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Abstract—Alzheimer’s disease is a neurodegenerative disorder
defined by memory loss and primarily affects older individuals.
Currently, there is no definitive cure available. Although medica-
tions are accessible, they only serve to slow the progression of the
disease. In this paper, we propose the use of Vision Transform-
ers and Transfer Learning for Alzheimer’s classification. Our
approach leverages the temporal aspect of the transformer to
model the correlation between different image patches. Transfer
learning enables us to mitigate the issue of insufficient available
data. Our method has been validated on the OASIS dataset,
which consists of 250 brain scans. The results demonstrate
that transfer learning with Transformer models surpasses the
performance of transfer learning with CNN models by 4% and
exceeds traditional CNN models without transfer learning by
8%. Two types of Transformers were tested: ViT-B16 and ViT-
B32. The results are comparable, with ViT-B32 outperforming
ViT-B16 by 1%.

Index Terms—Alzheimer’s disease, Vision Transformer, Trans-
fer Learning.

I. INTRODUCTION

The timely detection of Alzheimer’s disease (AD) is es-
sential for effective interventions, and neuroimaging stands
out as a particularly promising method for this purpose. AD,
a neurodegenerative disorder, progressively damages brain
connections, leading to memory loss and cognitive decline.
While a cure for AD remains elusive, prompt treatment upon
diagnosis can greatly mitigate symptom severity, offering relief
to patients and alleviating their suffering. Undoubtedly, the
primary risk factor for AD is advancing age, typically after
the age of 65.

Recently, the integration of Artificial Intelligence (AI) has
been pivotal in steering healthcare towards a preventive model,
enabling the foresight and early detection of a spectrum of
conditions, thus streamlining treatment timelines. This is par-
ticularly pertinent for neurodegenerative diseases, where Al’s
role is significant in aiding early diagnosis and intervention,
crucial for conditions such as AD. Al-powered innovations are
also creating supportive technologies, including mobile apps,
wearable devices, and interactive chatbots, to provide essential
assistance to patients.

An effective approach for early AD detection based on Al
consists of two important choices. The first choice concerns

the data modality used, which can include Speech, Gait, Hand-
writing, or Neuroimaging data. The second choice involves
selecting the Al model, which can be based on Deep Learning
or traditional algorithms.

Several modalities offer complementary insights for detect-
ing and monitoring AD progression. Neuroimaging, partic-
ularly Magnetic Resonance Imaging (MRI), offers throught
visuals of brain structures, which helps in identifying anatom-
ical changes and atrophy typical of AD [1], [2]. Clinical and
neuropsychological data including memory tests and cognitive
assessments reveal deficits typical of AD. Analyses of gait and
movement can also indicate alterations in physical actions,
while changes in speech and language usage might suggest
cognitive decline. Lastly, changes in handwriting, such as the
loss of writing skills or alterations in letter shaping, may also
indicate cognitive decline [3], [4], [5], [6].

Machine Learning (ML) algorithms can be broadly cat-
egorized into two groups: traditional ML algorithms and
deep learning (DL) algorithms. Traditional ML algorithms,
including Support Vector Machines, XGBoost, and Random
Forests are often preferred when dealing with pre-processed
data, where handcrafted features have been extracted for
classification. In contrast, DL algorithms have recently gained
traction due to their capability to autonomously acquire feature
representations from raw data, thereby often yielding superior
performance. Prominent examples include Convolutional Neu-
ral Networks [7], Vision Transformers [8] and Autoencoders
[9]. These models excel in handling complex data patterns,
which is particularly beneficial for interpreting the subtle and
intricate changes associated with AD.

Deep Neural Networks (DNNs) capable of acquiring in-
tricate patterns and structures from data. However, neural
networks trained from the ground up may encounter challenges
in generalizing effectively with limited training data. Transfer
learning enables leveraging knowledge acquired from one
task to improve generalization on another task.It involves
transferring the acquired weights from a network trained on
task A to improve performance on a new task B. The basic
concept involves utilizing a model’s knowledge acquired from
a task rich in labeled training data to aid in a new task with
limited data [1].



Our approach relies on two key strategies. On one hand, we
take advantage of the potential of neuroimaging techniques,
particularly MRI, which are non-invasive methods capable of
detecting structural changes in the brain. On the other hand,
we leverage the potential of transformers [10], which are new
DNNs capable of modeling the correlations between different
areas of the image. We combine the transformer with transfer
learning techniques to overcome the limitations posed by the
small size of the dataset.

The primary contribution of our paper is the strategic
extraction of Regions Of Interest (ROIs), containing the hip-
pocampal areas, rather than utilizing entire images. Following
this extraction, we evaluated two architectures of transformers,
ViT-B16 and ViT-B32, for classification.

This paper is structured as follows: Section II provides
an overview of the pertinent literature. In Section III, we
describe our suggested methodology. Section IV expounds on
the results achieved and provides a discussion of our findings.
Lastly, Section V outlines our conclusions and proposes pos-
sible avenues for further research.

II. RELATED WORK

An approach to early AD detection generally consists of two
parts. The first part involves the modalities used. This stage
includes selecting the modality and extracting the features.
This extraction can be automated through DL or handcrafted
features. The second part concerns the classifiers. The choice
of classifier may depend on the modality selected. In the
following, we present a state-of-the-art review of both parts.

A. Modalities and Feature Extraction

As mentioned in the introduction, a variety of modalities
are utilized for analysis, including neuroimaging, speech, gait,
handwriting, and clinical data.

Neuroimaging includes MRI scans, which offer detailed im-
ages of the brain’s anatomy and is instrumental in identifying
structural changes such as atrophy in the hippocampus and
other brain regions associated with AD [11]. Positron Emission
Tomography (PET) scans are instrumental in observing brain
metabolism and the presence of amyloid plaques, a hall-
mark of the disease [12]. Cerebrospinal Fluid (CSF) analysis,
though more invasive, identifies specific biomarkers such as
tau and beta-amyloid proteins [13]. In most Neuroimaging-
based approaches, whole images are utilized. However, there
are instances where the images are segmented to extract
local features. Among these local features, techniques such
as FreeSurfer [14] are used for detailed segmentation.

Another modality for Early AD detection is handwriting
analysis. In collaboration with Broca Hospital in Paris, the
authors of [15] propose characterizing AD by analyzing online
handwritten cursive loops. This study models the full dynamics
of loop velocity trajectories in an unsupervised manner. To
find clusters, the authors use dynamic time warping as a
dissimilarity metric and temporal clustering with K-medoids.

Concerning speech analysis, the authors explore the po-
tential of using vocal patterns to detect early signs of AD.

They focus on analyzing variations in speech features such as
pitch, rate, and pauses, which can be indicative of cognitive
impairment [16], [17]. In [18], the authors divided the audio
recordings into segments and extracted spectrograms from
each segment. These features were subsequently combined
into a single input vector for algorithmic classification.

B. Classification based DL algorithms

Classifiers can be divided into DL and traditional ML
algorithms. This section will focus on DL-based classifiers
due to their superior ability to handle complex and high-
dimensional data, such as medical images. We identify three
main DL applications. The first is for extracting features and
classification. This is the classic use where DL is applied
both to extract features and to perform classification [19]. In
the second, DL first serves to extract discriminant features,
called embeddings, which are then input to a shallow ML
model to perform classification [20]. In the third, DL model
training is based on Transfer Learning, which uses big datasets
to leverage pre-trained models, to specifically address the
challenges posed by AD detection [1].

In terms of architectures, CNN has gained significant trac-

tion in the realm of AD diagnosis. In [21], a 3D CNN approach
was employed on PET scans, while the same modality was
utilized with a 2D CNN [22]. Subsequent advancements were
made by [23], who enhanced the architecture of CNN and
introduced a multi-stream CNN for classification. Lian et al.
[24] employed a deep learning technique to identify AD using
structural MRI brain data. To recognize the AD, a fully deep
learning architecture structure with a hierarchical foundation
was developed. In order to distinguish the AD image from the
non-AD image, the built internally generated characteristics
were categorized by the fully deep learning architectural
structure. In a different study, Yigit [25] divided slice data
to simplify 3D to 2D using structural magnetic resonance
imaging (SMRI) as the input. After that, they used CNN
to identify AD. Their model achieved an 80% classification
accuracy on average.
Several other studies have explored different CNN architec-
tures tailored for AD diagnosis. Hussain et al. [26] introduced
a multiple layer CNN model specifically designed for AD and
compared its effectiveness against established architectures
(InceptionV3, Xception, MobilenetV2, and VGG). Similarly,
Erdogmus and Kabakus [27] proposed another CNN architec-
ture, achieving a binary classification accuracy of 90.4%. This
study adds to the growing body of research aiming to improve
diagnostic accuracy. Manimurugan [28] employed fine-tuning
techniques to train the VGG-19 architecture, achieving an
impressive accuracy of 95.82%. This showcases the effec-
tiveness of fine-tuning in optimizing model performance for
AD diagnosis. In [29], the authors proposed the enhancing
of VGG16 through the integration of a convolutional block
attention module. The authors of [30] modified the densely
connected neural network by incorporating a attention mech-
anism to delve deeper into feature extraction.
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Fig. 1: Flowchart of our proposed approach

Recent studies have tackled the limitations of CNNs by
incorporating transformers to extract global features and create
long-range connections between image features. The ViT
architecture was applied to PET scans in [31]. In [32], a
3D deformable self-attention module was incorporated by
the authors into the ViT architecture. Adopting a fusion-
based strategy, the authors of [33] combined the strengths of
ViT, 2D CNN, and 3D CNN, enabling the effective capture
of global dependencies, which resulted in improved model
generalization.

To distinguish our research from the existing state of the art,
we have selected MRI as inputmodality for its high diagnostic
precision and non-invasive nature. The choice of transformers
as classifiers is motivated by their capacity to identify in-
tricate, far-reaching relationships in the data. To counteract
the limitation of small dataset sizes, we have incorporated
transfer learning strategies, enhancing model generalization by
utilizing knowledge from larger datasets.

III. METHOD

Our methodology comprises three primary phases (Figure
1). First, we extract the region of interest, containing the
hippocampus, to focus on the most relevant area for analysis.
This targeted step ensures that we are extracting the most
critical part of the brain related to AD. Next, we use a pre-
trained Transformer model, which we fine-tune to adapt to
the specifics of our dataset. Fine-tuning enables the model
to accurately adapt to the specific features of our dataset,
thereby improving its performance. Finally, we proceed to the
classification stage, where the model distinguishes between
patients having AD or not, using usual metrics such as
accuracy. We describe next each of these steps in detail.

A. Extraction of Regions of Interest

The hippocampus is a small region in the brain primarily
associated with memory and spatial navigation. The hippocam-
pus is one of the first regions to suffer damage following AD;
early symptoms typically include memory loss and disorien-
tation. Our motivation is to target the most relevant regions of
the image rather than using the entire image.

First, all images are normalized to the same size. Then, each
image is divided into patches of 32x32 pixels. Visually, we
have identified that the hippocampus corresponds precisely to
patches numbered from 43 to 46.

Figure 2 illustrates these three steps. An image is first divided
into square patches of 32x32 pixels. Subsequently, the patches

corresponding to the hippocampus are extracted and serve
as the input for the classifier. By focusing on these specific
patches, we can efficiently extract the regions that include the
hippocampus, leading to more accurate classification.

Fig. 2: Extraction of ROI. From left to right: Original image,
Segmentation into patches, Extracting hippocampus regions.

B. Vision Transformer

The Vision Transformer (ViT), a specialized variant of
the transformer model, is tailored for computer vision tasks.
At its core lie fundamental components: patch embedding,
transformer encoder, and a multilayer perceptron (MLP) clas-
sifier. Crucially, the self-attention layer within the Vision
Transformer addresses a key drawback of traditional CNNs
by dynamically adjusting feature importance. This mechanism
empowers the network to better grasp the pivotal connections
and interdependencies among image patches, thus enhancing
overall performance.

The input image is divided into a grid of smaller sub-image
patches by the ViT. These patches are then flattened and
processed through a feedforward layer. This layer treats each
patch individually, projecting its features and consolidating
them into a large-sized feature vector known as patch em-
bedding [34].

Next, position embeddings are incorporated into the sequence
of image patches through linear addition. This step preserves
positional information by providing details on the relative
or absolute positions of the patches within the sequence.
Subsequently, the patches embedded are processed through
within a vision encoder, which includes both a Multi-Head
Self-Attention (MSA) layer and a MLP layer [34].

The MSA layer partitions the input into multiple heads to
extract intricate features from the image, thereby generating
a comprehensive global representation. This layer repeatedly
employs self-attention within each head. The outputs from
every heads are then merged through concatenation and for-
warded into the MLP for classification.
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Fig. 3: Evolution of Accuracy on Training and Validation Sets Over Epochs: Left on ViT-B16 and Right on ViT-B32

C. Transfer Learning based on pretrained ViT

Transfer learning using pretrained Vision Transformers
(ViTs) has proven highly effective in various tasks. By leverag-
ing the knowledge embedded in ViTs, which have been trained
on extensive image datasets, models can quickly adapt to new,
specific tasks with significantly less data and computational
resources. Using the pre-trained model’s learnt features re-
duces the requirement to create a new model from scratch.
This approach enhances performance, reduces training time,
and mitigates the need for large, labeled datasets, making it a
powerful technique for applications such as image classifica-
tion. In this study, we examine two transfer learning schemes,
based on the ViT B16 and ViT B32 models.

1) ViT-Bi6: 1t is a pre-trained ViT that was trained using
more than a million images from the ImageNet dataset. It
excels in generating comprehensive and resilient image rep-
resentations, proving valuable across diverse computer vision
applications. The ”B16” designation in the model signifies its
size, with ”16” indicating the patch size used to split input
images. The ViT-B16 model consists of 16 transformer blocks,
with each input image divided into non-overlapping patches
with size 16x16 pixels [35]. Regarding our architecture, the
base is the ViT-B16, outputting a 768-dimensional vector as
its output. The base is followed by a set of layers, especially
dense layers. We added three dense layers with 128, 64, and
32 neurons respectively, followed by a single-neuron output
layer.

2) ViT-B32: 1t is similar to ViT-B16, both of which are
pre-trained on the ImageNet dataset. It uses a patch size of
32x32 pixels to divide the image. Architecturally, it consists
the base, which is the ViT-B-32, followed by the same series
of additional layers as those used for the ViT-B32.

IV. EXPERIMENTAL RESULTS
A. Dataset

The OASIS (Open Access Series of Imaging Studies)
dataset [36] is used for evaluating our approach. OASIS
contains 250 MRI neuroimaging scans, of which 130 depict
brains affected by AD and 120 depict brains not affected by
AD. For the evaluation protocol, 20% of the data is used
for testing, while the remaining 80% is used for training.

TABLE I: Comparison of classification rates

Approach Model Description Accuracy
(%)
[2] CNN Classic CNN for classi- | 88.10
fication
[2] CNN Trasnfer Learning on | 92.86
Alexnet
[20] CNN CNN combined with | 94.44
SVM
Our approach Transformer | Transfer Learning on | 96.25
ViT-B32
Transformer | Transfer Learning on | 95.00
ViT-B16

The OASIS dataset was collected from participants spanning
a wide range of ages and various health conditions. As an
evaluation metric, we used the usual metric accuracy.

B. Results and Discussion

In this section, we detail the results of our method based
on Transformer learned via Transfer Learning on the OASIS
dataset in terms of accuracy. Table I shows the comparison
of our approach with the state of the art. Figure 3 show the
progression of accuracy on the training and validation datasets
during the first 50 epochs of training.

In this study, three observations can be drawn regarding the
application of transfer learning and Transformer models. First,
the application of transfer learning enhanced the performance
of CNN models by 4%, demonstrating the importance of this
method in improving existing models. Second, when com-
paring transfer-based approaches, Transformer models out-
performed CNN models by 4%, highlighting their superior
capability to model the correlation between different image
patches. Finally, regarding the settings of the Transformers,
optimizing hyperparameters showed that changing the batch
size from 16 to 32 results in a performance gain of 1%, a
modest but noteworthy improvement in critical fields such as
healthcare.

V. CONCLUSION

In this work, we have investigated the power of combining
Transformers and Transfer Learning to enhance AD classfica-
tion performance. As a preliminary step, we proposed focusing



solely on the most crucial regions in the brain that contain the
Hippocampus rather than using the entire image. Our investi-
gation convincingly demonstrated that the use of Transformers
significantly outperforms CNNs. This outcome underscores the
capability of Transformers to effectively model the correlations
among different patches of brain images, which is critical for
capturing nuanced patterns associated with AD.

In the future work, we aim to extend the validation of
our method on a large number of datasets, which will help
in establishing the robustness and generalizability of our
model. Additionally, we will delve deeper into optimizing the
parameters of the transformer to further enhance its accuracy
and efficiency [37], [38], [39], [40], [41].
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