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Summary. This work deals with the numerical simulation of the deployment of a folded
inflatable structure subjected to an internal pressure. The computation is performed by means
of the finite element method as opposed to most of other works which used the control volume
method. During the deployment process, self contact can occur at some portions of the boundary
where contact force play a crucial role to deploy the structure. Contact problem will be treated
by making use of a new weighted residual principle.

1 THEORETICAL FORMULATION

Consider two bodies – labeled 1 and 2 – undergoing motions φ(1) and φ(2) in the three-
dimensional space during some time interval [O, T ]. Assuming that the bodies may come into
contact with each other, we formulate the contact problem using a Lagrangian description. The
notations, rather standard, are summarized as follows. The reference configuration of the two

bodies are represented by the regions Ω
(1)
o and Ω

(2)
o . The prescribed body force per unit mass

in body i is denoted f(i). The boundary S
(i)
o of body i is partitioned into three parts denoted

S
(i)
oU , S

(i)
oT and S

(i)
oc , where S

(i)
oU , S

(i)
oT are Dirichlet and Neumann boundary parts and S

(i)
oc is the

part where contact potentially takes place. The stress state in body i is defined by the first

Piola-Kirchhoff stress tensor Π(i). The nominal traction vector at any point in S
(i)
o with normal

vector N(i) is denoted T(i) = Π(i).N(i). The spatial counterparts of surface S
(i)
o is denoted S(i).

Given a point x ∈ S
(1)
c one defines a contact point y ∈ S

(2)
c as the closest point to x via

y = arg min
x(2)∈S

(2)
c

‖x − x(2)‖, and the proximity as g = −ν(x − y) where ν is the outward

normal at point y. One also defines the point X ∈ S
(1)
oc related to point x in question by

x = φ(1)(X) and Y(X) ∈ S
(2)
oc related to point y by y = φ(2)(Y). The tangential kinematics

is characterized by the slip velocity VT = η̇αaα which is resolved in terms of the local spatial

basis (a1,a2) at point y ∈ S
(2)
c . Likewise, the nominal traction vector at any point X ∈ S

(1)
oc is

resolved as T = TNν − TT . The coefficient of friction is µ.
The weak form presented here is stated as a mixed relationship which involves both the

displacement fields U(i), i ∈ {1, 2}, defined in Ω
(i)
o and the multiplier fields λN and λT defined

on S
(1)
oc . Accordingly, the weighting functions are the virtual displacements U(1)∗, U(2)∗, and the
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virtual multipliers λ∗
N , λ∗

T . Two positive constants ǫN , ǫT being chosen, the weighted residual
relationship is given by1

∀t,∀U(1)∗,∀U(2)∗,∀λ∗
N ,∀λ∗

T

2
∑

i=1

{

−

∫

Ω
(i)
o

Π(i)T : ∇
X

(i)U
(i)∗dΩo +

∫

Ω
(i)
o

ρ(i)
o f(i)U(i)∗dΩo +

∫

S
(i)
oU

∪S
(i)
oT

T(i)U(i)∗dSo

}

+
∫

S
(1)
oc

[

〈λN + ǫNg〉ν −
(

1 − 〈1 − µ〈λN+ǫNg〉
‖λT +ǫT VT ‖〉

)

(λT + ǫTVT )
] (

U(1)∗(X) − U(2)∗(Y(X))
)

dSo

+
∫

S
(1)
oc

{

(λN − 〈λN + ǫNg〉)
λ∗

N

ǫN
+

[

λT −
(

1 − 〈1 − µ〈λN+ǫNg〉
‖λT +ǫT VT ‖〉

)

(λT + ǫTVT )
]

λ
∗

T

ǫT

}

dSo

=

2
∑

i=1

∫

Ω
(i)
o

ρ(i)
o Ü

(i)
U(i)∗dΩo

(1)

2 SEMI-DISCRETE EQUATIONS AND TIME INTEGRATION

The mixed relationship (1) is discretized in space by the finite element method, considering
that the displacements and multipliers are two independent fields. One eventually obtains the
following coupled equation system with unknowns U and Λ

{

[M]{Ü} + {Ψ(U)} = {Φ(U)} + {Φcontact(U,Λ)}
{RΛ(U,Λ)} = {0}

(2)

where [M] is the mass matrix, {Ψ} the internal force vector, {Φ} the external force and
{Φcontact} the contact force. The second Equation results from the discretization of third line
of Equation (1).

In this work, use is made of both the Newmark2 and the Moreau3,4 schemes for the time
stepping. Whereas the standard Newmark scheme is able to give satisfactory results, the Moreau
scheme proves to be more efficient to deal with the velocity jumps at impact time since it only
involves first order time derivatives.

The Moreau scheme is summarized as follows. Let the time interval of interest [0, T ] be divided
into N equal intervals ∪N

n=1[tn−1, tn], i.e. equal time steps ∆t = tn − tn−1. By integrating
Equation (2)1 in time from tn−1 to tn and making use of the θ-method to approximate the
displacement, {Un} = {Un−1} + ∆t (θ{Vn} + (1 − θ){Vn−1}), one obtains















1

∆t
{R} ≡

1

θ∆t2
[M]

(

{Un} − {Un−1} − ∆t{V}n−1

)

+
(

ξ{Ψn} + (1 − ξ){Ψn−1}
)

−
(

ξ{Φn} + (1 − ξ){Φn−1}
)

− {Φcontact,n} = 0

{RΛ,n} = {0}

(3)

where ξ, θ ∈ [0, 1] are chosen parameters. Equation (3) is a nonlinear algebraic system which
can be solved by the Newton-Raphson scheme.

3 A FIRST NUMERICAL EXAMPLE: INFLATION OF A FLAT TUBE

The example considered in this section is a first step for validating the contact computation
of a membrane structure. Consider a membrane tube made of a hyperelastic Saint-Venant
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Kirchhoff material with E = 107N/m2, ν = 0.3. In the reference configuration, the tube is flat,
rectangular of dimensions 0.15m × 0.5m × 50µm and rests on a rigid foundation as shown in
Figure 11. It is free from all kinematic boundary condition except for the contact with the
foundation and is submitted to an internal pressure p = min{50.t, 10}Pa. The tube is modeled
by 2 × 24 eight-node quadrilateral membrane elements. Figures 1 and 2 show the initial and
deformed shapes corresponding to the Newmark and Moreau schemes, respectively, as time
evolves. As predicted, the tube takes off due to the contact reaction force with the foundation
before falling down under the gravity effect.

Figure 1: Initial and deformed shapes obtained with the Newmark scheme, ∆t = 10−3, γ = 2β = 1

2

Figure 2: Initial and deformed shapes obtained with the Moreau scheme, ∆t = 10−3, ξ = θ = 1

2

4 DEPLOYMENT OF A FOLDED TUBE

Consider again a flat tube made of an elastic membrane of dimension of 0.3m× 0.8m resting
on a rigid foundation and made of the same material as in the previous section. Here, the tube
is folded in two in the reference configuration; one end of the tube is clamped at the fixed plane
and the middle point of the other end constrained to move along an axis parallel to z, as shown
in Figure 3. One assumes either gravity in the z direction or no gravity. When submitted to an
internal pressure p(t), the tube is gradually unfolded and eventually reaches the straight shape.
The deployment process is mainly governed in the initial stage by the self-contact of the tube as
well as the contact with the rigid plane. The structure is modeled by 2×40 8-node quadrilateral
membrane elements.

Figure 3 shows the deployment sequence when a pressure p = 1000.tPa is applied while
Figure 4 plots the internal pressure versus the tip displacement with the Newmark and Moreau
schemes. An in-depth analysis reveals that the Newmark scheme may yield unlikely vibrations
of the membrane and some inter-penetrations at the contact zones, while the Moreau scheme
produces better numerical results. Under gravity g = 10m/s2, the structure can not be deployed
with the weak pressure rate p = 100.tPa as the inertial effect is not strong enough to win the
gravity. Figure 5 shows that the greater the pressure rate is the faster the structure deploys, yet
the deployment time is not a linear function of the pressure rate.
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Figure 3: Deployment of the folded tube under internal pressure p(t) = 1000.t Pa
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Figure 4: Inflating pressure versus the tip displacement. (a) New-
mark scheme, (b) Moreau scheme.
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Figure 5: Deployment time
versus pressure rate.

5 CONCLUSION

The weighted residual principle (1) proposed for contact problems has been shown to be able
to successfully compute the deployment process of an inflatable tube. The time discretization
has been performed using the standard Newmark scheme and the first-order Moreau scheme,
which is found to give more satisfactory results than the first one.
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