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Abstract 
The present work is devoted to a fully regularized boundary formula! ion for 
three-dimensional elastoplastic problems. The proposed algorithm is based 
on an integral representation of the strain field in which no integrals have 
to be understood in the principal value sense. Following the current ap­
proach used in Finite Element procedures, an initial strain formulation and 
an implicit integration scheme are considered. The elastoplastic relation­
ships take into account an isotropic and linear kinematic hardening material 
satisfying the von Mises criterion. 

1 Introduction 
It is well established that the boundary formulation can be applied 
to various problems presenting geometrical or material nonlineari­
ties (Mukherjee & Chandra [7]). Whereas algorithms for solving 
non-linear equations are intensively developed within the domain fi­
nite element method, strangely enough very few papers were denoted 
to 3D elastoplastic problems with somewhat sophisticated hardening 
laws, especially those involving the concept of the tangent operator. 
_\fore often than not the algorithms are explicit as proposed by Telles 
[11] or Banerjee [2]. Recently many workes have investigated implicit
procedures for integral equations on account of their unconditional
stability (see Telles & Carrer [13]).
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In the present paper, an integral representation for strains is 
proposed. As the basic component of the numerical implementation, 
this expression is characterized by being fully regularized, even at 
irregular boundary points. Next it is shown how to incorporate the 
radial return algorithm into the boundary element formulation in 
order to numerically solve the elastoplastic problems. This approach 
contains some extensions of the recent work of Bonnet & Mukherjee 
[5]. 

2 Boundary Integral Formulation 

Let Q be a three-dimensional open bounded domain subjected to a 
distribution of initial plastic strain EP (x) the boundary S of which 
is a piecewise Liapunov manifold. The integral representation of the 
displacement field u(x) is now well established (see e.g. Bonnet [4) 
or Balas, Sladek & Sladek [1]) and is given by : 

uk(x) = j i;(y)Uhx, y) dS(y) + j Thx, y)u;(y) dS(y) +
s s J Z:fj(x, y)cfj(Y) dV(y) 
n 

(1) 

where U;k (x, y) denotes the Kelvin solution in R3 (for the definition 
ofTt(x,y) and It(x,y) see Bonnet [4]) and in the Direct Boundary 
Element formulation, u i(Y) represents the trace of u;(x) on S and 
i; (y) the stress vector on S. 

Differentiation of ( 1) with respect to x yields the representation 
formula for the displacement gradient of internal points. A regular­
ized formulation of the displacement gradient is given in Bonnet [4], 
Bonnet & Mukherjee [5]. Up to now boundary strains (or boundary 
stresses) are computed from the boundary stress, displacement and 
plastic strain fields (see Telles [11], Telles & Brebbia [12]). Never­
theless recent works (see Guiggiani [6]) underscore the poor accuracy 
and the limitations of such a procedure in elasticity and plainly show 
the advantage to use integral representation for the boundary strain. 
Bui & Bonnet [3] gave an integral representation of the displacement 
gradient field at smooth points on S and Sladek, Sladek & Levan 
[10] extended this approach to bodies subjected to initial strain. The
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present section gives an integral representation of the boundary dis­placement gradients valid for a manifold S having edge and corner singularities. Let us define the following quantity. 
(2) where G and v denotes the shear modulus and the Poisson ratio respectively. D j (.) represents the surface gradient operator on S and t;las(y) is the elastic traction vector given by the formula: where C denotes the elastic fourth-order tensor. Let us now introduce the "reconstitued" displacement gradient on S. 
( 4) It can be proved that the gradient of a displacement field satisfy­ing Navier-Cauchy's equations in n admits of the following integral representation for X E n. 

J k - J k -uk,z(x) = D1jUi (x, y)ai1(y) - Ti (x, y)'vu;z(y) dS(y) -
s s 

j �t.z(x, y)[c:f1(y) - c:f1(x)] d\l(y) + (.5) 
j �7j(x, y)nz(y)[c:f1(y) - c:f1(x)] dS(y)where D1b (.) can be identified with the surface curl operator and is defined by the relation Dlb(.)(y) = n1(y)Db(.)(y) - nb(y)Dz(.)(y). O"ij (y) represents the "reconstitued" boundary stress. 

(6) 
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Assuming that Vuij(Y) E C0 •°' (5) and cfj (Y) E C0'°'(rl), we ob­
tain the following expression for the integral representation of the 
boundary displacement gradient . 

\/z E 5, uk,1(z) = J D1jU/(z, y)[aij(Y) - O"ij(z)] dS(y) -
s 
j Thz, y)[Vuil(Y) - Vui1(z)] dS(y) + Vuil(z) -
s 

j �t,1(z, y)[cfj(Y) - cfj (z)] dV(y) +

j E7j (z, y)n1(y)[cfj(Y) - cfj(z)] dS(y)
s 

(7) 

The above expression facilitates the numerical implementation as 
will be shown latter. It is noteworthy that the computation of the 
displacement gradient at either internal or boundary points are based 
on the same structure since the integral kernels arising in relations (7) 
and (5) are identical. All the integrals are regular or weakly singular 
so that the numerical computation can be performed with standard 
Gaussian quadrature rules. 3 Radial Return Algorithm (RRA) 
For the domain finite element purposes, use is constantly made of 
the so-called radial return algorithm (RRA) developped by Simo & 
Taylor [9] for rate-indepedent plasticity. The main avantages of the 
RRA are the unconditional stability and the obtention of the con­
sistent tangent operator. Bonnet & Mukherjee [5] were the firsts to 
adapt this algorithm to boundary element method. 

Let dP be the plastic strain rate, eP be the cumulated plastic 
strain and a the back-stress (the center of the yield surface). The 
hardening rule is caracterized by a function ,-,;(eP), the evolution of a 
is defined by the following relation and the yield condition is given 
by 
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(8) 

(9) 

where s is the deviatoric part of er and H'(eP) the plastic modulus. 
Use will be made of the RRA, given in Simo & Taylor [9) for rate­
indepedent plasticity and briefly summerized below. Let �cn+l be a 
given strain increment then a trial deviatoric stress is defined as 

(10) 

If f(s;f+l, an, i,;n) � 0, the trial deviatoric stress is elastic and crn+l 
is given by: 

where [{ is the bulk modulus and I the second order unit tensor. 
If f (s�+i, an, i,;n ) > 0, the trial deviatoric stress lies outside of the 
elastic region enclosed by the yield surface and crn+l is obtained by 
the following equations which express the projection of s1f+1 onto the 
yield surface : (12) 

(13) (14) 
and �,n+l solves the nonlinear consistency equation (15) 
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4 Numerical implementation 
In order to solve the system of integral equations presented in Section 
2, the boundary S and the part of the domain n which is likely to 
yield have to be discretized. Let us assume that ( Un, in, E�) are the 
solution of the evolutive problem at the time-like parameter value -

p ) tn. One then has to find the fields ( Un+I, tn+I, En+I defined at tn+I, 
consistent with the yield criterion, the equilibrium equation and the 
boundary conditions for an given load increment ( 6.un+I, 6.in+ d. Let 
us denote 6.(.)n+l = (.)n+l - (-)n-

The enforcement of the boundary conditions at tn+I reads after 
discretization : 

Let us denote by { 6Yn+d and { 6.f n+d the vectors collecting re­
spectively the unknown and known boundary variables. The above 
formula can be rearranged as follows : 

As for the strain field in n, it can be obtained using Relation ( 5) 
for internal points or Relation (7) for boundary points (see Bonnet 
& Mukherjee [5)). For internal points all the integrals arising in the 
present formulation are regular if cfj(Y) E C0 ·°'(S1) which makes it 
possible to use a classical continuous interpolation for the plastic 
strains. 

Let us take for each finite boundary element and internal cell the 
following interpolation 

u(y(() ) = Ne(().ue 

cP(y(()) = Ne(().(cp) e 

t (y(() ) = Ne(().te 

Vu(y(()) = Ne(().(Vu)e 

( 18) 
( 19) 

When obtaining Relation (7), one has assumed that Vuij(Y) E C0P (S).
In fact, differentiatio�of Relation (18) yields only piecewise continu­
ous interpolation of Vuij• In order to overcome this difficulty, Polch, 
Cruse & Huang [8) interpolated D1b(uk)(Y) and ilk(y) independently. 
This procedure is extended here to the entire boundary displacement 
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gradient. Eventually, the variational formulation consisting of mini­
mizing the error between both interpolations gives rise to : 

where [M] is a invertible symmetric matrix. 
Discretizing Relations (5) and (7), and denoting by {�c�+1} the 

strain increment vector, one obtains : 
{�En+d = [D] {� v'un+i} + [Q'] {C : �€�+1} (21) 

Using the relation (20) and substituting �Yn in the previous equation 
via ( 17), one finally has : 

{�En+d = {�c�1+D + [S] {C : �€�+1} (22) 
where { �c�1+i} is the elastic strain increment which results from 
the increment (�iin+l, �in+1), Incorporating the partition elastic 
strain-plastic strain {C : �€�+1} = {C : �En+d - {�an+d into the
previous relation, one obtains the following nonlinear equation for 
�En+l· 

{G (�cn+1)} =[S] {an+1 (�En+i) + O"n - C :  �En+d +
{�en} - {�c�1+i}

= {0} 
(23) 

The solution of Equation (23) is carried out using the Newton-Raphson 
scheme and the consistent tangent operator (CTO) Cn+l · The addi-
t. . ' i A i+l A i A i I h C II . 1ve correction oEn+l = uEn+l - ucn+l to ucn+l so ves t e 10 owmg 
linear equation. 

( [S].[C - C�+1J - [I]). {oc�+i} = {G(�c�)} (24) 
h Ci � ( A i ) Th . f C . t d w ere n+l = at."n+i uEn+l . e expression o n+l assoc1a e 

with the RRA is given by Simo & Taylor [9] 

where 
Cn+l =l<.I 0 I+ 2G,!3(I - }10 I) - 2G,n 0 n (2,5) 

1 1 = l + [1<'+H'l n+1 - (l - /3)
3G 

(26) 

and I denotes the fourth-order symmetric unit tensor. 
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5 Conclusion 
In the present paper, an integral representation for strains has been 
proposed. Involved as the basic component in the numerical imple­
mentation, this expression is characterized by being fully regularized, 
even at irregular boundary points. It has also been shown how to 
incorporate the radial return algorithm into the boundary element 
formulation. Further investigations are under progress in order to 
numerically validate the proposed formulation and the results will be 
presented in next papers. References 
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