Transformers are shown to be possibly pruned by removing most of the attention heads while
keeping decent performance [139] and can help model explainability [186]. Finally, model design optimizations for
lightweight processings have been developed such as token skipping in PoWER-BERT [64] or sliding window attention
with cache in Mistral 7B [91]. In MIR, such advances towards lighter models have begun to be tackled in the context of
audio music [47].

In the field of symbolic MIR, models are currently not as big as NLP models which can reach 175B parameters in the
case of GPT-3 [13]. Nevertheless, there is a growing recognition of the efficacy of lighter models for symbolic music data,
including the development of Compound Words [78] for smaller sequences, or smaller vocabulary resulting in smaller
embeddings [120]. These studies emphasize a promising direction for the application of lighter models in symbolic
MIR research. This direction may involve developing light methods specifically tailored for symbolic music, featuring
fewer parameters, reduced memory usage, or shorter training or inference times. Such light models can have practical
applications in real-time symbolic music generation, including improvisation where an instantaneous inference time is
required.

4.3.2 Towards more explainability.

Deep learning models are often perceived as black boxes, lacking explanations for the decisions they make. Several
studies address the explainability aspects of NLP tools [216]. From a technical standpoint, retrieving explanations from
these tools can take various forms. Extrinsic evaluation of a model involves assessing its performance on probing tasks.
In NLP, these probing tasks can vary in nature [29], encompassing syntactic or semantic information retrieval [101].
In contrast, intrinsic evaluation refers to directly analyzing the inner representations occurring in the model. In NLP,
intrinsic evaluation is frequently conducted on word embeddings to assess how well a model represents words in
relation to each other by examining relations like word similarity or analogies [190]. In the context of Transformers,
beyond embeddings, multiple representations can be analyzed [11], in particular attention, being a particularly human-
interpretable mechanism.

At a low level, while text representations are most of the time based on words, music representations can be of very
different nature. Therefore, specific representations can gain in expressiveness by incorporating more or less musical
information [137, 99]. More recently, rationalization (i.e. providing a natural language explanation of the process) based
on LLMs has been explored to provide musical descriptions of symbolic music data [106]. Going further, providing
interpretable tools that align with human behaviour can encounter challenges due to the inherent subjectivity of music.
In the context of music composition, stylistic aspects may offer different explanations, and certain passages may only be
explained by artistic effects desired by the composer [33]. Despite this subjectivity and artistic aspect present in music,
studying the explainability of tools for symbolic music can be a way to gain a better understanding of how models
process music data. For instance, analyzing models on simple tasks such as style classification can highlight or confirm
musicological characteristics in a particular style. Similarly, with the increasing popularity of text-to-music systems,
interpreting models on such tasks may reveal relations between specific words with the resulting generated content,
potentially leading to questions regarding biases within the currently available datasets of symbolic music.
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4.3.3 A need for benchmarking and comparative analysis.

Benchmarks (i.e. commonly accepted combinations of datasets, tasks, and evaluation metrics against which new models
can be tested) are crucial for meaningful model comparisons. The NLP community has introduced several benchmarks
such as GLUE [189] to evaluate language understanding. Other specific NLP benchmarks have also been developed,
such as cross-lingual benchmarks [123] or domain-specific benchmarks [154].

In symbolic MIR, there is currently an apparent lack of standardized benchmarks. Though, some symbolic music
datasets are recurrently used as training datasets [90], but they rarely come with a set of evaluation tasks. Such
standardized bundling of datasets, tasks, and evaluation metrics for symbolic music data, similar to the past MIREX
challenges11, may provide better frameworks to compare and evaluate models. This question of model evaluation is
fundamental. Subjectivity is often present in music, both in analysis tasks, such as functional harmony analysis, in
which annotator biases can emerge, and in generation tasks. Evaluation of generative systems through listening tests is
even more subjective [208], but for which evaluation metrics have been proposed [204, 108]. Valuable contributions
regarding these benchmarking issues can be an evaluation toolkit library aiming at retrieving features from generated
pieces and comparing them to those extracted from a test set. However, this may explain the challenges in establishing
such music benchmarks: the inherent subjectivity of music aesthetics restricts the possibility of "reference data", which
are essential for model evaluation.

4.3.4 Exploring further models for symbolic MIR.

Beyond improving existing MIR models, several NLP models implement mechanisms or optimizations that can be
relevant to symbolic music data. The Longformer model [4] aims to represent long documents by implementing
linear complexity attention. Moreover, it also manages to perform well on character-level language modelling tasks.
These two characteristics are fundamental in symbolic music, as musical sequences are often longer than textual
sequences. Additionally, unlike text where words are often considered as basic tokens, such grouping is less direct in
music, so that symbolic music tasks are more similar to textual character-level tasks. On the representation side, BERT-
sentence [163] may be relevant in the field of symbolic MIR. This model builds embeddings for entire sentences and
performs comparisons between pairs of sentences with a faster computing time. In symbolic music, where a recurrent
question concerns music segmentation, such textual sentence-derived representation holds potential relevance. In more
practical cases, pattern matching is often used in incipit search engines such as RISM12: an embedding-based query
method can improve the tool’s flexibility.

Finally, beyond NLP and the excitement in the general public for tools based on natural language generation,
another trend stemming from research studies is image generation, in particular, text-to-image systems which are
based on diffusion models. Numerous recent models now integrate state-of-the-art techniques from both domains, using
diffusion models coupled with Transformer blocks for controllable generation [116, 142]. Therefore, asobserved in
recent publications and preprints (Figure 2), a new trend from recent MIR studies is to adapt models initially developed
for images to process music, in the same way as state-of-the-art NLP models have been adapted for symbolic music.

5 CONCLUSION

Symbolic music is frequently associated with natural language, drawing parallels based on structural similarities,
especially in their sequential representations and numerous shared tasks. Consequently, the domain ofMusic Information

11https://www.music-ir.org/mirex
12https://opac.rism.info
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Retrieval, with a specific emphasis on studies centered on symbolic music data, frequently draws inspiration from
methods employed in Natural Language Processing. This survey organizes these NLP tools adapted for symbolic music
based on two aspects: representations and models.

The process of representing text and symbolic music through sequences, referred to as tokenization, has been widely
studied in the MIR field, leading to the development of various tokenization strategies. In contrast with text where
words are often considered as basic tokens, the diversity of symbolic music tokenization strategies mainly stems from
the multimodality of music, wherein each note can be described by various features. This results in tokenizations based
on time slices or musical events, incorporating technical improvements such as token grouping or composite tokens.
These representations of symbolic music are then processed by models that draw inspiration from models initially
developed to process text. Such models have been historically based on recurrent models until the breakthrough of
Transformers in the field of NLP which then spread the development of several attention-based models in the field of
symbolic MIR. Nevertheless, acknowledging the particular characteristics of music in comparison with text, numerous
models have incorporated music-specific mechanisms into Transformers, such as positional encoding or specialized
attention mechanisms.

Despite the great performances of these models on downstream tasks such as generation or information retrieval,
this usage of NLP tools - initially tailored for text data - on symbolic music can be questioned. This includes technical
issues, but also inherent epistemological differences between text and music. These questions can therefore lead to
future directions regarding this current trend, by keeping on taking inspiration from NLP advances, such as lighter,
explainable models or benchmarks, to improve tools for symbolic music generation and information retrieval.
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