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Inland waters, especially wetlands, play a crucial role in biodiversity, water
resources and climate, and contribute significantly to global methane
emissions. This study investigates the seasonal and inter-annual variability of
the 0.25° × 0.25° surface water extent (SWE) from the Global Inundation Extent
from Multi-Satellites (GIEMS-2) extended to a 30-year time series (1992–2020).
Comparison with MODIS-derived SWE, CYGNSS-derived SWE and the Global
Lakes and Wetlands Database (GLWD) shows consistent spatial patterns globally
and over 10 different basins, although there are discrepancies in extent, partly due
to different resolutions of the initial satellite observations. Strong cross-
correlation (>0.8) in seasonal variability is observed when comparing GIEMS-2
with MODIS, CYGNSS and river discharge in most of the basins studied.
Encouraging similarities were found in the inter-annual variability in most
basins (cross-correlation >0.6) between GIEMS-2 and MODIS over 20 years,
and between GIEMS-2 and river discharge over long time series, including over
the Amazon and the Congo basins. These results highlight the reliability of
GIEMS-2 in detecting changes in SWE in different environments, especially
under dense vegetation, making it a valuable resource for calibrating
hydrological models and studying global methane emissions.
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1 Introduction

Inland surface waters influence the ecological and climatic balance of our planet. Rivers
and lakes play a role in the hydrological cycle as well as in human activities such as
agriculture. Wetlands regulate freshwater, host rare and diverse fauna and flora, and store
carbon in peatlands (Denny, 1994; Meli et al., 2014; Poulter et al., 2021). Moreover, these
areas contribute significantly to global emissions of methane, a potent greenhouse gas
(Torres-Alvarado et al., 2005; Saunois et al., 2020). Approximately one-third of the total
methane emission is estimated to come from inland water systems, and these natural
methane emissions represent the largest uncertainty in the global budget and a major
contributor to its inter-annual variability (Wania et al., 2013; Saunois et al., 2020). For these
reasons, the monitoring of surface waters at local and global scales over long time series is
essential in the context of climate change, with these ecosystems particularly vulnerable to
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significant alterations (Papa and Frappart, 2021; Cretaux et al., 2023)
and affected by floods and droughts of unprecedented magnitude
(Kreibich et al., 2022).

The dynamics of surface waters can be simulated using
hydrological models and observed from in situ measurements or
from satellites. Models allow the study of periods or locations where
few or no observations are available, and can provide projections
into the future. However, these models have large uncertainties due
to the challenges of understanding, representing, and
parameterizing all the processes involved (Kraft et al., 2022).
Relevant in situ and remote sensing observation data offer
another approach to quantify key variables linked to the water
cycle (Fernández-Prieto et al., 2012; Fassoni-Andrade et al., 2021).
They are useful to evaluate or feed models using different integration
approaches (Kraft et al., 2022).

Measurements of surface water extent rely exclusively on
remote sensing data, as there are only a few in situ flood
monitoring stations worldwide, and these are not capable of
measuring flood extent. Different remote sensing techniques are
commonly used to map Surface Water Extent (SWE) dynamics.
They include the use of visible and near-infrared (NIR) images
acquired at medium and high spatial resolution at a daily
(Moderate Resolution Imaging Spectroradiometer, MODIS) to
bi-monthly (Landsat missions) temporal sampling, providing
observation over several decades (Pekel et al., 2016; Huang
et al., 2018). Visible and NIR observations are severely
impacted by clouds and vegetation, preventing the continuous
estimation of SWE dynamically on a global scale. Microwave
observations are particularly relevant for wetland studies
because they can penetrate clouds and vegetation better. Passive
microwave satellite observations from Special Sensor Microwave/
Imager (SSM/I) and Special Sensor Microwave Imager Sounder
(SSMIS) instruments provide twice-daily observation long time
series (from the 90s) at low spatial resolution (from 69 km × 43 km
at 19 GHz to 15 km × 13 km at 85 GHz). SWE detection using
passive microwaves is limited by snow, ocean contamination, and
confusion with desert signatures (Prigent et al., 2001). Surface
water are also observed using active microwave sensors, with
synthetic aperture radar (SAR) providing very high resolution
data (down to 1 m) (Shen et al., 2019). However, SAR-based SWE
are mostly regional or local, as it is difficult to retrieve water
surfaces coherently on a global scale. In addition, the time
resolution was poor before the launch of Sentinel-1 A and B in
2014 and 2016 enabling a 6-day revisit. Finally, L-band spaceborne
GNSS reflectometry (GNSS-R) observations from the CYGNSS
mission provides data at ~ 1 km × 6 km resolution with a 7 h mean

revisit time on a 25 km × 25 km pixel (Ruf et al., 2016). However,
the actual coverage period is short (2016-present), and the spatial
coverage ranges only from 40°S to 40°N.

To overcome the limitations of a single type of observations, the
combination of multiple satellite measurements has been proposed
to estimate surface water extent and their dynamics (Prigent et al.,
2001; Jensen and Mcdonald, 2019). The Global Inundation Extent
from Multi-Satellites (GIEMS) merges passive and active
microwaves observations with Normalized Difference Vegetation
Index (NDVI, from visible and near-infrared observations) to
monitor global SWE at 0.25° × 0.25° spatial resolution and
monthly time steps since 1992 (Prigent et al., 2001; Prigent et al.,
2007; Papa et al., 2010; Pham-Duc et al., 2017). Prigent et al. (2020)
improved the GIEMS methodology (GIEMS-2), and this dataset has
been extended to 2020, providing the opportunity to study global
inundation dynamics over a 30-year period.

This study focuses on the assessment of the seasonal and inter-
annual variability of the GIEMS-2 product. With GIEMS-2
providing long-time series of global SWE, it can help prescribe
surface water areas for the estimation of natural methane emissions
and its temporal variability. For a better understanding and
attribution of the inter-annual fluctuations of global methane
budget (Bousquet et al., 2006; Peng et al., 2022), the evaluation
of the naturally emitted methane from the surface water should be
based on surface water extent with realistic inter-annual fluctuations
and trends.

In this work, the GIEMS-2 long-term product is compared with
independent SWE products over a wide range of environments,
from tropical to boreal regions. The comparison products include
two decades of MODIS estimates, 1 year of CYGNSS estimates, and
a static product. The temporal variability of GIEMS-2 is also
evaluated against river discharge records. The analysis compares
spatial patterns and then focuses on the seasonal and inter-annual
variability of the selected independent products. The limitations and
strengths of GIEMS-2 are discussed in the context of the previous
comparison, with further insights provided by discussions of
GIEMS-2 in comparison with another microwave-based SWE
product and the outputs of hydrological models.

2 Data

2.1 Independent datasets

This section present the independent datasets used for GIEMS-2
evaluation, which are summarized in Table 1.

TABLE 1 Characteristics of the independent products used for comparison analysis.

Data product Wavelength Spatial coverage Spatial resolution Temporal resolution Available period

GIEMS-2 Microwaves, visible, near IR Global 0.25° × 0.25° Monthly 1992–2020

MODIS Visible Selected basins ~0.0045° × 0.0045° 8 days 2000–2020

CYGNSS L-band 37.5°S to 37.5°N 0.1° × 0.1° 7 days August 2018–July 2019

GLWD — Global 0.0083° × 0.0083° Static —

River gauges — Point measurements — Monthly/daily Station dependent
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2.1.1 Extended GIEMS-2 (1992–2020)
GIEMS-2 (1992–2015), as described in Prigent et al. (2020), is

essentially based on passive microwave observations from the
SSM/I and SSMIS satellites that include measurements from 18 to
90 GHz. First, a neural network is used to derive monthly passive
emissivities at 19 and 37 GHz. Then, an unsupervised
classification process is used to identify inundated pixels (snow
pixels are flagged, i.e., not processed). For this, a combination of
active microwave satellite observations (scatterometer) and NDVI
helps to better characterize the vegetation and to subtract its
contribution from the passive microwave signal. Finally, monthly
global maps of surface water extent are calculated frommicrowave
emissivities time series at a spatial resolution of 0.25° × 0.25°, using
the active microwave data and NDVI to account for vegetation.
The seamless consistent time series relies on carefully inter-
calibrated SSM/I and SSMIS observations, provided by the
EUMETSAT Climate Satellite Application Facilities (Fennig
et al., 2020). The initial GIEMS-2 dataset (1992–2015) (Prigent
et al., 2020) has been extended to 2020 for this study, taking into
account the latest processing and inter-calibration changes.
GIEMS-2 dataset includes all continental water surfaces,
including wetlands, rivers, reservoirs, and lakes, with the
exception of the largest lakes that have been masked.

2.1.2 MODIS-based surface water
extent (2000–2020)

Inundation extent has also been derived from the radiances
acquired by the MODIS instrument launched on the Terra satellite
in 1999. MOD09A1 version 6, a level 3 product, is used. The data can
be freely downloaded from https://search.earthdata.nasa.gov/search.
The approach is based on the multi-thresholding of the Enhanced
Vegetation Index (EVI) andLand SurfaceWater Index (LSWI) spectral
indices derived from the MODIS radiances, and their difference
(Frappart et al., 2018; Normandin et al., 2018; Normandin et al.,
2024). It is a simplified version of the method earlier proposed by
Sakamoto et al. (2007). The resulting maps have a spatial resolution of
500 m, a temporal resolution of 8 days, and are available over
2000–2022. Pixels are classified as inundated, mixed (containing
both water and vegetation) or non-inundated for each map. Due to
limitations related to visible observations, such as vegetation and cloud
cover, the data are not accessible globally but have been calculated over
specific basins. The available basins are the Mackenzie Delta, the lower
Ob, theMississippi, the Yangtze, theMekong, the Nile, the Inner Niger
Delta, the Lake Chad, La Plata, and the Eyre.

2.1.3 CYGNSS-based surface water extent (August
2018–July 2019)

The Cyclone Global Navigation Satellite System (CYGNSS) is a
spaceborne GNSS-Reflectometry (GNSS-R) mission composed of
8 micro-satellites launched in 2016 (Ruf et al., 2016). Each satellite
carries a receiver that collects the reflected GPS L1 signals (wavelength
~19 cm) in a bi-static configuration. The 8 satellites collect up to
64 measurements per second (32 before July 2019) between ±40°

latitude and so provide a very high repetitivity. The main products of
CYGNSS are the L1 Delay Doppler Maps (DDM). Highly coherent
signals are typically associated with surface water, so the coherent
reflectivity from CYGNSS was used to detect the presence of
inundation (Zeiger et al., 2022). These coherent reflectivities were

converted to water fraction through a linear model trained on
inundation maps from MODIS (Frappart et al., 2018; Normandin
et al., 2018) for low vegetation cover and from the L-band SAR
instrument on board JERS-1 (Hess et al., 2003; Hess et al., 2015) for
dense vegetation cover. The linear model takes into account the
attenuation by the vegetation using a third-order polynomial fit
against the GlobBiomass Above Ground Biomass (AGB) maps
from Santoro et al. (2021). The resulting SWE product has a
0.1° × 0.1° spatial resolution and a 7-day temporal resolution. It
was computed for 1 year (August 2018–July 2019) and the spatial
coverage ranges from 37.5°S to 37.5°N. The dataset is available at
https://doi.org/10.6096/3003 and more details can be found in Zeiger
et al. (2023).

2.1.4 GLWD
The Global Lakes and Wetlands Database level 3 (Lehner and

Döll, 2004) provides globally a static distribution of the fraction of
12 wetlands and open water classes at 30-s resolution. It is not based
directly on satellite observations, but derived from 17 other datasets
(see Lehner and Döll (2004) for more details). GLWD is a widely
used point of comparison for surface water studies.

2.1.5 River discharges
River discharge measurements were collected from the Global

Streamflow and Metadata Archive (GSIM) (Do et al., 2018;
Gudmundsson et al., 2018), the HYBAM Observation Service
(https://hybam.obs-mip.fr/fr/donnees/), the Water Office Canada
(http://wateroffice.ec.gc.ca/), and personal exchange with B. Pham-
Duc for data over the Mekong. When several stations were available
in a basin, the selection of the station aimed to ensure its location
was as integrative as possible with respect to the entire basin.
Detailed information about river discharges stations used can be
found in Supplementary Table S1.

2.2 Auxiliary datasets

This section describes datasets used for discussion in this work
that have an interdependence withGIEMS-2. SWAMPS uses identical
microwave observations as GIEMS-2, while TOPMODEL, which is a
model-derived product, is calibrated with GIEMS-2.

2.2.1 SWAMPS (1990–2020)
The Surface Water Microwave Product Series (SWAMPS)

(Jensen and Mcdonald, 2019) product is derived using similar
observations to GIEMS-2. In fact, it is based on a combination of
passive and active microwaves with a priori knowledge of land cover.
This product provides global SWE at 0.25° × 0.25° for 1992–2020.

2.2.2 TOPMODEL (1980–2020)
Xi et al. (2022) developed a set of monthly global wetland

products using TOPMODEL. TOPMODEL simulates grid-level
wetland fraction by input of soil moisture and topography index,
so that the wetland fraction from TOPMODEL follows the variation
in soil moisture. In the version used here, TOPMODEL is run with
the ERA5 soil moisture as input, and has been calibrated with a
GIEMS-2 mean annual seasonal climatology. The TOPMODEL
simulation covers the period 1980–2020 and its spatial resolution
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is 0.25° × 0.25°. The inter-annual variability of the model is
completely independent of GIEMS-2: the model is calibrated
once with the GIEMS-2 mean annual seasonal climatology and is
then run over the full time period without any additional tuning to
the GIEMS-2 long-term series.

3 Methods

3.1 Spatio-temporal data resampling

In order to achieve a consistent comparison between GIEMS-2
and the other data sources, i.e., MODIS, CYGNSS, GLWD, and river
discharges, a spatio-temporal resampling of these products is needed
to ensure comparable temporal and spatial resolutions.

In the case of MODIS, the sum of inundated and mixed pixels is
considered. The data are converted from 500 m to 0.25° by
calculating the fraction of inundated and mixed 500 m × 500 m
pixels within each larger 0.25° × 0.25° pixel. A monthly average is
then calculated from the initial 8-day resolution.

For CYGNSS, monthly means are calculated from the 7-day
resolution data. A first-order Conservative Remapping (Jones, 1999)
is employed to regrid the data from 0.1° to 0.25°. This remapping
numerical method preserves the integral of the original data.

In the case of GLWD, the fraction of each class is calculated over
0.25° × 0.25° pixels. A sum across all classes gives the total 0.25°

fraction occupied by wetlands or inundated areas. It is recognized
that this may result in an overestimate because some GLWD
categories include non-flooded areas, such as those containing
peatlands. The GLWD wetland complex categories are expressed
in percentage ranges, then the median value is selected as an
approximation for these classes (e.g., for the 50%–100% wetland
category, pixels are considered to be 75%wetland). Note that GLWD
is mostly used here as a comparison in terms of spatial patterns, and
the authors verified that choosing the minimum, maximum or
median value had little effect on the spatial distribution of GLWDv2.

For river discharges, monthly data are used when available. For
the Tan Chau station (Mekong), monthly averages are derived from
daily data. To enhance comparability, a normalization process sets
the maximum value of either the seasonality or the entire time series
for each gauge to 1.

3.2 Snow and ocean masks

The microwave observations used in GIEMS-2 and CYGNSS are
affected by the presence of snow. As a result, the surface water fraction
cannot be reliably quantified if snow is present in a pixel. Also, MODIS
visible/IR observations do not penetrate the snow cover. Then, water
bodies beneath the snow are not considered here, only snow-free water
surfaces. To handle snow-covered pixels uniformly, a dynamic 0.25°

snow mask is developed using ECMWF ERA5 data (Copernicus
Climate Change Service, 2019), which identifies pixels with a snow
fraction greater than 2%. For each month, snow-covered pixels have
their inundation fraction systematically set to 0 in GIEMS-2, MODIS,
and CYGNSS datasets.

Passive microwave observations are sensitive to the presence of
water, including oceans. Then, a static 0.25° ocean mask is developed

by excluding pixels with more than 10% ocean using HydroSHEDS
HydroBASINS shapefiles (Lehner and Grill, 2013) and excluding
also the Caspian Sea using HydroSHEDS HydroLakes (Messager
et al., 2016). This ocean mask is applied to 0.25° GIEMS2, MODIS,
CYGNSS, and GLWD products.

3.3 Definition of the evaluation metrics

For each grid point and each selected basin, a 12-month
climatology of the SWE (or mean annual seasonal cycle) is
calculated for each month over the entire available period. Then,
the monthly maximum, minimum, and mean of each pixel is selected,
leading to the generation of three static maps of Mean Annual
maximum, minimum, and mean (MAmax, MAmin, and MAmean,
respectively). GLWD is a static map encompassing all wetlands and
inundated areas, including those periodically wet: GLWD is expected
to be approximately equivalent to a MAmax when compared to other
datasets, acknowledging that GLWD is likely to be closer to a long-
term maximum and not a Mean Annual maximum. Note that
CYGNSS-based SWE is available for only 1 year, and as a
consequence the seasonal cycle of this dataset is only representative
of 1 year (along with the related MAmax, MAmin and MAmean).

The agreement between the mean annual seasonal cycle of the
different products is evaluated through the calculation of their
Pearson cross-correlation coefficients (rsea), providing the
maximum correlation between two 12-month time series and the
corresponding lag (in month) to obtain the maximum correlation.
The Root Mean Square Difference is also calculated between the
mean seasonal cycle of GIEMS-2 (12 values) and the mean seasonal
cycle of the other products (12 values). It is noted RMSDsea (note
that no lag is considered in this calculation). For an easier
comparison between basins, the RMSDsea is also normalized by
the GIEMS-2 MAmean SWE over that basin.

The evaluation of the inter-annual variations is performed
through the calculation of the cross-correlations between the
long-term time series of monthly values (rts). The cross-
correlation of the anomalies is also calculated (rano), removing
the mean annual seasonal cycle from each long-term time series.

4 Comparisons of GIEMS with the
selected products

The GIEMS-2 dataset is here compared with the other
independent products. First, spatial considerations (total extent
and spatial patterns) on global and basin scales are presented.
Seasonality, long-term time series and their anomalies at the
basin scale are then analyzed.

4.1 Global spatial distribution

Figure 1 represents the SWE MAmax of GIEMS-2, CYGNSS,
and MODIS products and the sum of GLWD classes at 0.25°. Large
basins such as the Amazon, the Mississippi, or the Ganges can be
consistently identified on GIEMS-2, CYGNSS, and GLWD MAmax
maps. Some large differences exist, and can be partially explained.
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First, large lakes have been removed from GIEMS-2 (e.g., Victoria
Lake), which is not the case for MODIS. For CYGNSS, they were
filtered out during the processing due to the dominant incoherent
scattering found over large lakes (Zeiger et al., 2022) and further
refilled with a 100% water fraction. Second, the CYGNSS product
includes only 1 year of data, resulting in an annual maximum that
depends on the conditions of that particular year. Finally, some
GLWD classes include peatlands that are not flooded (see peatland
rich regions such as North America and the Congo basin) and some
areas that are only occasionally flooded.

GLWD presents a total surface area of 10.6 Mkm2: this is much
higher than GIEMS-2 MAmax of 6.18 Mkm2, which is not surprising
given the points raised just above. If we focus on 37.5°S-37.5°N
latitudinal band, GIEMS-2 presents a MAmax values of 3.65 Mkm2

which is higher than the CYGNSS MAmax of 2.46 Mkm2. The same
occurs for MAmean with GIEMS-2 MAmean at 1.58 Mkm2 and
CYGNSS at 1.25 Mkm2, while MAmin present very close values:
0.57 Mkm2 for GIEMS-2 and 0.59Mkm2 for CYGNSS.

4.2 Per-basin spatial distribution

Figure 2 presents the SWE MAmax of GIEMS-2, MODIS,
CYGNSS, and GLWD total SWE over four basins, each
representative of distinct latitudinal bands and

environments: the lower Ob, the Mississippi, the Amazon,
and La Plata. Additional basins (the Mackenzie delta, the
Yangtze, the Ganges, the Mekong, the Orinoco, and the
Congo) are shown in Supplementary Figure S1. Despite the
same 0.25° regridding used for the maps, GIEMS-2 shows a
coarser and more diffuse pattern compared to CYGNSS and
MODIS, due to the original low spatial resolution of the passive
microwave observations.

The combined visual analysis of Figure 2 and Supplementary
Figure S1 reveals consistent spatial patterns between the different
products over the basins studied. GIEMS-2 and CYGNSS show
very similar patterns, probably influenced by the fact that both
datasets are mostly derived from microwave observations, as
highlighted by Zeiger et al. (2023). However, it should be
noted that the frequency bands observed by GIEMS-2
(18–90 GHz) and CYGNSS (1–2 GHz) are different, and that
GIEMS-2 is based on passive microwaves while CYGNSS is based
on active microwaves, which are different technologies. The
visual consistency is confirmed by the spatial correlation
analysis shown in Figure 3. Over the 10 basins studied, the
spatial correlations of GIEMS-2 MAmax with MODIS MAmax
range from 0.55 to 0.77, while with CYGNSS MAmax, the
correlations range from 0.67 to 0.87.

For the lower Ob basin, MODIS shows more extensive
detection of wet areas around the lower Ob riverbed

FIGURE 1
Mean Annual maximum (MAmax) of (A)GIEMS-2, (B)MODIS, (C)CYGNSS. The same basin and dynamic snowmasks are applied to GIEMS-2, MODIS,
and CYGNSS 0.25° monthly gridded datasets. (D) GLWD total (sum over all classes). Khaki background indicates regions that are not covered by
the products.

Frontiers in Remote Sensing frontiersin.org05

Bernard et al. 10.3389/frsen.2024.1399234

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2024.1399234


compared to GIEMS-2, but this detection is not confirmed by
GLWD. The resulting MAmax over the lower Ob basin is
however similar for MODIS (67.7 103 km2) and GIEMS-2
(73.8 103 km2). For the Mississippi, MODIS shows lower
MAmax (21.2 103 km2) across the basin compared to the
other two datasets (49.0 and 46.3 103 km2 for resp. GIEMS-2
and CYGNSS). This is consistent with the presence of inundated
forests along the Mississippi River, which may not be detected
by visible and NIR observations. Over the Amazon basin,
GIEMS-2 and CYGNSS present very close signatures with a
spatial correlation of 0.80, but GIEMS-2 misses small streams as
expected, due to its low spatial resolution. GLWD shows
roughly the same spatial pattern (r = 0.56), but with finer
structures, and elevated values attributed to a swamp in the
western part of the basin (5°N, 75°W) that are not present in
GIEMS-2 and CYGNSS. In the northern region of the La Plata
basin (18°S, 57°W), GLWD presents larger inundation than the
other products due to the presence of floodplains, but these

areas are not systematically flooded every year, which can partly
explain the different patterns and fraction values as compared
to GIEMS-2, MODIS, and CYGNSS. In addition, CYGNSS
MAmax is based on the maximum of the 2018–2019 monthly
mean, as only 1 year of data is available. This factor may
contribute to differences with the other products, especially
in the La Plata basin, where the SWE in 2019 was particularly
high, as shown later in Figure 6. Indeed, we see that the
CYGNSS MAmax fractions in La Plata are higher than the
MODIS and GIEMS-2 MAmax.

4.3 Seasonal analysis

Figure 4 shows the mean annual seasonal cycle of SWE
estimated by GIEMS-2, MODIS, and CYGNSS over the lower
Ob, the Mississippi, the Amazon, and La Plata basins. The mean
seasonal cycle of the normalized river discharge is also presented

FIGURE 2
Mean Annual maximum (MAmax) of the different datasets per basin when available. The same basin and snowmasks are applied to all 0.25° monthly
gridded datasets. Khaki background indicates regions that are not covered by the products. Blue stars represent the selected river gauge location. With
1 year of CYGNSS product, the MAmax corresponds to that year maximum.
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(division by the seasonal discharge maximum). Other studied basins
are in Supplementary Figure S2. The cross-correlation coefficients and
the corresponding lags are depicted in Figure 5A. Figure 5B presents
theMAmean of GIEMS-2,MODIS, and CYGNSS datasets, alongwith
the RMSDsea (the color provides the RMSDsea/MAmeanGIEMS−2). As
the CYGNSS SWE seasonal cycle represents only 1 year, cross-
correlations between products were also calculated by limiting the
data to the same year as CYGNSS for all datasets, and it gave similar
results (not shown).

GIEMS-2 and MODIS exhibit similar seasonal variations
(rsea > 0.75), often lagged by 1 month (the Mekong, La Plata).
The seasonality on the Yangtze is very different between MODIS
and GIEMS-2: GIEMS-2 has a large peak, while MODIS has a less
pronounced seasonal cycle. GIEMS-2 and CYGNSS SWE present
very similar seasonal temporal variations: the temporal correlation
coefficients between the 2 seasonal cycles exceed 0.84 for all basins
except La Plata (rsea = 0.69), with no temporal delay in 8 basins out of
10. While the seasonal behaviors between GIEMS-2 and river
discharge align in all basins (rsea > 0.85), GIEMS-2 (and CYGNSS)
tends to precede river discharge, manifesting as a 1-month lead over

the Amazon, the Congo, the Mekong, and La Plata basins, and a 2-
month lead for the Mississippi and Yangtze. This temporal offset is
consistent with gauge locations close to the river mouth, highlighting
the sensitivity of GIEMS-2 and CYGNSS to basin-wide flooding
dynamics as observed previously (e.g., Papa et al., 2008; Frappart
et al., 2012), which, in turn, influences estuarine behavior where the
water concludes its course.

The seasonality in boreal regions is highly dependent on freeze-
thaw processes, and indeed we see similar temporal variations over
the Mackenzie delta for GIEMS-2 and MODIS. However, over the
lower Ob basin, MODIS shows a double flood peak in June and
September, while GIEMS-2 and river gauge measurements show
only the first peak. The hydrology of the lower Ob basin is complex,
and its seasonal variations are attributed to melting ice in spring and
rain and evapotranspiration in summer and autumn (Biancamaria
et al., 2009; Agafonov et al., 2016). Human influence through
damming also alters the hydrological behavior (Yang et al., 2004;
Shiklomanov et al., 2021). The literature shows a single seasonal
peak (Yang et al., 2004), or a slight second peak (Biancamaria et al.,
2009) for river discharge. However, there are only a few studies on

FIGURE 4
Mean annual seasonal cycle of the different datasets over selected basins, calculated over all available data between 1992 and 2020. The same basin
and snow masks are applied to all 0.25° monthly gridded datasets.

FIGURE 3
(A)MAmax and (B)MAmin spatial correlation of the different products with GIEMS-2 over selected basins. Cross-correlation is achieved at 0.25° over
snow-free pixels.
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water extent for this lower Ob region. Zakharova et al. (2014)
obtained SWE by radar altimetry, showing a SWE with a single
or double peak, depending on the part of the West Siberian Lowland
studied. Mialon et al. (2005) found a double peak seasonality
using microwave emissivities. The presence of a second peak in
the SWE remains then unclear and would warrant further
investigation. The SWOT mission, a Ka-band SAR launched in
December 2022, will undoubtedly provide access to new relevant
data on this region to improve our understanding of this single or
double peak in SWE.

Figure 5B shows that GIEMS-2 exhibits higher mean annual SWE
compared to MODIS in all basins, with MODIS peaks being from 30%
to 50% lower than GIEMS-2. This is reflected by MODIS RMSDsea/
MAmeanGIEMS−2 being above 50% in 5 out of the 6 common basins (see
colors in Figure 5B). GIEMS-2 and CYGNSS agree on SWE values on
the Mississippi, the Amazon, the Congo, and La Plata basins with
RMSDsea/MAmeanGIEMS−2 ≤ 35% over these basins. Over the Orinoco,
the amplitudes are also similar (see Supplementary Figure S2), but the
RMSDsea/MAmeanGIEMS−2 is higher (0.69). CYGNSS is closer to
MODIS SWE values over the Yangtze and the Mekong basins.
Over-estimation of the GIEMS products have already been noted in
Asia, over saturated soil with low vegetation (e.g., Papa et al., 2015). A
correction has been attempted (Prigent et al., 2020), but further
adjustments might still be needed.

GLWD consistently exhibits either comparable or higher values
than the other SWE products seasonal maximum, except for basins
such as the Ganges, the Yangtze, and the Mekong where GIEMS-2
peaks exceed GLWD values. In addition to the possible
overestimation of the SWE by GIEMS-2 in these environments,
the absence of rice paddies in GLWD also probably lead to
underestimation of inundated areas in these regions where rice
cultivation is important.

4.4 Analysis of the inter-annual variability

The SWE inter-annual variations are analyzed here. Figure 6 shows
the time series and their anomalies for the SWE estimates and for the
river discharges above the four selected basins (additional basins
available in Supplementary Figure S3). The cross-correlation of the
time series rts and the correlation of their anomalies rano between
GIEMS-2 and other products can be found in Figures 7A, B, respectively.

First, similar patterns can be identified between GIEMS-2 and
MODIS in terms of inter-annual variability of SWE and their
anomalies. Qualitatively, Figure 6 and Supplementary Figure S3
show good agreement between GIEMS-2 and MODIS over the
Mackenzie delta, the lower Ob, the Mekong, La Plata, and the
Mississippi, confirmed by cross-correlation coefficients of
rts ≥0.74 and rano ≥ 0.59. Lower correlations are recorded over the
Yangtze (rts = 0.51 and rano = 0.33). The agreement on the long-term
anomalies for 5 out of 6 basins between GIEMS-2 andMODIS is very
encouraging. These two datasets are independently derived from two
different types of satellite observations, over 20 years. Reaching a good
correlation over long-term time series with large seasonal cycles can be
expected (with the seasonal cycle driving a large part of the
correlation), but once the seasonal cycle is subtracted, only the
inter-annual changes are left, and their order of magnitude is
much smaller and difficult to capture. The correlations obtained
here between GIEMS-2 and MODIS provides confidence in the
inter-annual changes observed by both satellite products.

The river discharges at the mouth of the river allow long-term
observations of the basin hydrology that should be related to the
SWE integrated over the basins. Here again, the long-term time
series of GIEMS-2 and discharges as well as their anomalies show
good agreements (Figure 6 and Supplementary Figure S3). On the
monthly time series, a delay of one or 2 months can be observed

FIGURE 5
(A)Maximum cross-correlation between themean annual seasonal cycles of GIEMS-2 SWE and the other data products (MODIS SWE, CYGNSS SWE,
and river discharge) over selected catchments, with the corresponding time delays in brackets. Delays from 0 to ±2 months have been tested (applied to
GIEMS-2). (B)MAmean and in brackets the RMSDsea, both in 103km2. GIEMS-2 is used as a reference for the RMSDsea calculation. The colors represent the
ratio between RMSDsea and MAmeanGIEMS−2.
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between GIEMS-2 and discharges, as already discussed in Section
4.3. The agreement is confirmed by the correlation values, with
rts ≥ 0.71 for all basins and rano ≥ 0.60 for 7 of the 9 basins. Note
that over the forested tropical basins, the long-term anomalies of
GIEMS-2 and river discharge agree well (e.g., rano = 0.60 for the
Amazon and rano = 0.66 for the Congo). This notable
performance suggests that GIEMS-2 has the ability to detect
swamps and floodplains, as well as their inter-annual changes,
even under dense tropical forests. Results from the Mackenzie
delta and the Ganges (resp., rano = 0.12 and rano = 0.33) could be
partly related to the locations of the two river gauges in these
basins, rather far from the river mouths and less representative of

the full extent of the basins. In fact, the Mackenzie delta gauge is
located upstream of the basin, and the Ganges gauge is located in
the upper part of the Hasdeo river, which is part of the Ganges
basin, but not a tributary of the Ganges. The inter-annual
variations at these specific gauges are therefore probably
unrepresentative of the entire basins.

GIEMS-2 data spans 30 years and relies on passive microwave
observations from several satellites. Using carefully inter-calibrated
satellite observations and a robust methodology makes it possible to
generate a long time-series of SWE showing an inter-annual
variability that agrees with MODIS estimates, as well as with
river discharges, under a large range of environments.

FIGURE 6
Monthly time series and monthly time series anomalies of the SWE products and river discharges over selected basins. The same basin and snow
masks are applied to all 0.25° monthly gridded datasets. With only 1 year of CYGNSS SWE available, no anomalies can be calculated. River discharges are
normalized, setting their time series maximum to 1.
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5 Discussion

5.1 Limitations and potentials

Comparisons of SWE from multiple sources is challenging. This
is corroborated by the wide dispersion found in the literature, with
global SWE ranging from 4.5 to 12.9 Mkm2 depending on the
products [see Table 1 in Xi et al. (2022)]. All information sources
do not consider the same surface types, some including open water
bodies such as lakes and rivers, while others remove part of the large
open water bodies. Non-inundated peatlands can also be considered
in datasets such as GLWD. Irrigated and/or rainfed rice fields are
also sometimes included or removed, depending on the datasets.
The satellite-derived SWE considered here are extracted from
different satellite observations, with different spatial resolutions,
as well as with different sensitivities to vegetation.

Variations in the inundation fraction values are observed between
the different products. In particular, GIEMS-2 tends to detect more
water than MODIS and CYGNSS in areas characterized by high
inundation fractions, possibly leading to an overestimation in these
areas. Its detection capability seems also to decrease compared to
MODIS and CYGNSS in areas with lower flood fractions or fine
spatial structures. This is related to the low spatial resolution of the
passive microwave observations from which GIEMS-2 is extracted
compared to the finer spatial resolution of the MODIS and
CYGNSS observations. Prigent et al. (2007) estimated that
GIEMS and GIEMS-2 probably underestimates small wetlands
comprising less than 10% fractional coverage and overestimates
large wetland fractions, due to the low spatial resolution of the
initial satellite observations, although the results have been
improved from GIEMS to GIEMS-2.

GIEMS-2 is derived from passive microwave observations that can
show similar signatures over ocean, desert, and continental surface
water (Pham-Duc et al., 2017). That leads to possible over-estimation of
the SWE in the coastal regions (ocean contamination in the signal) and

in arid regions (misinterpretation of the signal). This risk of confusion is
taken into account in the GIEMS-2 processing. However, in an attempt
to avoid misclassification, the GIEMS-2 product could be over-cleaned,
resulting in lower SWE compared toMODIS in some arid regions (e.g.,
the north of the Inner Niger Delta in Supplementary Figure S4).
Nevertheless, significant differences between the three remotely
sensed SWE considered here have been observed over arid regions,
e.g., over the Nile basin in Supplementary Figure S4, where the spatial
correlation between the three products are low (r< 0.25), and the SWE
varies greatly between the products (from 32 103 km2 for MODIS to
7 103 km2 for CYGNSS). Note that the SWE pre-processing of CYGNSS
filters out desert surfaces, for which SWE recovery is clearly not
designed. This highlights the uncertainties in remotely sensed SWE
estimates in these environments.

Finally, the strengths of GIEMS-2 lie in its long time series, global
nature and consistency in terms of temporal variability, as shown in the
results section. This comparison helps to understand the strengths and
limitations of the information sources, with notable differences found
among the various SWE estimates. Efforts are already underway to take
advantage of the complementarity of the different techniques. For
example, the high spatial resolution of visible imagery (such as
MODIS) will be used to provide accurate estimates of open water,
while microwave observations, which are less affected by vegetation,
will provide key information in forested areas such as the Amazon
floodplains.

5.2 Analysis of differences between GIEMS-2
and SWAMPS

To further highlight specific aspects of a microwave-based SWE
product, we briefly discuss here a comparison of GIEMS-2 and
SWAMPS. As mentioned in Section 2, SWAMPS and GIEMS-2 are
using the same satellite information, passive microwave observations
from SSM/I and SSMIS. The differences between SWAMPS and

FIGURE 7
(A) Time series cross-correlations rts and (B) Times series anomalies cross-correlations rano. Cross-correlation with time delay up to ±2 months
between GIEMS-2 SWE and the other data products for different basins. The cross-correlations are calculated over the common period of the datasets.
As only 1 year of CYGNSS data is available, no anomalies can be calculated.
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GIEMS are only due to different processing/algorithms to estimate the
surface water. SWAMPS shows globally higher SWE MAmax
(8.4Mkm2) than GIEMS-2 (6.2Mkm2). We found that major
differences in total extent occur in 1. coastal areas, 2. snow-covered
pixels and 3. desert areas. To compare areas not contaminated by these
environments, a test was performed by setting pixels < 50 km from the
coast, snow-covered pixels and desert pixels in both datasets to
0 fraction. To have access to arid areas, 0.25° pixels with bare areas
as dominant class fromESACCI land cover are selected. Comparing the
remaining areas, SWAMPS MAmax is reduced to 5.2 Mkm2 and
GIEMS-2–5.0 Mkm2, which are much closer SWE values. Moreover,
SWAMPS MAmax presents 65% of the coastal pixels with SWE > 5%
over the 37.5°S-37.5°N band, while only 20%, 29% and 26% are detected
by GIEMS-2 MAmax, CYGNSS MAmax, and GLWD, respectively
(note that CYGNSS is also likely contaminated by oceans but at much
smaller scale of 10 km as no filtering was applied). This means that the
higher SWAMPS values are probably due to contamination of surfaces
that have similar signatures to continental water surfaces (e.g., coastal
regions, deserts, and snow). The filtering process in these environments
is thus very important and strongly influences the resulting SWE.

SWAMPSmonthly seasonal cycles are shown over the lowerOb, the
Mississippi, the Amazon, and La Plata basins in Figure 8 along with
GIEMS-2, MODIS, and CYGNSS estimates (other basins in
Supplementary Figure S2). Cross-correlations with GIEMS-2 in terms
of mean seasonality, long-term time series, and anomalies are presented
in Figure 8. Cross-correlations of anomalies are greater than 0.7 over

6 out of the 10 basins, but differ on theMackenzie delta, the lowerOb, the
Amazon, and the Congo basins. This reflects important differences
between GIEMS-2 and SWAMPS products, although the same
satellite observations are used. Also, we notice on Figure 8 that
SWAMPS presents flat seasonal cycles over the Amazon (SWE
seasonal amplitude ~0.02Mkm2) and the Congo (SWE seasonal
amplitude ~0.002Mkm2), two basins with dense vegetation, while
GIEMS-2 and CYGNSS show significant seasonal variations over the
two basins (SWE seasonal amplitude > 0.1Mkm2 for the Amazon and
> 0.01Mkm2 for the Congo). Indeed, passive microwave observations
are strongly affected by dense vegetation, and subtracting the vegetation
from the signal under tropical forest is challenging. The vegetation effect
is likely not correctly subtracted in the SWAMPS dataset over
dense forest.

5.3 GIEMS-2 and hydrological models

Hydrological models represent changes in the different
components of the water cycle and the fluxes between them.
They help to quantify current water resources and are a unique
resource for climate projections under different scenarios. In this
section, we analyze the SWE outputs derived from the TOPMODEL
to illustrate the potential of GIEMS-2 for hydrological modeling.

The spatial correlation coefficient between GIEMS-2 and
TOPMODEL SWE MAmax is 0.85 on a global scale. However, their

FIGURE 8
(A) Mean annual seasonal cycle of different datasets over selected basins, calculated over all available data between 1992 and 2020. Cross-
correlations betweenGIEMS-2 and SWAMPS or TOPMODEL over the selected basins for (B) themean annual seasonal cycle, (C) the long-term time series
and (D) the long-term anomalies.
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MAmin show different patterns (correlation 0.38), reflecting their
independence in temporal variations. The seasonal variations of the
TOPMODEL product over the selected basins are shown in Figure 8 and
Supplementary Figure S2. The seasonal cross-correlation rsea between
GIEMS-2 and TOPMODEL is greater than 0.75 in 9 out of 10 basins
(Figure 8), but 7 out of 10 basins show a lag. Compared to the three
remote sensing datasets, TOPMODEL has a distinct seasonal cycle over
the Mississippi and the Yangtze basins. GIEMS-2 and TOPMODEL
agree particularly well on the long-term anomalies over the Mekong, La
Plata, and Amazon basins (rano = 0.69, 0.74 and 0.62, respectively), with
anomalies over the remaining basins showing less agreement.

Generally, TOPMODEL assumes soil moisture distribution in a
grid following the distribution of topography index, which can capture
regular wetlands defined as saturated soil. However, floodplains, as the
flooded area near the river when the river is full, cannot be simulated
well by TOPMODEL because floodplains have different drivers of
formation (Nanson and Croke, 1992; Dunne and Aalto, 2013).
GIEMS-2 captures seasonal and inter-annual variations of
floodplains, explaining different seasonal cycles between GIEMS-2
and TOPMODEL in some basins (e.g., Mississippi), where GIEMS-2
has better correlations with river gauges. These floodplain variations
cannot bemodeled byTOPMODELalone. CombiningTOPMODELand
a floodplain model has been suggested (Decharme et al., 2012; Lauerwald
et al., 2017) to obtain more accurate wetland fractions in basins with
significant floodplain fractions. The robust seasonal variations observed in
GIEMS-2 and largely validated here will be useful in calibrating or
evaluating the coupled model, like any other hydrological model.

6 Conclusion and outlook

GIEMS-2 provides an estimate of the monthly surface water
extent from 1992 to 2020 with a spatial resolution of 0.25° × 0.25°.
GIEMS-2 is derived primarily from passive microwave observations
provided by the SSM/I and SSMIS sensors. It is evaluated here
against other independent products.

On the basin scale, the SWE fromGIEMS-2,MODIS, andCYGNSS
products show consistent spatial patterns. However, differences can be
observed in the extent, for bothmean annual maximum andminimum.
This is explained by the combination of several factors, including the
differences in the spatial resolutions of the satellite observations. The
mean annual seasonal cycle shows significant agreement (with cross-
correlations above 0.8 for most selected basins) between GIEMS-2 and
the other satellite-derived products, as well as with the river discharges.
Over their common 20 years, the inter-annual variations of GIEMS-2
and MODIS present very similar features, with their anomalies having
correlations above 0.6 over basins in diverse environments. Compared
to river discharge, GIEMS-2 also shows realistic inter-annual variability,
with correlations over 0.6 between long-term anomalies over most
basins, including under tropical basins (Amazon and Congo) where
passivemicrowaves are often suspected to be insensitive to surface water
variations. Based on carefully inter-calibrated satellite observations and
a robust methodology, GIEMS-2 shows no artefacts related to satellite
changes over the 30 years, and provides a seamless SWE time record
that can be used for climate analysis.

Calibration of a hydrological model (TOPMODEL) with
GIEMS-2 shows encouraging results, and improvements are
expected by coupling TOPMODEL with a flood model.

Modeling approaches are the only means to provide climate
predictions for surface waters, with efforts based on robust
observational estimates showing promise.

Given that wetlands are responsible for approximately a third of
global methane emissions, the global methane budget is significantly
influenced by the seasonal and inter-annual dynamics of wetland
extents. We showed here that GIEMS-2 provides a 30-year time
series of global surface water extent, with very realistic inter-annual
variations, and thus can provide key information to the methane
emission modelers for the analysis of the inter-annual variation of
atmospheric methane. Methane emissions are not uniform across all
surface waters and depend on surface characteristics. The next step will
consist in combining GIEMS-2 with land cover data and other water
body distributions to build a coherent product representing different
surface water categories. This effort is intended to facilitate the coherent
simulation of methane emissions across various ecosystems.
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