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Abstract. We introduce a new method for quantifying prediction un-
certainty in regression neural networks using evidential likelihood-based
inference. The method is based on the Gaussian approximation of the
likelihood function and the linearization of the network output with re-
spect to the weights. Prediction uncertainty is described by a random
fuzzy set inducing a predictive belief function. Preliminary experiments
suggest that the approximations are very accurate and that the method
allows for conservative uncertainty-aware predictions.
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1 Introduction

In recent years, research in machine learning (ML) has been increasingly fo-
cused on developing models that not only have good prediction performance,
but also provide some measure of prediction uncertainty [1, 10]. The mainstream
Bayesian approach is computationally intensive and it requires the existence of
prior knowledge about the model parameters, an unrealistic assumption in the
case of neural networks with thousands of weights. The Bayesian approach also
does not clearly separate aleatory uncertainty (due to variability of the response
given the predictors) from epistemic uncertainty (due to lack of knowledge of
the true data distribution). In this paper, continuing previous work, I propose
to explore another direction referred to as evidential machine learning (EML),
in which uncertainty is quantified using belief functions. In particular, a belief
function induced by a random set [13] or a random fuzzy set [7] has a probabilis-
tic component, suitable for representing aleatory uncertainty, and a set-based
component that can express epistemic uncertainty.

At least two main approaches have been proposed for supervised learning
in the evidential ML framework. The distance-based approach consists in com-
puting a predictive belief function by assessing the similarity between the input
vector and training instances or prototypes. This idea was first proposed for
classification [3][4][9] and was only recently applied to regression [5][6]; it does
not assume any parametric statistical model. In contrast, the likelihood-based
approach to statistical prediction, first introduced in [11] and revisited in [7]
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using the new concept of epistemic random fuzzy set, starts with a parametric
model and treats the relative likelihood function as a possibility distribution.
By expressing the response variable as a function of the parameter and a ran-
dom variable with known probability distribution, one obtains a random fuzzy
set modeling prediction uncertainty. Noticeably, this approach boils down to
Bayesian inference when a prior probability distribution is assumed.

Likelihood-based evidential prediction was applied to linear regression in [12]
and to logistic regression in [8]. Applying it to nonlinear models with a large
number of parameters while keeping computations tractable is particularly chal-
lenging. First results in this direction are reported in this paper, with a focus on
regression neural networks. The rest of this paper is organized as follows. Neces-
sary notions about random fuzzy sets and likelihood-based evidential inference
will first be recalled in Section 2. Our new approach is then described in Section
3 and experimental results are reported in Section 4.

2 Background

Background notions about possibility theory and epistemic random fuzzy sets
will first be recalled in Section 2.1. Evidential likelihood-based inference will
then be summarized in Section 2.2.

2.1 Possibility Theory and Random Fuzzy Sets

Possibility and necessity measures. Let θ be a variable taking values in Θ. As-
sume that we receive a piece of evidence telling us that “θ is F̃”, where F̃ is a
normal fuzzy subset of Θ (i.e., a map F̃ : Θ → [0, 1] such that supθ∈Θ F̃ (θ) = 1).
This evidence induces a possibility measure ΠF̃ from 2Θ to [0, 1] defined by

ΠF̃ (B) = supθ∈B F̃ (θ), for all B ⊆ Θ. The number ΠF̃ (B) is interpreted

as the degree of possibility that θ ∈ B, given that θ is F̃ [16]. The corre-
sponding possibility distribution is the mapping πF̃ : Θ → [0, 1] defined by

πF̃ (θ) = ΠF̃ ({θ}) = F̃ (θ). It is identical to F̃ : the degree of possibility that θ = θ

given the flexible constraint “θ is F̃” is equal to the degree of membership of θ
to fuzzy set F̃ . The dual necessity measure is defined as NF̃ (B) = 1−ΠF̃ (Bc),
where Bc denotes the complement of B in Θ.

Gaussian fuzzy vectors. A Gaussian fuzzy vector (GFV) is a normal fuzzy subset

F̃ of Θ = Rp (with p ≥ 1) such that F̃ (θ) = exp
(
− 1

2 (θ −m)TH(θ −m)
)
, where

m ∈ Rp is the mode of F̃ , andH ∈ Rp×p is a symmetric and positive semidefinite
precision matrix. We write F̃ ∼ GFV(m,H). When p = 1, we say that F̃ is a
Gaussian fuzzy number (GFN). The following proposition (proved in [8]) states
that the image of a GFV by a linear mapping is still a GFV.

Proposition 1 Let θ ∈ Rp be a p-dimensional variable constrained by a pos-
sibility distribution πθ ∼ GFV(m,H) with mode m ∈ Rp and positive defi-
nite precision matrix H ∈ Rp×p. Let U ∈ Rq×p be a real matrix of rank
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q ≤ p, v ∈ Rq and z = Uθ + v ∈ Rq. Variable z is constrained by πz ∼
GFV

(
Um+ v, (UH−1UT )−1

)
.

Random Fuzzy Sets. Let (Ω,ΣΩ , P ) denote a probability space, (Θ,ΣΘ) a mea-

surable space, and X̃ a mapping from Ω to the set [0, 1]Θ of fuzzy subsets

of Θ. For any α ∈ [0, 1], let αX̃ be the mapping from Ω to 2Θ such that

ω 7→ {θ ∈ Θ : X̃(ω)(θ) ≥ α}. If, for any α ∈ [0, 1], αX̃ is ΣΩ − ΣΘ strongly

measurable [13], the tuple (Ω,ΣΩ , P,Θ,ΣΘ, X̃) is said to be a random fuzzy set
(RFS) [2]. In Epistemic Random Fuzzy Set theory, a RFS represents a piece of
evidence about a variable θ taking values in Θ. The set Ω is seen as a set of
interpretations of this piece of evidence, which may be unreliable, vague (fuzzy),
or both. If interpretation ω ∈ Ω holds, we only know that θ is constrained
by the possibility distribution defined by fuzzy set X̃(ω). To any RFS verify-
ing normalization conditions [7], we can associate a belief function representing
one’s beliefs based on the available evidence. For any ω ∈ Ω, a conditional
possibility measure ΠX̃(ω) on Θ can be defined as follows: for any B ⊆ Θ,

ΠX̃(ω)(B) = supθ∈B X̃(ω)(θ). For any B ∈ ΣΘ, let BelX̃(B) and PlX̃(B) de-

note, respectively, the expected necessity and the expected possibility of B wrt
P . The corresponding mappings BelX̃ : ΣΘ → [0, 1] and PlX̃ : ΣΘ → [0, 1], are,
respectively, belief and plausibility functions [2].

2.2 Evidential Likelihood-based Inference

We consider an observed random vector Y with probability density function
(pdf) fY |θ, where θ ∈ Θ is the unknown parameter. The likelihood of any value
θ of the parameter after observing Y = y is L(θ;y) = ηfY |θ(y), where η is an
arbitrary positive constant. Assuming that supθ L(θ;y) < +∞, we can define
the relative likelihood of θ as

πθ|y(θ) =
L(θ;y)

supθ′∈Θ L(θ′;y)
. (1)

As proposed in [7], we interpret mapping πθ|y : Θ → [0, 1] as a possibility distribu-
tion over Θ or, equivalently, as the fuzzy set of likely values of θ after observing
Y = y. It is, thus, a representation of the information about θ provided by
observation y.

Assuming lnπθ|y(θ) to be twice differentiable, a tractable approximation of
function πθ|y(θ) can often be obtained by computing a Taylor expansion of its

logarithm about a solution θ̂ of the score equation
∂ lnπθ|y
∂θ = 0 up to the second

order [14]. We then obtain

πθ|y(θ) ≈ exp

[
−1

2
(θ − θ̂)TI(θ̂)(θ − θ̂)

]
, (2)

where I(θ̂) is the observed information matrix defined as

I(θ̂) = −
∂2 lnπθ|y

∂θ∂θT

∣∣∣∣
θ=θ̂

.
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As noted in [14], (2) is usually a good approximation when Y = (Y1, . . . , Yn) is
an independent sample and n is large.

Let us now consider a prediction problem, where we want to predict the
value of a new Y0 with sample space Y, whose distribution also depends on θ.
We can always write Y0 = ϕ(θ, U), where U is a pivotal random variable with
known distribution and sample space U , and ϕ is a mapping from Θ × U to Y
[12]. After observing the data y, our knowledge about θ is represented by the
possibility distribution πθ|y. By Zadeh’s extension principle [15], our knowledge
of Y0 conditionally on U = u is, thus, represented by the possibility distribution
πY0|y,u = ϕ(πθ|y, u) defined as

πY0|y,u(y) = sup
{θ∈Θ:ϕ(θ,u)=y}

πθ|y(θ) (3)

for all y ∈ Y. The mapping Ỹ : [0, 1]→ [0, 1]Y such that u 7→ πY0|y,u is, then, a
RFS representing statistical evidence about Y0.

3 Application to Regression Neural networks

We consider a neural network for regression with weight vector w ∈ RN . The
output for input x is denoted by f(x;w). We assume that the response variable
for an input vector x can be written as Y = f(x;w) + σU, where σ is the error
standard deviation and U ∼ N(0, 1) is a random variable with standard normal
distribution. Given iid data {(xi, yi)}ni=1, the network is trained by maximizing
the penalized log-likelihood

`λ(θ) = −n log σ − 1

2
log(2π)− 1

2σ2

n∑
i=1

(yi − f(xi;w))2 −
N∑
j=1

λjw
2
j , (4)

where θ = (wT , σ)T is the vector of all parameters in the model and λ =
(λ1, . . . , λN ) is a vector of N regularization coefficients. The general form of
the regularizer in (4) allows us to specify a distinct regularization coefficient
for each weight; typically λj is set to 0 if wj is a bias term. Our approach is
based on a second-order approximation of the penalized log-likelihood (4) and
a linear approximation of the map w 7→ f(x;w) for a given input x. These two
approximations are detailed below.

Possibility distribution of θ. Let θ̂ = (ŵT , σ̂)T be a global maximizer of `λ(θ).

We define the joint possibility distribution of θ as πθ|y(θ) = exp
[
`λ(θ)− `λ(θ̂)

]
.

We note that πθ|y is proportional to the product of the relative likelihood (1)
and a GFV π0 ∼ GFV (0, 2 diag(λ)), which can be seen as encoding prior in-
formation. Using the normal approximation (2), πθ|y can be approximated by

a GFV with mode θ̂ and precision matrix Iλ(θ̂) = − ∂2`λ
∂θ∂θT

∣∣∣
θ=θ̂

. Using simple

calculations, it can be shown that

Iλ(θ̂) =

(
H v
vT a

)
(5)



Uncertainty quantification in regression neural networks 5

with

H = − ∂2`λ
∂w∂wT

∣∣∣∣
θ=θ̂

, v = − ∂2`λ
∂w∂σ

∣∣∣∣
θ=θ̂

= (4/σ̂)λ� ŵ,

and a = − ∂2`λ
∂σ2

∣∣∣
θ=θ̂

= 2n/σ̂2, where � denotes pointwise multiplication.

Prediction. We now wish to predict a new outcome Y0 of the response for x = x0;
it can be written as Y0 = f(x0,w) + σU = ϕ(x0,θ, U), with U ∼ N(0, 1).
Given U = u, the uncertainty Y0 is constrained by the possibility distribution
πY0|y,u = ϕ(x0, πθ|y, u). This possibility distribution can be approximated by
linearizing f(x0;w) around ŵ, which gives

f(x0;w) ≈ f(x0; ŵ) + g(x0)T (w − ŵ),

with g(x0) = ∂f(x0;w)
∂w

∣∣∣
w=ŵ

. With this approximation, we have

Y0 ≈ (g(x0)T , U)θ + f(x0, ŵ)− g(x0)T ŵ.

From Proposition 1, assuming matrix Iλ(θ̂) to be positive definite, possibility
distribution πY0|y,u can then be approximated by a GFN with mode f(x0, ŵ)+σ̂u
and precision

h(x0, u) =

[(
g(x0)T u

)
Iλ(θ̂)−1

(
g(x0)
u

)]−1
. (6)

The inverse of the precision matrix (5) can be written as

Iλ(θ̂)−1 =
1

c

(
cC−1 −H−1v
−vTH−1 1

)
,

where C = H − vvT /a = H − 8(λλT ) � (ŵŵT )/n, and

c = a− vTH−1v =
2n

σ̂2

(
1− 8

n
(λλT ) � (ŵTH−1ŵ)

)
.

Hence, (6) can be written as

h(x0, u) = c
[{
cg(x0)TC−1 − vTH−1u

}
g(x0)−

[
g(x0)TH−1v + u

]
u
]−1

=
1

α+ γu+ u2/c
(7)

with α = g(x0)TC−1g(x0) and γ = −2c−1g(x0)TH−1v. The predictive RFS is,

thus, Ỹ (x0) : U 7→ GFN(f(x0; ŵ)+Uσ̂, h(x0, U)). We can observe that both the

mode and the precision of Ỹ (x0)(U) depend on U : Ỹ (x0) is, thus, not a Gaus-
sian random fuzzy number (GRFN) as defined in [7]. The degrees of belief and
plausibility for any real interval can easily be computed by Monte Carlo simu-
lation. Alternatively, we can observe that, for large n, the terms γu and c−1u2
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become negligible compared to α in the denominator on the right-hand side of
(7); replacing u and u2 by their expectations, h(x0, u) can be approximated by

1/(α + 1/c). RFS Ỹ (x0) is then, approximately, a GRFN with mean f(x0; ŵ),
variance σ̂2 and precision h(x0) = 1/(α+ 1/c).

Remark 1 In the above derivations, we have assumed that (i) θ̂ is a global
maximizer of `λ(θ), and (ii) precision matrix (5) is positive definite. The first
assumption is necessary to ensure that the possibility distribution πθ|y does not
take values greater than one. It is very difficult, if not impossible, to guarantee
that this assumption is verified, but we can ensure that we have reached a high
enough maximum by running the optimization algorithm a large number of times.
Assumption (ii) ensures that the inverse of the precision matrix exists and the
precisions (6) are positive. As we will see in Section 4, this assumption is usually

not verified exactly as matrix Iλ(θ̂) typically has a small number of negative
eigenvalues. If necessary, we may add a small quantity to the diagonal elements
of Iλ(θ̂) to make it nonsingular and well conditioned.

4 Simulation results

To evaluate the quality of the approximations performed in Section 3 and study
some properties of the corresponding predictive belief functions, we considered
the Boston dataset included in the R package MASS. We considered only three
of the most informative predictors: crim, zn and lstat, which were normalized
with zero mean and unit standard deviation. The data were split into a training
set of size 300 and a test set of size 206. A network with one layer of 50 hidden
units with Exponential Linear Unit (ELU) activation functions was fit to the
data. The regularization coefficients had the same value λj = λ for non-bias
weights and λj = 0 for bias weights. Coefficient λ was determined by five-fold
cross-validation, yielding λ = 0.1.

Figure 1 shows three examples of exact and approximated possibility distri-
butions Ỹ (x)(u) for different test input vectors x and random numbers u. The
“exact” possibilities πY0|y,u(y) were computed by maximizing the log-likelihood
`λ(θ) subject to the constraint f(x,w) = y. As we can see, the exact possibility
distributions are almost undistinguishable from their Gaussian approximations,
which are themselves very well approximated by GRFNs.

The lower and upper predictive cdfs computed using the Gaussian approx-
imation are shown in Figure 2, together with the GRFN approximation with
fixed precision. Again, we can see that this latter approximation is excellent: the
predictive RFSs are very well approximated by GRFNs. Figure 2 also displays
the upper and lower predictive cdfs obtained by the ENNreg model [6].

Figure 3 shows calibration curves for the likelihood-belief functions intro-
duced in this paper and for those computed by ENNreg. In [6], we defined cal-
ibration curves as plots of coverage probabilities of intervals centered on µ̂(x0),
with degree of belief α, for different values of α ∈ [0, 1]; the predictive belief func-
tions are calibrated if the curve is above the diagonal. In Figure 3, we display
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Fig. 1: Exact possibility distributions Ỹ (x)(u) (solid blue lines), Gaussian ap-
proximations (red dashed lines) and Gaussian approximations with fixed preci-
sion (green dash-dotted lines) for three values of x and u.
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Fig. 2: Lower and upper cdfs of predictive RFSs Ỹ (x) for the same three input
vectors as those of Figure 1 (solid blue lines), Gaussian approximations with fixed
precision (red dashed lines), and cdf of probabilistic prediction (blue dotted line).
The predictive cdfs obtained by ENNreg are shown as cyan dash-dotted lines.

more detailed information in that we consider not only two-sided belief intervals
centered at µ̂(x0) (Figure 3c), but also one-sided intervals defined by a lower
bound (Figure 3a) or an upper bound (Figure 3b). Furthermore, we display not
only the coverage probabilities of different belief intervals, but also their average
plausibilities.

We can see that, for both methods, the belief intervals are conservative (i.e.,
their coverage rates are greater than their belief degrees), and the coverage
rates are bounded above by their average plausibilities, which corresponds to
a stronger notion of calibration than that introduced in [6]. For this dataset,
there appears to be little difference between the calibration graphs of the pre-
dictions obtained by two methods. As noted in [6], predictions can be adjusted
using a validation sets to be as precise as possible, while remaining calibrated.
A more extensive comparison between the two methods remains to be done.
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Fig. 3: Calibration curves for belief lower bounds (a), belief upper bounds (b) and
two-sided belief intervals (c) for likelihood-based belief functions (solid lines) and
ENNreg (dashed lines). The lower green curves, middle blue curve and upper red
curves correspond, respectively, to the coverage rates of probabilistic predictive
intervals, coverage rates of belief intervals, and average plausibilities of belief
intervals.

5 Conclusions

We have shown how to apply likelihood-based inference to regression neural
network. The method is based on two approximations: the Gaussian approxi-
mation of the likelihood function, and the linearization of the network output
with respect to the weights. These approximation make it possible to quantify
prediction uncertainty by a RFS, which can itself be approximated by a Gaus-
sian random fuzzy number as introduced in [7]. Experimental results with a real
dataset suggest that these approximations are very accurate and that they allow
us to compute calibrated predictive belief functions with low complexity (the
most computationally expensive step being the calculation and inversion of the
Hessian matrix, which need to be done only once). These preliminary results
will need to be confirmed by much more extensive experiments. Also, in future
work, our approach will be applied to a more realistic heteroscedastic model in
which the conditional variance is a function of the inputs.
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