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Abstract

The present work is devoted to a fully regularized boundary formulation for
three-dimensional elastoplastic problems. The proposed algorithm is based
on an integral representation of the strain field in which no integrals have
to be understood in the principal value sense. Following the current ap-
proach used in Finite Element procedures, an initial strain formulation and
an implicit integration scheme are considered. The elastoplastic relation-
ships take into account an isotropic and linear kinematic hardening material
satisfying the von Mises criterion.

1 Introduction

It is well established that the boundary formulation can be applied
to various problems presenting geometrical or material nonlineari-
ties (Mukherjee & Chandra [7]). Whereas algorithms for solving
non-linear equations are intensively developed within the domain fi-
nite element method, strangely enough very few papers were denoted
to 3D elastoplastic problems with somewhat sophisticated hardening
laws, especially those involving the concept of the tangent operator.
More often than not the algorithms are explicit as proposed by Telles
[11] or Banerjee [2]. Recently many workes have investigated implicit
procedures for integral equations on account of their unconditional
stability (see Telles & Carrer [13]).



In the present paper, an integral representation for strains is
proposed. As the basic component of the numerical implementation,
this expression is characterized by being fully regularized, even at
irregular boundary points. Next it is shown how to incorporate the
radial return algorithm into the boundary element formulation in
order to numerically solve the elastoplastic problems. This approach
contains some extensions of the recent work of Bonnet & Mukherjee
[5].

2 Boundary Integral Formulation

Let Ω be a three-dimensional open bounded domain subjected to a
distribution of initial plastic strain εp(x) the boundary S of which
is a piecewise Liapunov manifold. The integral representation of the
displacement field u(x) is now well established (see e.g. Bonnet [4]
or Balas, Sladek & Sladek [1]) and is given by :

uk(x) =

∫

S

t̃i(y)U
k
i (x, y) dS(y)−

∫

S

T k
i (x, y)ũi(y) dS(y)

+

∫

Ω

Σk
ij(x, y)ε

p
ij(y) dV (y)

(1)

where Uk
i (x, y) denotes the Kelvin solution in R3 (for the definition

of T k
i (x, y) and Σk

ij(x, y) see Bonnet [4]) and in the Direct Boundary
Element formulation, ũi(y) represents the trace of ui(x) on S and
t̃i(y) the stress vector on S.

Differentiation of (1) with respect to x yields the representation
formula for the displacement gradient of internal points. A regular-
ized formulation of the displacement gradient is given in Bonnet [4],
Bonnet & Mukherjee [5]. Up to now boundary strains (or boundary
stresses) are computed from the boundary stress, displacement and
plastic strain fields (see Telles [11], Telles & Brebbia [12]). Never-
theless recent works (see Guiggiani [6]) underscore the poor accuracy
and the limitations of such a procedure in elasticity and plainly show
the advantage to use integral representation for the boundary strain.
Bui & Bonnet [3] gave an integral representation of the displacement
gradient field at smooth points on S and Sladek, Sladek & Levan
[10] extended this approach to bodies subjected to initial strain. The



present section gives an integral representation of the boundary dis-
placement gradients valid for a manifold S having edge and corner
singularities.

Let us define the following quantity.

∂̃u

∂n i
(y) =

1

G
(δik −

ni(y)nk(y)

2(1− ν)
)t̃elask (y)−

−
ν

1− ν
Dkũk(y)ni(y)− nk(y)Diũk(y)

(2)

where G and ν denotes the shear modulus and the Poisson ratio
respectively. Dj(.) represents the surface gradient operator on S and
t̃elasj (y) is the elastic traction vector given by the formula :

t̃elask (y) = t̃k(y) + (Cklmnε
p
mn(y))nl(y) (3)

where C denotes the elastic fourth-order tensor.
Let us now introduce the ”reconstitued” displacement gradient on S.

∇̃uij(y) ≡ h̃ij(y) = Dj ũi(y) +
∂̃u

∂n i
(y)nj(y) (4)

It can be proved that the gradient of a displacement field satisfy-
ing Navier-Cauchy’s equations in Ω admits of the following integral
representation for x ∈ Ω.

uk,l(x) =

∫

S

DljU
k
i (x, y)σ̃ij(y)−

∫

S

T k
i (x, y)h̃il(y) dS(y)

−

∫

Ω

Σk
ij,l(x, y)[ε

p
ij(y)− ε

p
ij(x)] dV (y)

+

∫

S

Σk
ij(x, y)nl(y)[ε

p
ij(y)− ε

p
ij(x)] dS(y)

(5)

where Dlb(.) can be identified with the surface curl operator and
is defined by the relation Dlb(.)(y) = nl(y)Db(.)(y) − nb(y)Dl(.)(y).
σ̃ij(y) represents the ”reconstitued” boundary stress.

σ̃ij(y) = Cijab(h̃ab(y)− ε
p
ab(y)) (6)



Assuming that h̃ij(y) ∈ C0,α(S) and ε
p
ij(y) ∈ C0,α(Ω), we ob-

tain the following expression for the integral representation of the
boundary displacement gradient.

∀z ∈ S, uk,l(z) =

∫

S

Uk
i (z, y)Djlσ̃ij(y) dS(y) + h̃kl(z)

−

∫

S

T k
i (z, y)[h̃il(y)− h̃il(z)] dS(y)

+

∫

Ω

Σk
ij(z, y)ε

p
ij,l(y) dV (y)

(7)

The above expression facilitates the numerical implementation as
will be shown latter. It is noteworthy that the computation of the
displacement gradient at either internal or boundary points are based
on the same structure since the integral kernels arising in relations (7)
and (5) are identical. All the integrals are regular or weakly singular
so that the numerical computation can be performed with standard
Gaussian quadrature rules.

3 Radial Return Algorithm (RRA)

For the domain finite element purposes, use is constantly made of
the so-called radial return algorithm (RRA) developped by Simo &
Taylor [9] for rate-indepedent plasticity. The main avantages of the
RRA are the unconditional stability and the obtention of the con-
sistent tangent operator. Bonnet & Mukherjee [5] were the firsts to
adapt this algorithm to boundary element method.

Let dp be the plastic strain rate, ep be the cumulated plastic
strain and α the back-stress (the center of the yield surface). The
hardening rule is caracterized by a function κ(ep), the evolution of α
is defined by the following relation and the yield condition is given
by

f(σ, α, κ) ≡‖ s− α ‖ −

√
2

3
κ(ep) = 0 (8)

α̇ =
2

3
H ′(ep)dp (9)



where s is the deviatoric part of σ and H ′(ep) the plastic modulus.
Use will be made of the RRA, given in Simo & Taylor [9] for rate-
indepedent plasticity and briefly summerized below. Let ∆εn+1 be a
given strain increment then a trial deviatoric stress is defined as

sEn+1 = sn + 2G∆en+1 (10)

If f(sEn+1, αn, κn) ≤ 0, the trial deviatoric stress is elastic and σn+1

is given by :

σn+1 = K(I ⊗ I) : ∆εn+1 + 2G∆en+1 + σn (11)

where K is the bulk modulus and I the second order unit tensor.
If f(sEn+1, αn, κn) > 0, the trial deviatoric stress lies outside of the
elastic region enclosed by the yield surface and σn+1 is obtained by
the following equations which express the projection of sEn+1 onto the
yield surface :

σn+1 = K(I ⊗ I) : εn+1 + sn+1 e
p
n+1 = epn +

√
2

3
∆γn+1 (12)

sn+1 = αn+1 +

√
2

3
κn+1n̂ n̂ =

sEn+1 − αn

‖ sEn+1 − αn ‖
(13)

αn+1 = αn +

√
2

3
∆Hn+1n̂ (14)

and ∆γn+1 solves the nonlinear consistency equation

‖ sEn+1 − αn ‖ −

√
2

3
κn+1 − 2G∆γn+1 −

√
2

3
∆Hn+1 = 0 (15)

in which ∆Hn+1 = H(epn+1)−H(epn).

4 Numerical implementation

In order to solve the system of integral equations presented in Section
2, the boundary S and the part of the domain Ω which is likely to
yield have to be discretized. Let us assume that (ũn, t̃n, ε

p
n) are the

solution of the evolutive problem at the time-like parameter value
tn. One then has to find the fields (ũn+1, t̃n+1, ε

p
n+1) defined at tn+1,

consistent with the yield criterion, the equilibrium equation and the
boundary conditions for an given load increment (∆ũn+1,∆t̃n+1). Let



us denote ∆(.)n+1 = (.)n+1 − (.)n.

The enforcement of the boundary conditions at tn+1 reads after
discretization :

[H]{∆un+1} − [G]{∆tn+1} = [Q]{C : ∆ε
p
n+1} (16)

Let us denote by {∆yn+1} and {∆fn+1} the vectors collecting re-
spectively the unknown and known boundary variables. The above
formula can be rearranged as follows :

[A]{∆yn+1} = {∆fn+1}+ [Q]{C : ∆ε
p
n+1} (17)

As for the strain field in Ω, it can be obtained using Relation (5)
for internal points or Relation (7) for boundary points (see Bonnet
& Mukherjee [5]). For internal points all the integrals arising in the
present formulation are regular if εpij(y) ∈ C0,α(Ω) which makes it
possible to use a classical continuous interpolation for the plastic
strains.

Let us take for each finite boundary element and internal cell the
following interpolation :

ũ(y(ξ)) = Ne(ξ).u
e t̃(y(ξ)) = Ne(ξ).t

e (18)

εp(y(ξ)) = Ne(ξ).(ε
p)e h̃(y(ξ)) = Ne(ξ).h

e (19)

When obtaining Relation (7), one has assumed that h̃ij(y) ∈ C0,α(S).
In fact, differentiation of Relation (18) yields only piecewise contin-
uous interpolation of h̃ij . In order to overcome this difficulty, Polch,
Cruse & Huang [8] interpolated Dlb(ũk)(y) and ũk(y) independently.
This procedure is extended here to the entire boundary displacement
gradient. Eventually, the variational formulation consisting of mini-
mizing the error between both interpolations gives rise to :

[M ]{h} = [Bu]{u}+ [Bt]{t}+ [Bεp ]{ε
p} (20)

where [M ] is a invertible symmetric matrix.

Discretizing Relations (5) and (7), and denoting by {∆ε
p
n+1} the

strain increment vector, one obtains :

{∆εn+1} = [D]{∆hn+1}+ [Q′]{C : ∆ε
p
n+1} (21)



Using the relation (20) and substituting ∆yn in the previous equation
via (17), one finally has :

{∆εn+1} = {∆εelasn+1}+ [S]{C : ∆ε
p
n+1} (22)

where {∆εelasn+1} is the elastic strain increment which results from
the increment (∆ũn+1,∆t̃n+1). Incorporating the partition elastic
strain-plastic strain {C : ∆ε

p
n+1} = {C : ∆εn+1} − {∆σn+1} into the

previous relation, one obtains the following nonlinear equation for
∆εn+1.

{G(∆εn+1)} ≡[S]{σn+1(∆εn+1) + σn − C : ∆εn+1}+

{∆εn} − {∆εelasn+1}

={0}

(23)

The solution of Equation (23) is carried out using the Newton-Raphson
scheme and the consistent tangent operator (CTO) Cn+1. The addi-
tive correction δεin+1 = ∆εi+1

n+1−∆εin+1 to ∆εin+1 solves the following
linear equation.

([S].[C − Ci
n+1]− [I]).{δεin+1} = {G(∆εin)} (24)

where Ci
n+1 = ∂σn+1

∂∆εn+1
(∆εin+1). The expression of Cn+1 associated

with the RRA is given by Simo & Taylor [9] :

Cn+1 =K.I ⊗ I + 2Gβ(I −
1

3
I ⊗ I)− 2Gγn̂⊗ n̂ (25)

where

β =

√
2

3

κ(epn+1) + ∆Hn

‖ sEn+1 − αn ‖
γ =

1

1 + [κ′+H′]n+1

3G

− (1− β) (26)

and I denotes the fourth-order symmetric unit tensor.

5 Conclusion

In the present paper, an integral representation for strains has been
proposed. Involved as the basic component in the numerical imple-
mentation, this expression is characterized by being fully regularized,
even at irregular boundary points. It has also been shown how to
incorporate the radial return algorithm into the boundary element
formulation. Further investigations are under progress in order to
numerically validate the proposed formulation and the results will be
presented in next papers.
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