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Abstract—Alzheimer’s disease (AD) is a chronic and
irreversible neurological disorder, making early detec-
tion essential for managing its progression. This study
investigates the coherence of SHAP values with medical
scientific truth. It examines three types of features:
clinical, demographic, and FreeSurfer extracted from
MRI scans. A set of six ML classifiers are investigated
for their interpretability levels. This study is validated
on the OASIS-3 dataset with binary classification. The
results show that clinical data outperforms the others,
with a margin of 14% over FreeSurfer features, the
second-best features. In the case of clinical features,
the explanations provided by the tree-based classifiers
consistently align with medical insights. This compari-
son was calculated using the Kendall Tau distance.

Index Terms—Early Alzheimer Disease, Inter-
pretability, Machine Learning, SHAP, Explainable AI.

I. Introduction
Alzheimer’s disease primarily affects individuals over

the age of 65. It is characterized by a decline in cognitive
functions, including memory loss, language difficulties,
and impaired judgment. Early detection is crucial for
improving the quality of life for those affected [1].

Recent advances in machine learning (ML) have created
new opportunities in Alzheimer’s research, by analyzing
vast amounts of data, e.g., brain scans, medical records,
and genetic information, to identify biomarkers associated
with the disease [2]. However, the application of ML
in Alzheimer’s research is not without challenges. The
disease’s variability, along with differences in data quality
and processing methods, can impede the development of
accurate models. Moreover, the "black-box" nature of some
ML algorithms raises issues regarding their predictions’
interpretability. To mitigate these issues, researchers are
increasingly turning to explainable AI (XAI) approaches.
XAI aims to provide an explanation of ML decisions,
enabling clinicians and researchers to understand how
predictions are made and identify the most influential

factors [3]. XAI calculates an importance score for each
input feature influencing the classifier’s decision [4].

Previous research has focused on creating highly accu-
rate AI models for detecting AD. However, for these mod-
els to be embraced by medical professionals, they must also
be understandable and provide clear explanations of their
decisions [5]. In other words, the explanation provided by
the ML algorithm should align with the doctor’s beliefs
and/or established medical truths.

This paper evaluates the prediction accuracy and level
of interpretability of a set of AI models. In our recent
paper [2], we introduced a system for early AD detection
based on MRI images using a transfer learning-based
CNN. To assess this system interpretability, we identified
two strategies for applying XAI methods: one involves
computing the importance score per pixel [6], which is not
practical in our case as a single pixel cannot determine the
outcome independently. Alternatively, dividing the image
into regions based on the anatomy of the human brain and
then calculating the importance of each region allows us to
identify the brain areas responsible for AD. This approach
necessitates a segmentation algorithm, and the study’s
success depends on the quality of this algorithm. Conse-
quently, we have decided to base our study on FreeSurfer
[7], a set of features available within the dataset that
primarily measures the volume of specific brain regions.

Our contributions encompass the evaluation of a set of
AI algorithms using three types of features: FreeSurfer,
clinical data, and demographics. We then compare the con-
sistency of AI model explanations generated by SHapley
Additive exPlanations (SHAP) with doctor’s explanations.
To our knowledge, we are the first to propose the Kendall’s
tau distance for comparing two ordered vectors.

By investigating three features, our approach is ready
for a fusion-based method. However, since the features are
not synchronous (not taken on the same day), we will leave
the investigation of fusion for future work.



The rest of this paper is as follows. Section II presents
the related works. Section III details our evaluation
pipeline. Section IV, presents results and discussion. Fi-
nally, section V outlines our conclusions and future works.

II. Related works
Researchers have evaluated recently AD detection mod-

els w.r.t performance and interpretability. Our perspective
aims to integrate these two aspects. In this context, we
cover the state of the art that, on one hand, focuses
on classification approaches that discern whether patients
have AD or not, and, on the other hand, delves into XAI
methods to gauge how interpretable these models are.

A. Approaches of Early AD Diagnostic
The approaches for AD diagnosis are broadly classi-

fied into cognitive and non-cognitive strategies. The first
evaluate a patient’s mental capacities, such as memory,
language, attention, and executive functions, while the
second emphasize a more holistic assessment of a patient’s
health and lifestyle, encompassing their medical and famil-
ial history as well as daily habits.

Non-cognitive techniques include the examination of
behavior, emotional states, blood-based biomarkers, and
neuroimaging being the most popular. A variety of neu-
roimaging techniques have been utilized, such as MRI,
fMRI, sMRI, and PET [8], [9]. To increase diagnostic pre-
cision, some research suggests combining different imaging
modalities [10], [11].
Generally, two steps are necessary for a neuroimaging-
based approach: feature extraction and classification. In
first, the image can be used directly or after a feature ex-
traction process. These features can be extracted through
techniques such as Bag-of-Features [10] or dimensionality
reduction methods like Principal Component Analysis
[12]. Additionally, neural networks, particularly CNN [13]
and Vision Transformers [14], are used for feature extrac-
tion to derive discriminative embedding representations.
In the classification step, a variety of ML algorithms are
used, including traditional algorithms such as SVM [15]
and KNN, as well as deep learning algorithms like CNN
[16] and Vision Transformers (ViT).
In addition to neuroimaging, other non-cognitive methods
such as behavioral analysis are also utilized. In [17], gait
analysis was explored. The authors hypothesized that
patients with AD might exhibit unique gait characteristics
that differ from those of healthy individuals.

On the other side, cognitive approaches detect AD by
evaluating cognitive abilities through standardized tests.
These tests assess key areas such as memory, attention,
language, and spatial orientation, which are crucial for
understanding how individuals acquire, process, and uti-
lize knowledge-fundamental aspects of cognitive function.
Traditional cognitive assessments like the Mini-Mental
State Examination (MMSE), Clinical Dementia Rating
(CDR) [18], Montreal Cognitive Assessment (MoCA) [19],

and the Clock Drawing Test (CDT) [20] are commonly
used to identify cognitive impairments. These tests are not
only straightforward to administer but also cost-effective,
providing clinicians with vital diagnostic information.

B. Interpretability approaches for AD Diagnostic

Interpretability is essential for ML algorithms, partic-
ularly in critical fields like healthcare. It allows for com-
prehensible and explainable predictions, enhancing trust
and transparency. Interpretability approaches are gener-
ally grouped into three categories: visualization-based,
surrogate-based, and intrinsic methods.

Visualization approaches employ graphical representa-
tions to illustrate what models have learned from data.
They include Grad-CAM ( Gradient-weighted Class Ac-
tivation Mapping), Saliency maps, Gradient Integration,
and Layer-Wise Relevance Propagation (LRP). Grad-
CAM uses gradient data to spotlight influential regions
in images, often applied to neuroimaging with CNNs [21].
It is sometimes combined with Gradient Integration for
deeper insights [22]. LRP offers a different approach by
allocating "relevance" scores to input features that signifi-
cantly impact the model’s predictions. It has been applied
in the AD context using convolutional networks trained
from both image and spectral data [23].

Surrogate-based methods entail creating interpretable
models to analyze the predictions of a black-box ML
model. An explanation for the black-box model is gener-
ated by comparing the decisions made by surrogate models
with those of the black-box model. It include LIME (Local
Interpretable Model-agnostic Explanations) and SHAP. In
[24], LIME was used to identify the parts involved in the
patient’s brain. As input to LIME, a Transfer-based CNN
is trained on a neuroimaging dataset. In [25], SHAP was
combined with Grad-CAM to interpret the decisions of
an XGBoost model trained on a set of features including
neuroimaging (MRI and PET) and clinical features.

To align with the state of the art, we have investigated
a set of features including clinical data, demographic
characteristics, and FreeSurfer features extracted from
MRI images. Regarding the interpretability approach, we
have selected the SHAP surrogate-based method, which is
among the most popular in current state of the art.

III. Proposed approach

Our approach consists of four steps. First, we select a list
of features. These inputs are then fed into ML classifiers.
Next, an interpretability technique is applied to identify
the most important features. To evaluate the classifier, two
types of metrics are calculated: one related to performance
and the other to the interpretability level. We describe
next the details of these different stages. Figure 1 presents
the flowchart of our proposed approach.



Fig. 1: Flowchart of our proposed approach

A. Feature Selection

Three types of features are investigated in our paper:
clinical features, demographic features, and features ex-
tracted from MRI images using FreeSurfer features (i.e.
features extracted from the MRI neuroimaging). Based
on the identified public dataset, which contains numerous
features, it is evident that not all features are of significant
importance or influence. Therefore, in collaboration with
medical experts, we carefully select a list of the most
relevant features for each feature type. These will be
detailed subsequently and presented in a ranking format
by the medical expert.

Clinical Features include assessments of Memory, Age,
MMSE, Judgment (the ability to make sound decisions),
and home hobbies (the capacity to engage in activities
of daily living). Demographic Features include age (also
noted under clinical features), ApoE gene status (which
indicates genetic risk factors for Alzheimer’s disease),
education level, gender, and maternal dementia (whether
the patient’s mother had dementia). FreeSurfer Features
include Intracranial Volume, Subcortical Gray Volume,
Total Gray Volume, Cortex Volume, Cortical White Mat-
ter Volume, and Supratentorial Volume (the volume of the
brain located above the tentorium cerebelli).

B. Classification

In the classification phase, a set of binary ML classifiers
was evaluated to differentiate between AD patients and
Cognitively Normal (CN) subjects. The models tested
included Decision Trees (DT), Random Forests (RF), K-
Nearest Neighbors (KNN), eXtreme Gradient Boosting
(XGBoost), Support Vector Machines (SVM), and Multi-
Layer Perceptron (MLP). For each feature type, the most
performant classifier is selected to investigate its inter-
pretability level.

C. Interpretability based on SHAP

This step aims to sort input features according to their
importance on the output of the ML classifier. The core
of the SHAP method [26] is the assignment, to each
feature in a given data sample, of a score, based on the
Shapley values, that quantifies its contribution to the
model’s prediction. The Shapley values ϕj for feature j
are computed as follows:

ϕj =
∑

S⊆X\j

|S|!(|X| − |S| − 1)!
|X|! [f(xj) − fS(xj)] ,

where X is the set of input features, S ⊆ X \ j is a subset
of features that does not include feature j, f(xj) is the
model’s prediction for the input sample xj , and fS(xj) is
the model’s prediction for the input sample xj with the
features in S set to their expected values.

D. Interpretability Evaluation metric
The objective of this step is to evaluate the ranking

order of features by their importance using SHAP values
and to compare it with a medical expert’s assessment. Let
X = {Xi|1 ≤ i ≤ n} be the set of n features ordered by
SHAP values and Y = {Yi|1 ≤ i ≤ n} be the set ordered
by a medical expert. We propose using the Kendall tau
distance [27] to measure the similarity.
Formally, observation pairs (Xi, Yi) and (Xj , Yj) with i <
j are concordant if their orderings are consistent; that is,
either Xi > Xj and Yi > Yj or Xi < Xj and Yi < Yj .
Conversely, if Xi > Xj and Yi < Yj or Xi < Xj and
Yi > Yj , the pairs are discordant.
The Kendall τ coefficient is then defined as: τ = C−D

C+D
where C is the number of concordant pairs, and D is the
number of discordant pairs.

IV. Experimental results
A. Dataset and evaluation Protocol

We validated our approach on the Open Access Series
of Imaging Studies (OASIS-3) dataset [28]. This dataset
includes details about participants’ demographics (713
CN and 346 AD), their clinical history (4473 CN and
1048 AD), and structural information about their brains,
derived from MRI scans processed with Freesurfer ( 1841
CN and 484 AD). To ensure consistency and completeness,
we preprocessed the features to eliminate any missing
data. Missing values were imputed using the mean of the
respective column. Additionally, the CDR values, which
range from 0, 0.5, 1, 2, to 3, were categorized into two
groups: CN for CDR values of 0, and AD for CDR values
of 0.5, 1, 2, and 3.
In our evaluation protocol, we used a 5-fold cross-
validation technique. For evaluation, we used accuracy to
assess model classification performance and Kendall’s Tau
distance to measure the interpretability level.



TABLE I: Comparison of Feature Orders and Measures

Feature SHAP Order Doctor Order Measure
Clinical memory, age, mmse, judgment, homehobb memory, age, mmse, judgment, homehobb 1
Demographic Age, APOE , Educ, Gender , momdem Age, APOE, Educ, Gender, momdem 1

FreeSurfer
IntraCranialVol, CortexVol,

TotalGrayVol, CorticalWhiteMatterVol,
SubCortGrayVol, SupraTentorialVol

IntraCranialVol, SubCortGrayVol,
TotalGrayVol, CortexVol,

CorticalWhiteMatterVol, SupraTentorialVol
0.46

TABLE II: ML models Accuracy (%) using different fea-
tures

Classifier Clinical Demographic FreeSurfer
DT 0.95 0.65 0.77
RF 0.93 0.74 0.81
KNN 0.92 0.72 0.81
SVM 0.90 0.71 0.81
XGboost 0.91 0.74 0.80
MLP 0.89 0.71 0.81

B. Results and Discussion

Table II shows classifiers’ accuracy, while Table III
displays the Kendall’s Tau similarity between the ranking
orders provided by SHAP and a medical expert. These
orders are detailed in Table I. For each feature, clinical,
demographic, and FreeSurfer, an interpretability analysis
is detailed for the most accurate classifier. These are
presented respectively in Figures 2, 3, and 4. For each
figure, the left side presents the average Shapley value for
each input feature across the entire test dataset, while the
right side describes the evolution of the Shapley value as
the input feature value increases or decreases.

Regarding performance results, we observe that clini-
cal features are more performant than demographic and
FreeSurfer features, exceeding 89% in all cases. FreeSurfer
are less performant, hovering around 80%. As these fea-
tures are extracted via a segmentation algorithm, this
prompts us to further investigate other segmentation al-
gorithms. Moreover, these results are consistent with the
opinion of the medical expert who confirms that they
rely on clinical data to identify patients with AD. In
terms of classifiers, tree-based classifiers (DT and RF)
perform better with clinical data and are also the most
interpretable. This coincides with the nature of tree-based
classifiers, which are inherently interpretable by design.

The analysis of clinical data shows that for the factors
"memory," "judgment," and "homehobb," as their deteri-
oration decreases (depicted in blue on the right side of
Figure 2), their impact on the model becomes negative,
indicating a lower probability of AD onset. Similarly for
age, a decrease in its value is correlated with a reduced risk
of AD onset. However, for ’MMSE’, an increase in its value
(depicted in red) correlates with a negative impact on the
model, implying a reduced probability of AD occurrence.

TABLE III: Comparison between SHAP Values and Med-
ical Expert using Kendall’s Tau distance.

Model Feature Type
Clinical Demographic Freesurfer

DT 1 1 0.06
RF 1 1 0.06

KNN -0.39 0.19 0.46
SVM 0 0.19 0.46

XGboost 0.39 1 0.06
MLP 0 1 0.06

These findings are consistent with scientific reality [29].
With demographic features, the four models (DT, RF,

XGBoost, and MLP) demonstrated modest performance
but offered strong interpretability. However, while KNN
and SVM showed comparable performance, they were
less interpretable. The analysis of interpretability level
(Figure 3) indicates that an increase in age or APOE gene
values positively influences the model’s output, signifying
a heightened risk of AD onset. Likewise, a lower education
level is associated with a positive effect on model’s predic-
tions, suggesting a higher likelihood of AD development.

Regarding FreeSurfer features, the analysis of inter-
pretability level (see Figure 4) indicates that a decrease
in cortical volume, total gray matter volume, and cortical
white matter volume has a positive impact on the model’s
predictions, indicating an increased likelihood of AD onset.

A final observation regarding the trade-off between
performance and interpretability levels shows that a high-
performing model is not necessarily the most interpretable.
Devising more complex models may result in a more effec-
tive model, but at the cost of interpretability. The ideal
model should be both high-performing and interpretable.

V. Conclusions
In this paper, we have investigated the interpretability

level of a set of ML classifiers, in comparison to medical sci-
entific truth. This investigation was conducted using three
types of features: clinical, demographic, and FreeSurfer-
based. Our comparison strategy involved collecting feature
importance using the SHAP technique, on one hand,
and by analyzing the scientific truths as dictated by our
medical expert collaborator, on the other. The results
showed that clinical data are the most performant, and
choosing a tree-based classifier yielded a very high level of



Fig. 2: Analysis of interpretability level for clinical features using the DT classifier. Left: Average feature importance
using SHAP. Right: Feature importance for the AD class according to its values

Fig. 3: Analysis of interpretability level for demographic features using the RF classifier. Left: Average feature
importance using SHAP. Right: Feature importance for the AD class according to its values

Fig. 4: Analysis of interpretability level for FreeSurfer features using the KNN classifier. Left: Average feature
importance using SHAP. Right: Feature importance for the AD class according to its values

interpretability. Our main finding from this investigation
was that a trade-off should be taken into account when
choosing the best classifier, which should be both high-
performing and interpretable.

Future work includes improving the performance of
other features, especially FreeSurfer, with the aim of inte-
grating all three types of features to enhance performance.
The fusion of multiple features can enhance performance
but may also make the model less interpretable due to
increased complexity. We plan to test other interpreta-
tion methods, such as Integrated Gradients. We will also
explore XAI for other modalities harnessed for detecting

neurodegenerative diseases, such as speech [30], [31], and
handwriting [32], [33], [34], [35], [36].
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