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Abstract. Gaussian random fuzzy numbers are random fuzzy sets gen-
eralizing Gaussian random variables and possibility distributions. They
define belief functions on the real line that can be conveniently combined
by the product-intersection rule under the independence assumption. In
this paper, we provide formulas for the combination of an arbitrary num-
ber of Gaussian random fuzzy numbers whose dependence is described
by a correlation matrix.
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1 Introduction

In recent papers [3][5][7], I introduced a theory of epistemic random fuzzy sets as
an extension of both the Dempster-Shafer theory of evidence [9] and possibility
theory [10]. In this new theoretical framework, uncertain and/or fuzzy pieces
of evidence are represented by random fuzzy sets inducing belief functions, and
independent items of evidence are combined by the product-intersection rule
generalizing both Dempster’s rule of combination and the normalized product-
intersection operator of possibility theory.

Gaussian random fuzzy numbers (GRFNs) introduced in [5] are an important
practical model making it possible to represent evidence about continuous real
variables. A GRFN is characterized by its mean, its variance and its imprecision.
Gaussian random variables and Gaussian fuzzy numbers are recovered, respec-
tively, in the special cases of infinite precision and zero variance. As shown in
[5], GRFNs define a parametric family of belief functions on the real line, closed
under the product-intersection rule.

As Dempster’s rule, the product-intersection rule introduced in [3][5] assumes
independence of the combined pieces of evidence. Formulas for the combination
of independent GRFNs are given in [5]. However, the independence assumption
is sometimes too restrictive in applications. For instance, opinions from differ-
ent experts, or predictions based on correlated features or overlapping datasets
(using, e.g., the ENNreg model [4]) often cannot be treated as independent. The
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combination of dependent GRFNs is, thus, an important problem; it is addressed
in this paper.

The rest of this paper is organized as follows. Necessary notions about epis-
temic random fuzzy sets are first recalled in Section 2. Formulas for the com-
bination of n GRFNs with an arbitrary covariance matrix are then derived in
Section 3. Finally, examples are presented in Section 4 and Section 5 concludes
the paper.

2 Background

General definitions and results about random fuzzy sets will first be recalled in
Sections 2.1. GRFNs will then be addressed in Section 2.2.

2.1 Epistemic Random Fuzzy Sets

Epistemic Random Fuzzy Set (ERFS) theory is based on two main components:
the representation of evidence by random fuzzy sets (inducing belief and plau-
sibility functions), and a combination mechanism: the product-intersection rule
for pooling independent evidence.

Let (Ω,ΣΩ , P ) denote a probability space, (Θ,ΣΘ) a measurable space, and

X̃ a mapping from Ω to the set [0, 1]Θ of fuzzy subsets of Θ. For any α ∈ [0, 1],

let αX̃ be the mapping from Ω to 2Θ that maps each ω ∈ Ω to the (weak) α-cut

of X̃(ω). If, for any α ∈ [0, 1], αX̃ is ΣΩ −ΣΘ strongly measurable [8], the tuple

(Ω,ΣΩ , P,Θ,ΣΘ, X̃) is said to be a random fuzzy set (RFS) [2].
In ERFS theory, a RFS represents a piece of evidence, which may be unre-

liable, vague (fuzzy), or both. The set Ω is seen as a set of interpretations of a
piece of evidence about a variable θ taking values in Θ. If interpretation ω ∈ Ω
holds, we only know that θ is constrained by the possibility distribution defined
by fuzzy set X̃(ω). Standard Dempster-Shafer theory only considers the case of

unambiguous evidence, in which every image X̃(ω) is crisp; mapping X̃ is then
a random set. In contrast, possibility theory only imposes a flexible constraint
on the unknown quantity, without considering that this constraint may be itself
uncertain. By considering both vagueness and uncertainty, ERFS is, thus, more
flexible, allowing for faithful representation of many different kinds of evidence.

To any RFS, we can be associate a belief function representing one’s beliefs
based on the available evidence. For technical reasons, we assume hereafter any
RFS X̃ to verify the following normalization conditions: (1) For all ω ∈ Ω, X̃(ω)

is either the empty set, or a normal fuzzy set, and (2) the image X̃(ω) is almost

surely nonempty, i.e., P ({ω ∈ Ω : X̃(ω) = ∅}) = 0. For any ω ∈ Ω, a conditional
possibility measure ΠX̃(ω) and a dual conditional necessity measure NX̃(ω) on

Θ can be defined as follows: for any B ⊆ Θ, ΠX̃(ω)(B) = supθ∈B X̃(ω)(θ), and

NX̃(ω)(B) = 1 −ΠX̃(ω)(B
c) if X̃(ω) 6= ∅ and NX̃(ω)(B) = 0 otherwise. For any

B ∈ ΣΘ, let BelX̃(B) and PlX̃(B) denote, respectively, the expected necessity
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and the expected possibility of B wrt P . The corresponding mappings BelX̃ :
ΣΘ → [0, 1] and PlX̃ : ΣΘ → [0, 1], are, respectively, belief and plausibility
functions [2, 11].

Product-intersection rule. Given two normal fuzzy subsets F̃ and G̃ of Θ, their
normalized product intersection is defined as

(F̃ � G̃)(θ) =


F̃ (θ)G̃(θ)

hgt(F̃ · G̃)
if hgt(F̃ · G̃) > 0

0 otherwise.

(1)

where hgt(F̃ · G̃) = supθ∈Θ F̃ (θ)G̃(θ) is the height of the product intersection of

F̃ and G̃. This operation is associative; as shown in [6], it is the only normalized
intersection operator having this property. The normalized product intersection
can be extended to RFSs as follows. Let (Ωi, Σi, Pi, Θ,ΣΘ, X̃i), i = 1, 2, be two
RFSs representing independent pieces of evidence. Their product intersection is
defined as the RFS (Ω1 ×Ω2, Σ1 ⊗Σ2, P̃12, Θ,ΣΘ, X̃1 ⊕ X̃2), where X̃1 ⊕ X̃2 is

the mapping from Ω1 × Ω2 to [0, 1]Θ defined as (X̃1 ⊕ X̃2)(ω1, ω2) = X̃1(ω1) �
X̃1(ω2), Σ1 ⊗Σ2 is the tensor product of Σ1 and Σ2, and P̃12 is the probability
measure on (Ω1 × Ω2, Σ1 ⊗ Σ2) obtained by conditioning the product measure

P1 × P2 by the fuzzy set of consistent pairs (ω1, ω2), defined as F̃ (ω1, ω2) =

hgt
(
X̃1(ω1) · X̃2(ω2)

)
, i.e.,

∀A ∈ Σ1 ⊗Σ2, P̃12(A) =

∫
Ω1

∫
Ω2
A(ω1, ω2)F̃ (ω1, ω2)dP2(ω2)dP1(ω1)∫

Ω1

∫
Ω2
F̃ (ω1, ω2)dP2(ω2)dP1(ω1)

, (2)

where A(·, ·) denotes the indicator function of A. The degree of conflict be-
tween the two pieces of evidence is defined as one minus the denominator in the
right-hand side of (2). The product intersection of RFSs is commutative and
associative. It extends both Dempster’s rule for combining random sets, and the
normalized product intersection (1) for combining possibility distributions.

2.2 Gaussian Random Fuzzy Numbers

Gaussian Fuzzy Numbers (GFNs) play the same role in quantitative possibility
theory as Gaussian random variables (GRVs) in probability theory. They are
defined as fuzzy subsets of R with membership function x 7→ exp

(
−h2 (x−m)2

)
,

where m ∈ R is the mode and h ∈ [0,+∞] is the precision. A GFN with
mode m and precision h will be denoted by GFN(m,h). GFNs are easily com-
bined by the normalized product-intersection operator, as the following prop-
erty holds: GFN(m1, h1) � GFN(m2, h2) = GFN(m12, h1 + h2), with m12 =
(h1m1 + h2m2)/(h1 + h2).

Let us now consider a GRV M : Ω → R with mean µ and variance σ2.
The mapping X̃ : Ω → [0, 1]R such that X̃(ω) = GFN(M(ω), h) defines a
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random fuzzy set called a Gaussian random fuzzy number (GRFN) with mean µ,
variance σ2 and precision h. A GRFN can, thus, be seen as a GFN whose mode is
uncertain and described by a Gaussian probability distribution. It is defined by a
location parameter µ, and two parameters h and σ2 corresponding, respectively,
to possibilistic and probabilistic uncertainty. A GRV or a GFN is recovered
when, respectively, h = +∞ or σ2 = 0. Formulas for the contour function plX̃ =
PlX̃({x}) as well as for the lower and upper cumulative distribution functions
(cdfs) BelX̃((−∞, x]) and PlX̃((−∞, x]) are given in [5].

As shown in [5], the family of GRFNs is closed under the product-intersection
combination operation ⊕. Let M1 ∼ N(µ1, σ

2
1) and M2 ∼ N(µ2, σ

2
2) be two

independent GRVs, and let X̃1 = GFN(M1, h1) and X̃2 = GFN(M2, h2) be

corresponding GRFNs. To combine X̃1 and X̃2 by the product-intersection rule,
we proceed as follows [5]:

1. We condition the joint probability distribution of (M1,M2) by the fuzzy

subset F̃ of R defined by F̃ (m1,m2) = hgt (GFN(m1, h1) ·GFN(m2, h2)) =
exp(−0.5h(m1 −m2)2), where h = h1h2/(h1 + h2). This conditional distri-

bution is normal with mean µ̃ and covariance matrix Σ̃, whose expressions
are given in [5].

2. The combined random fuzzy set X̃ = X̃1 ⊕ X̃2 is GFN(Mc, h1 + h2), where

Mc ∼ N(µc, σ
2
c ) with µc = h∗T µ̃ and σ2

c = h∗T Σ̃h∗, where

h∗ = (h1, h2)T /(h1 + h2)

is the vector of normalized precisions.

3 Extension to n Dependent GRFNs

The formulas for the product intersection of two GRFNs mentioned in Section
2.2 were established under the assumption that the underlying GRVs are inde-
pendent. In this section, we generalize these formulas to the combination of n
dependent GRFNs GFN(Mi, hi), i = 1, . . . , n, where (M1, . . . ,Mn) has a mul-
tidimensional normal distribution with an arbitrary covariance matrix. After
preliminaries exposed in Section 3.1, we prove our main result in Section 3.2.

3.1 Preliminaries

Let us first recall that a Gaussian fuzzy vector (GFV) with mode m ∈ Rn and
symmetric, positive semidefinite (PSD) precision matrix H ∈ Rn×n as a fuzzy
subset of Rn with membership function

x 7→ exp(−0.5(x−m)TH(x−m)).

It is denoted as GFV(m,H). The results derived in Section 3.2 are based on the
following propositions, which are direct consequences of results about the prod-
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uct of univariate and multivariate normal densities proved in [1]. Propositions 1
and 2 generalize1, respectively, Propositions 3 and 11 in [5].

Proposition 1 Let GFN(mi, hi), i = 1, . . . , n, be n GFNs.

1. The height of their product intersection is

F̃ (m1, . . . ,mn) = exp

[
−1

2

(
n∑
i=1

him
2
i −

(
∑n
i=1 himi)

2∑n
i=1 hi

)]
. (3)

2. Their normalized product intersection is a GFN with precision h =
∑n
i=1 hi

and mode m = (1/h)
∑n
i=1 himi.

Proposition 2 Let GFV(m1,H1) and GFV(m2,H2) be two GRVs. Assuming
that H1 is positive definite and H2 is PSD,

1. The height of their product intersection is

exp

(
−1

2
(m1 −m2)TH2[I +H−11 H2]−1(m1 −m2)

)
, (4)

where I is the n× n identity matrix;
2. Their normalized product intersection is a GFV with precision matrix H =
H1 +H2 and mode m = H−1(H1m1 +H2m2).

3.2 Main Result

Let us consider n GRFNs GFN(Mi, hi), i = 1, . . . , n, where M = (M1, . . . ,Mn)
has a multivariate normal distribution with mean µ and covariance Σ. We first
assume this distribution to be non-degenerate, but this assumption will be re-
laxed later. To combine these n GRFNs by the product intersection rule, we
first need to condition the distribution of M by the fuzzy subset F̃ of consistent
tuples m1, . . . ,mn given by (3). We first remark that (3) can be written in vec-

tor form as F̃ (m) = exp
[
− 1

2m
TAm

]
, where m = (m1, . . . ,mn)T and A is the

symmetric and PSD matrix

A = diag(h)− hh
T

1Th
,

where h = (h1, . . . , hn)T and 1 = (1, . . . , 1)T . The conditional density of M

given fuzzy event F̃ is

f(m|F̃ ) =
f(m)F̃ (m)∫
f(m)F̃ (m)dm

. (5)

1 The rigorous proof of Proposition 2 cannot be given here for lack of space; it will be
given in an extended version of this paper.
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From Proposition 2, f(m|F̃ ) ∝ exp
(
− 1

2 (m− µ̃)T Σ̃
−1

(m− µ̃)
)

with

Σ̃
−1

= Σ−1 +A and µ̃ = Σ̃(Σ−1µ+A0) = Σ̃Σ−1µ.

Writing Σ̃
−1

= Σ−1(I +ΣA), we get

Σ̃ = (I +ΣA)−1Σ and µ̃ = (I +ΣA)−1µ. (6)

Remark 1 We have established (6) under the assumption that the distribution
of M has a density (i.e., Σ is nonsingular). However, it can be shown that
I + ΣA is nonsingular. As, when singular, Σ is the limit of a sequence of
nonsingular covariance matrices, (6) remains true by continuity, even when the
distribution of M is degenerate.

Combination. From Proposition 1, the product intersection of the n GRFNs
GFN(Mi, hi), i = 1, . . . , n GRFN is the GRFN GFN (Mc,

∑n
i=1 hi) with

Mc =

∑n
i=1 hiMi∑n
i=1 hi

= h∗TM ∼ N(µc, σ
2
c ), (7)

where h∗ = (h1, . . . , hn)/
∑n
i=1 hi, µc = h∗T µ̃ and σ2

c = h∗T Σ̃h∗.

Degree of conflict. The degree of conflict between the n GRFNs is defined as one
minus the denominator on the right-hand side of (5). From (4) in Proposition 2,

and noticing that |Σ̃|/|Σ| = |Σ̃Σ−1| = |I +ΣA|−1, we get

κ = 1− |I +ΣA|−1/2 exp

(
−1

2
µTA[I +ΣA]−1µ

)
. (8)

Remark 2 The equations given in [5] for the product intersection of two inde-
pendent GRFNs and their degree of conflict can be recovered, respectively, from
(7) and (8) when n = 2 and Σ is diagonal.

4 Numerical Example

Let us consider two GRFNs X̃1 = GFN(M1, h1) and X̃2 = GFN(M2, h2) with
M1 ∼ N(1, 4), M2 ∼ N(3, 1), h1 = 2, and h2 = 1. Their contour functions as
well as their lower and upper cdfs are shown in Figure 1a. Figures 2a and 2b
show ellipses with 95% coverage probability for the unconditional distribution
of random vector (M1,M2) and its conditional distribution given F̃ for, respec-
tively, ρ = 0.9 and ρ = −0.9. The combined GRFNS for three values of the
correlation coefficient ρ ∈ {−1, 0, 1} are shown in Figure 1b. It is clear that
the assumed correlation coefficient strongly influences the result of the combi-
nation. Figures 3a and 3b show, respectively, the mean and standard deviation
of the combined GRFN as functions of ρ. The standard deviation appears to be
particularly sensitive to the value of ρ.
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Fig. 1: Two GRFNs (a) and their combination (b) assuming ρ = −1 (solid lines),
ρ = 0 (broken lines) and ρ = 1 (dotted lines). Each GRFN is represented by its
contour function (red curve) and by its lower and upper cdfs (blue curves).
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Fig. 2: 95% coverage probability ellipses for the unconditional distribution of
random vector (M1,M2) (solid red curve) and its conditional distribution given

F̃ (dashed blue curve), for ρ = 0.9 (a) and ρ = −0.9 (b).

Figure 3c shows the degree of conflict as a function of ρ. It reaches a minimum
value of 0.629 for ρ = 0.625. In real applications where the sources cannot be
assumed to be independent but the precise value of the correlation is unknown,
the value corresponding to the minimum conflict between the sources could be
chosen. Figures 4a and 4b show, respectively, the minimum degree of conflict as
a function of the distance ∆ = |µ1 − µ2| between means and the corresponding
correlation coefficient ρ̂ with, as before, σ1 = 2, σ2 = 1, h1 = 2, and h2 = 1.
Figure 4a also displays the conflict for the product-intersection rule (ρ = 0) and
the complete positive dependence rule (ρ = 1). Interestingly, we have ρ̂ = 1 when
the conflict is low and ρ̂ = −1 when the conflict is high, while ρ̂ takes values
between −1 and 1 for intermediate distances.
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Fig. 3: Mean (a), standard deviation (b) and degree of conflict (c) as functions
of ρ for the combination of the two GRFNs shown in Figure 1a.
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Fig. 4: (a): (a): Minimum degree of conflict (solid blue curve), degree of conflict
for ρ = 0 (dashed red curve) and ρ = 1 (green dashed-dotted curve) vs. ∆ =
|µ1 − µ2|. (b): Minimum-conflict correlation coefficient ρ̂ as a function of ∆.

5 Conclusions

We provided formulas for the combination of n ≥ 2 GRFNs with an arbitrary
correlation matrix. The results can be directly applied to the combination of
transformed GRFNs and mixtures of GRFNs, as defined in [7]. In practice, the
correlation matrix will rarely be known and it will need to be estimated. In
the case where n sources provide GRFNs and no ground truth is available, the
correlation coefficients minimizing the conflict can be determined. This approach
was exemplified in Section 4 in the case of two sources; it can be easily extended
to n sources using a suitable representation of the correlation matrix. In the
supervised case such as, e.g., a regression task where n ENNreg models [4] provide
predictive GRFNs and ground truth is available, a loss function such as the
generalized negative log-likelihood introduced in [4] can be minimized. Another



Combination of Dependent GRFNs 9

problem, not addressed in this paper, is the consideration of the reliability or
“relevance” of information sources in the combination. These and other research
directions will be explored in future work.
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