
HAL Id: hal-04621210
https://hal.science/hal-04621210

Submitted on 23 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Derivative formulas and gradient of functions with
non-independent variables

Matieyendou Lamboni

To cite this version:
Matieyendou Lamboni. Derivative formulas and gradient of functions with non-independent variables.
Axioms, 2023, 12 (9), pp.845. �10.3390/axioms12090845�. �hal-04621210�

https://hal.science/hal-04621210
https://hal.archives-ouvertes.fr


Derivative formulas and gradient of functions with non-independent

variables

Matieyendou Lamboni1a,b

aUniversity of Guyane, Department DFRST, 97346 Cayenne, French Guiana, France
b228-UMR Espace-Dev: University of Guyane, University of Réunion, IRD, University of Montpellier, France.

Abstract

Stochastic characterizations of functions subject to constraints result in treating them as functions

with non-independent variables. Using the distribution function or copula of the input variables

that comply with such constraints, we derive two types of partial derivatives of functions with

non-independent variables (i.e., actual and dependent derivatives) and argue in favor of the latter.

Dependent partial derivatives of functions with non-independent variables rely on the dependent

Jacobian matrix of non-independent variables, which is also used to de�ne a tensor metric. The dif-

ferential geometric framework allows for deriving the gradient, Hessian and Taylor-type expansion

of functions with non-independent variables.

Keywords: Copulas, Dependent and correlated variables, Gradient, Hessian, Riemannian Tensors

1. Introduction

We use to work with models de�ned through functions that include non-independent variables

such as correlated input variables. It is also the case of models de�ned via functions with inde-

pendent input variables and equations or inequations connecting such inputs; functions subject to

constraints involving input variables and/or the model output. Knowing the key role of partial

derivatives at a given point in i) mathematical analysis of functions and convergence, ii) Poincaré

inequalities ([1, 2]) and equalities ([3, 4]), iii) optimization and active subspaces ([5, 6]), iv) implicit

functions ([7, 8]) and v) di�erential geometry (see e.g., [9, 10, 11]), it is interesting and relevant

to have formulas that enable the calculations of partial derivatives of functions in presence of

non-independent variables, including the gradients. Of course, such formulas must account for the

dependency structures among the model inputs, including the constraints imposed on such inputs.

Actual partial derivatives aim at calculating the partial derivatives of functions, which take

account of the relationship between the input variables ([12]). For instance, let us consider the

function f : R3 → R given by f(x, y, z) = 2xy2z3 under the constrained equation h(x, y, z) = 0

with h any smooth function. Using f ′
x for the formal partial derivative of f w.r.t. x, that is, the

partial derivative of f by considering other inputs as constant or independent, the chain rule gives

the following partial derivative:

∂f

∂x
(x, y, z) = f ′

x(x, y, z) + f ′
y(x, y, z)

∂y

∂x
+ f ′

z(x, y, z)
∂z

∂x

= 2y2z3 + 4xyz3
∂y

∂x
+ 6xy2z2

∂z

∂x
.
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In probability and statistics, the point (x, y, z) stands for a realization or a sample value of the

implicit random vector (X,Y, Z). The quantities ∂y
∂x ,

∂z
∂x and ∂f

∂x do not have a de�nite meaning

when the variables (X,Y, Z) are npn-independent. So far, ∂y
∂x ,

∂z
∂x and ∂f

∂x are often hard to deter-

mine without supplementary assumptions such as the choice of directions or paths. When (X, Z)

or (X, Y ) are independent and using the equation h(x, y, z) = x+ 2y − z = 0, we can write ([12])

∂f

∂x
(x, y, z) =

{
2y2z3 − 2xyz3 if X and Z are independent or z is being held �xed

2y2z3 + 6xy2z2 if X and Y are independent or y is being held �xed
.

It is clear that the actual partial derivatives are not unique since such derivatives rely on two

di�erent paths or assumptions. While each supplementary assumption can make sense in some

cases, it cannot be always guaranteed by the constrained equation h(x, y, z) = 0 in general. In-

deed, when all the initial input variables are dependent or correlated, the above partial derivatives

are no longer valid even for a linear function h, and it is worth �nding the right relationship be-

tween the input variables and the partial derivatives, including the gradient.

In di�erential geometry (see e.g., [9, 10, 11]), using the di�erential of the function f , that is,

df = 2y2z3dx+ 4xyz3dy + 6xy2z2dz ,

the gradient of f is de�ned as the dual of df w.r.t. a given tensor metric. Obviously, di�erent

tensor metrics will give di�erent gradients of the same function. While the Euclidean metric given

by γ := dx2+dy2+dz2 is more appropriate for independent inputs, �nding the appropriate metrics

is challenging in general. Indeed, the �rst fundamental form (in di�erential geometry) requires the

Jacobian matrix of the inputs to de�ne the associated tensor metric.

For non-independent variables having F as the joint cumulative distribution function (CDF),

the bi-variate dependency models ([13]) and the multivariate dependency models ([3, 14, 15]),

including the conditional and inverse Rosenblatt transformation ([16, 17]), establish formal and

analytical relationships among such variables using either CDFs or the corresponding copulas or

new distributions that look like and behave as a copula ([18]). A dependency function character-

izes the probabilistic dependency structures among such variables. For a d-dimensional random

vector of non-independent variables, the dependency models express a subset of d−1 variables as a

function of independent variables, consisted of the remaining input and new independent variables.

In this paper, we propose a new approach for calculating the partial derivatives of functions,

which account for the dependency structures among the input variables. Our approach relies on

dependency models. By providing known relationships between the dependent inputs (including

constraints imposed on inputs or outputs), dependency models can be seen as the global and

probabilistic implicit functions (see Section 2.2). Such dependency models are used for determining

the dependent Jacobian and the tensor metric for non-independent variables. The contributions of

this paper are threefold:

� provide a generalization of the actual partial derivatives of functions with non-independent

variables and give its limits;

� introduce the general derivative formulas of functions with non-independent variables (called

dependent partial derivatives) without any additional assumption;
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� provide the gradient, Hessian and the Taylor-type expansions of functions with non-independent

variables that comply with the dependency structures among the input variables.

In Section 2, we �rstly recall dependency models of dependent input variables, including corre-

lated variables. Secondly, we derive interesting properties of such models regarding the calculus of

partial derivatives and the probabilistic implicit functions. By coupling dependency functions with

the function of interest, we extend the actual partial derivatives of functions with non-independent

variables in Section 3. To avoid its drawbacks, the dependent partial derivatives of functions with

non-independent variables are provided in Section 4. The gradient and the Hessian matrix of scuh

functions are derived in Section 5 by using the framework of di�erential geometric. We provide an

application in Section 6 and conclude this work in Section 7.

General notation

For an integer d > 0, let X := (X1, . . . , Xd) be a random vector of continuous variables having

F as the joint cumulative distribution function (CDF) (i.e., X ∼ F ). For any j ∈ {1, . . . , d}, we use
Fxj

or Fj for the marginal CDF of Xj and F−1
j for its inverse. Also, we use (∼ j) := (w1, . . . , wd−1)

for an arbitrary permutation of {1, . . . , d}\{j} and X∼j := (Xw1
, . . . , Xwd−1

).

For a function f that includes X as inputs, we use f ′
xj

for the formal partial derivative of f

w.r.t. Xj , that is, by considering other inputs as constant or independent of Xj , and ∇f :=

f ′
x :=

[
f ′
x1
, . . . , f ′

xd

]T
. We use ∂f

∂xj
for the partial derivative of f w.r.t. Xj that accounts for the

dependencies among inputs. We also use ∂f
∂x :=

[
∂f
∂x1

, . . . , ∂f
∂xd

]T
∈ Rd. Of course, we have ∂f

∂x = ∇f

for independent inputs.

2. Probabilistic characterization of functions with non-independent variables

In probability theory, it is common to treat input variables as random vectors having some

CDFs. For instance, for the inputs that take their values within known domain or space, the

Bayesian framework allows for assigning a joint distribution known as a prior distribution to such

inputs. Without additional information about the inputs, it is common to use non-informative a

prior distributions such as uniform distributions or Gaussian distributions associated with higher

values of the variances (see e.g., [19]).

Functions with non-independent variables include many types of models encountered in practice.

An example is the models de�ned via a given function and equations or inequations connecting its

inputs. The resulting inputs that comply with such constraints are often dependent or correlated.

In what follows, we are going to use the probability theory for characterizing non-independent

variables (see De�nition 1).

De�nition 1. Consider n ∈ N \ {0} and a function f : Rd → Rn that includes X ∼ F as inputs.

Then, f is said to be a function with non-independent variables whenever there exists at least
a pair j1, j2 ∈ {1, . . . , d} with j1 ̸= j2 such that

Fj1,j2(xj1 , xj2) ̸= Fj1(xj1)Fj2(xj2) .

Using N (0,Σ) for the multivariate normal distribution, we can check that a function that

includes X ∼ N (0,Σ) as inputs with Σ a non-diagonal covariance matrix is a member of the class
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of functions de�ned by

Dd,n =

f : Rd → Rn : X ∼ F, F (x) ̸=
d∏

j=1

Fj(xj); x ∈ Rd

 .

2.1. New insight into dependency functions

In this section, we recall useful results about generic dependency models of non-independent

variables (see [13, 15, 3, 14, 18]). For a d-dimensional random vector of non-independent variables

(i.e., X ∼ F ), a dependency model of X consists in expressing a subset of d − 1 variables (i.e.,

X∼j) as a function of independent variables, including Xj .

Formally, if X ∼ F with F (x) ̸=
∏d

j=1 Fj(xj), then there exists ([13, 15, 3, 14, 18])

(i) new independent variables Z :=
(
Zw1

, . . . , Zwd−1

)
, which are independent of Xj ;

(ii) a dependency function rj : Rd → Rd−1;

such that

X∼j
d
= rj (Xj ,Z) ; and (Xj , X∼j)

d
= (Xj , rj (Xj ,Z)) , (1)

where X∼j =: (Xw1
, . . . , Xwd−1

), and A
d
= B means that the random variables A and B have the

same CDF.

It is worth noting that the dependency model is not unique in general. The uniqueness can

be obtained under additional conditions given in Proposition 1, which enable the inversion of the

dependency function rj .

Proposition 1. Consider a dependency model of the continuous random vector X ∼ F given by
X∼j = rj (Xj ,Z) with a prescribed order (w1, . . . , wd−1).

If Xj is the explanatory variable and the distribution of Z is prescribed, then

(i) the dependency model is uniquely de�ned;

(ii) the dependency model is invertible, and the unique inverse is given by

Z = r−1
j (X∼j |Xj) . (2)

Proof. See Appendix A.

□

It is to be noted that the dependency models (DMs) are vector-valued functions of independent

input variables. Thus, DMs ease the calculus of partial derivatives such as the partial derivatives

of X w.r.t. Xj . Moreover, the inverse of a DM avoids working with Z. A natural choice of the

order (w1, . . . , wd−1) is (1, . . . , j − 1, j + 1, . . . , d).

2.2. Enhanced implicit functions: dependency functions

In this section, we provide a probabilistic version of the implicit function using DMs.

Consider X ∼ F , a sample value of X given by x ∈ Rd and a function h : Rd → Rp with p ≤ d

an integer. When connecting the input variables by p compatible equations, that is,

h(X) = 0 ,
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the well-known theorem of the implicit function (see Theorem 1 below) claims that for each sample

value x∗ satisfying h(x∗) = 0, a subset of X can be expressed as a function of the others in the

neighborhood of x∗. To recall this theorem, we use u ⊆ {1, . . . , d} with |u| := card(u) = d − p,

Xu := (Xj , ∀ j ∈ u), X∼u := (Xj , ∀ j ∈ {1, . . . d} \ u) and B(x∗
u, r1) ⊆ Rd−p (resp. B(x∗

∼u, r2)) for

an open ball centered on x∗
u (resp. x∗

∼u) with radius r1 (resp. r2). Again, h
′
x∼u

(x∗) (resp. h′
xu
) is

the formal Jacobian of h w.r.t.. to x∼u (resp. xu).

Theorem 1. (implicit function)
Assume that h(x∗) = 0 and h′

x∼u
(x∗) is invertible. Then, there exists a function g : B(x∗

u, r1) →
B(x∗

∼u, r2) such that

x∼u = g(xu); x∗
∼u = g(x∗

u);
∂x∼u

∂xu
(x∗

u) = −
[
h′
x∼u

(x∗)
]−1

h′
xu

(x∗) .

While Theorem 1 is useful, it turns out that the implicit function theorem gives a local re-

lationship among the variables. Remark that the DMs derived in Section 2.1 provide the global

relationships once the CDFs of the input variables are known. The distribution function of the

variables that complies with the constraints given by h(X) = 0 is needed for building the global

implicit function. To derive such distribution function, we assume that

(A1) all the constraints h(X) = 0 are compatible.

Under (A1), the constraints h(X) = 0 introduce new dependency structures on the initial CDF

F , which matter for our analysis. The probability theory ensures the existence of a distribution

function that captures such dependencies.

Proposition 2. Let X ∼ F and Xc := {X ∼ F : h(X) = 0} ∼ F c be the constrained variables.
If (A1) holds, then we have {

X ∼ F
s.t. h(X) := 0

d
= Xc ,

where
d
= denotes the equality in distribution.

It comes out that introducing constraints on initial variables leads us to work with constrained

variables following a new CDF, that is, Xc ∼ F c. Some generic and constrained variables Xc and

their corresponding distribution functions can be found in [14, 20, 15]. When analytical derivations

of the CDF of Xc are hard or impossible, a common practice consists in �tting a distribution

function to the observations of Xc by means of numerical simulations (See [21, 22, 23, 14, 24, 25]

for examples of the distributions and densities estimations). Using the new distributions of the

input variables, Corollary 1 provides the probabilistic version of the implicit function.

De�nition 2. A distribution G is said to be a degenerate CDF whenever G is the CDF of the
Dirac measure having δa as the probability mass function with a ∈ R.

Corollary 1. ([14, 15])
Consider a random vector Xc := {X ∼ F : h(X) = 0} that follows F c as CDF. Assume (A1) holds
and F c is a non degenerate CDF.

Then, there exists a function rj : Rd → Rd−1 and d− 1 independent variables Z such that Z is
independent of Xc

j and
Xc

∼j = rj(X
c
j , Z) .

Proof. Such result is the DM for the distribution F c (see Section 2.1).
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□

While Corollary 1 gives the explicit function that links X∼j to Xj , we can sometime extend

that result as follows:

Xc
∼u = ru(X

c
u, Zu) , (3)

where Zu is a vector of d−|u| independent variables, Zu is independent of Xc
u and ru : Rd → Rd−|u|

(see Section 2.1 and [14]).

Remark 1. We can easily generalize the above process to cope with i) constrained inequations
such as h(X) < 0 or h(X) > 0 (see Section 6 and [15]), ii) a mixture of constrained equations and
inequations involving di�erent variables.

Remark 2. For a continuous random vector X having C as the copula and Fj , j = 1, . . . , d as
the marginal distributions, an expression of its DM is given by ([3, 14])

X1 = F−1
1

(
C−1

1|j (Z1 |Fj(Xj))
)
=: rj,1 (Xj , Z1)

X2 = F−1
2

(
C−1

2|j,1 (Z2 |Fj(Xj), F1 (rj,1 (Xj , Z1)))
)
=: rj,2 (Xj , Z1, Z2)

...

, (4)

where C1|j is the conditional copula, C−1
1|j is the inverse of C1|j, and rj,1, rj,2 are real-valued func-

tions.

2.3. Representation of functions with non-independent variables

In general a function may include a group of independent variables as well as groups of non-

independent variables such as correlated variables and/or dependent variables. We can then orga-

nize such input variables as follows:

(O): the random vector X := (X1, . . . , Xd) is consisted of K independent random vector(s)

given by X = (Xπ1 , . . . ,XπK
) where the sets π1, . . . ,πK form a partition of {1, . . . , d}. The

random vector Xπk1
:= (Xȷ, ∀ ȷ ∈ πk1) is independent of Xπk2

:= (Xȷ, ∀ ȷ ∈ πk2) for every pair

k1, k2 ∈ {1, . . . ,K} with k1 ̸= k2. Without loss of generality, we use Xπ1
for a random vector of

d1 ≥ 0 independent variable(s); Xπk
with k ≥ 2 for a random vector of dk ≥ 2 dependent variables.

We use (π1,k, . . . , πdk,k) for the ordered permutation of πk (i.e., π1,k < π2,k . . . < πdk,k). For

any πj,k ∈ πk, we use Xπj,k
for an element of Xπk

; (∼ πj,k) := (π1,k, . . . , πj−1,k, πj+1,k, . . . , πdk,k)

and Zk :=
(
Zπℓ,k

, ∀πℓ,k ∈ (∼ πj,k)
)
. Bearing in mind the DMs (see Section 2.1), we can represent

Xπk
by

X∼πj,k

d
= rπj,k

(
Xπj,k

,Zk

)
, ∀ k ∈ {2, . . . ,K} , (5)

where rπj,k
(·) =

(
rπ1,k

(·), . . . , rπj−1,k
(·), rπj+1,k

(·), . . . , rπdk
(·)
)
; Zk is a random vector of dk − 1

independent variables, and Xπ1,k
is independent of Zk. Based on the above DM of Xπk

with

k = 2, . . . ,K, let us introduce new functions, that is, cπj,k
: Rdk → Rdk given by

cπj,k
(·) =

(
rπ1,k

(·), . . . , rπj−1,k
(·), rπj,k

(·) = Xπj,k
, rπj+1,k

(·), . . . , rπdk
(·)
)
and

Xπk
= cπj,k

(Xπj,k
, Zk) =:

(
Xπj,k

, rπj,k
(Xπj,k

, Zk)
)
.
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The function cπj,k
maps independent variables (Xπj,k

, Zk) onto Xπk
, and the chart

Rd c→ Rd f→ Rn

Xπ1

Xπj,2

Z2

...

Xπj,K

ZK


7→


Xπ1

Xπ2

...

XπK

 = X 7→


f1(X)

...

fn(X)

 ,

leads to a new representation of functions with non-independent variables. Indeed, composing f

by c yields

f(Xπ1
, X2, . . . ,Xπk

)
d
= f ◦ c

(
Xπ1

, Xπj,2
, Z2, . . . , Xπj,K

, ZK

)
, (6)

with c
(
Xπ1

, Xπj,2
, Z2, . . . , Xπj,K

, ZK

)
:=
(
Xπ1

, cπj,2
(Xπj,2

, Z2), . . . , cπj,K
(Xπj,K

, ZK)
)
.

The equivalent representation of f given by (6) relies on the innovation variables Z := (Z2, . . . ,ZK).

Recall that for the continuous random vector Xπk
, the DM rπj,k

given by (5) is always invertible

(see Proposition 1), and therefore cπj,k
is also invertible. Such inversions are helpful for working

with X only.

3. Actual partial derivatives

This section deals with the calculus of partial derivatives of functions with non-independent

variables using only one relationship among inputs such as the DM given by Equation (5). The

usual assumptions made are

(A2) the joint (resp. marginal) CDF is continuous and has a density function ρ > 0 on its open

support;

(A3) each component of the dependency function rπj,k
is di�erentiable w.r.t. Xπj,k

;

(A4) each component of the function f , that is, fℓ with ℓ ∈ {1, . . . , n} is di�erentiable w.r.t.

each input.

Without loss of generality and for the sequel of simplicity, we suppose that n = 1 in what

follows. Namely, we use Id×d ∈ Rd×d for the identity matrix; Od×d1
∈ Rd×d1 for a null matrix. It

is common to use ∇fxπk
for the formal partial derivatives of f w.r.t. each input of Xπk

(i.e., the

derivatives obtained by considering inputs as independent) with k = 1, . . . ,K. Thus, the formal

gradient of f (i.e., the gradient w.r.t. the Euclidean metric) is given by

∇f :=
[
∇fT

xπ1
∇fT

xπ2
. . .∇fT

xπK

]T
. (7)

Keeping in mind the function cπj,k
(·), the partial derivatives of each component of Xπk

w.r.t.
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Xπj,k
are given by

J (πj,k) :=
∂cπj,k

∂xπj,k

=

[
∂Xπ1,k

∂xπj,k

. . .
∂Xπdk,k

∂xπj,k

]T
=

∂rπ1,k

∂xπj,k

. . . 1︸︷︷︸
jth position

. . .
∂rπdk,k

∂xπj,k

T

. (8)

We use J
(πj,k)
i for the ith element of J (πj,k). For instance, J

(πj,k)
j = 1 and J

(πj,k)
dk

represents the

partial derivative of Xπdk,k
w.r.t. Xπj,k

. It is worth recalling that J (πj,k) is a vector-valued function

of (Xπj,k
,Zk), and Lemma 1 expresses J (πj,k) as a function of xπk

only.

Lemma 1. Let xπk
be a sample value of Xπk

. If assumptions (A2)-(A4) hold, then the partial
derivatives of Xπk

w.r.t. Xπj,k
evaluated at xπk

is given by

J (πj,k) (xπk
) :=

∂rπ1,k

∂xπj,k

. . . 1︸︷︷︸
jth position

. . .
∂rπdk,k

∂xπj,k

T (
xπj,k

, r−1
πj,k

(
x∼πj,k

|xπj,k

))
. (9)

Proof. See Appendix B.

□

Again, J
(πj,k)
ℓ (xπk

) with ℓ ∈ {1, . . . , dk} stands for the ℓth component of J (πj,k) (xπk
) pro-

vided in Lemma 1. Using such components and the chain rule, Theorem 2 provides the actual

partial derivatives of functions with non-independent variables (i.e., ∂af
∂x =: Ja

πk
(xπk

)), that is, the

derivatives obtained by making use of only one dependency function given by Equation (5).

Theorem 2. Let x ∈ Rd be a sample value of X and πj,k ∈ πk with k = 2, . . . ,K. If assumptions
(A2)-(A4) hold, then

(i) the actual Jacobian matrix of cπj,k
is given by

Ja
πk

(xπk
) :=

[
J(πj,k)(xπk)

J
(πj,k)

1 (xπk)
. . .

J(πj,k)(xπk)

J
(πj,k)

dk
(xπk)

]
, ∀ k ∈ {2, . . . ,K} . (10)

(ii) The actual Jacobian matrix of c or ∂aX
∂x is given by

Ja(x) :=


Id1×d1 Od1×d2 . . . Od1×dK

Od2×d1 Ja
π2

(xπ2) . . . Od2×dK

...
...

. . .
...

OdK×d1 OdK×d2 . . . Ja
πK

(xπK
)

 , (11)

(iii) The actual partial derivatives of f are given by

∂af

∂x
(x) := Ja (x)

T ∇f(x) . (12)

Proof. see Appendix C.

□

Results from Theorem 2 are based only on one dependency function, which uses Xπj,k
as

the explanatory input. Thus, the actual Jacobian Ja(x) and the actual partial derivatives of f

provided in (10)-(12) are going to change with the choice of the explanatory input Xπj,k
for every

j ∈ {1, . . . , dk}. All these possibilities are not surprising. Indeed, while no additional explicit

assumption is necessary for calculating the partial derivatives of Xπk
w.r.t. Xπj,k

(i.e., J (πj,k)),
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we implicitly keep the other variables �xed when calculating the partial derivative of Xπk
w.r.t.

Xπi,k
, that is, J(πj,k)

J
(πj,k)

i

for each i ̸= j. Such an implicit assumption is due to the reciprocal rule

used to derive the results (see Appendix C). In general, the components of X∼πj,k
such as Xπi1,k

and Xi2,k are both functions of Xπj,k
and Zπ1,k

at least. Thus, di�erent possibilities of the actual

Jacobians are based on di�erent implicit assumptions, and it becomes di�cult to use the actual

partial derivatives. Further drawbacks of the actual partial derivatives of f are illustrated in

Example 1.

Example 1

We consider the function f(X1, X2) = X1 +X2 +X1X2, which includes two correlated inputs

X ∼ N2

(
0,

[
1 ρ

ρ 1

])
. We see that ∇f(X) =

[
1 +X2

1 +X1

]
. Using the DM of X given by (see

[3, 14, 15])

X2 = ρX1 +
√

1− ρ2Z2 ⇐⇒ Z2 = (X2 − ρX1)/
√

1− ρ2 ,

the actual Jacobian matrix of c and the actual partial derivatives of f are given by

Ja(X) =

[
1 1

ρ

ρ 1

]
;

∂af

∂x
(X) =

[
1 +X2 + ρ(1 +X1)

1+X2

ρ + 1 +X1

]
.

When ρ = 1, both inputs are perfectly correlated, and we have X1 = X2, which also implies

f(X1, X2) = f(X1) = 2X1+X2
1 = f(X2) = 2X2+X2

2 . We can check that ∂af
∂x (X) =

[
2 + 2X1

2 + 2X2

]
.

However, when ρ = 0, both inputs are independent, and we should expect the actual partial

derivatives to be equal to the formal gradient ∇f , but it is not the case. Moreover, using the

second DM, that is,

X1 = ρX2 +
√
1− ρ2Z1 ⇐⇒ Z1 = (X1 − ρX2)/

√
1− ρ2 ,

it comes out that Ja(X) =

[
1 ρ
1
ρ 1

]
; ∂af

∂X (X) =

[
1 +X2 +

1+X1

ρ

ρ(1 +X2) + 1 +X1

]
, which di�er from

the previous results. All these drawbacks are due to the implicit assumptions made (e.g., keeping

some variables �xed), which can be avoided (see Section 4).

4. Dependent Jacobian and partial derivatives

This section aims at deriving the �rst and second-order partial derivatives of functions with

non-independent variables without using any additional assumption neither explicit nor implicit.

Basically, we are going to calculate or compute the partial derivatives of Xπk
w.r.t. Xπi,k

using

only the dependency function that includes Xπi,k
as explanatory input, that is,

X∼πi,k
= rπi,k

(
Xπi,k

,Zπi,k

)
, ∀ i = 1, . . . , dk; ∀ k = 2, . . . ,K .

Using the above dependency function, the partial derivatives of Xπk
w.r.t. Xπi,k

is given as follows

(see (9)):

J (πi,k) (xπk
) :=

∂Xπk

∂xπi,k

=

∂rπ1,k

∂xπi,k

. . . 1︸︷︷︸
ith position

. . .
∂rπdk,k

∂xπi,k

T (
xπi,k

, r−1
πi,k

(
x∼πi,k

|xπi,k

))
.

9



It is to be noted that J (πi,k) does not require any supplementary assumption, as Xπi,k
and Zπi,k

are

independent. Thus, dk di�erent DMs are necessary to derive the dependent Jacobian and partial

derivatives of f (see Theorem 3).

Theorem 3. Let x ∈ Rd be a sample value of X, and assume that (A2)-(A4) hold.

(i) For all k ≥ 2, the dependent Jacobian matrix
∂Xπk

∂xπk
is given by

Jd
πk

(xπk
) :=

[
J (π1,k) (xπk

) . . . J (πdk,k) (xπk
)
]
. (13)

(ii) The dependent Jacobian matrix ∂X
∂x is given by

Jd(x) :=


Id1×d1

Od1×d2
. . . Od1×dK

Od2×d1
Jd
π2

(xπ2
) . . . Od2×dK

...
...

. . .
...

OdK×d1
OdK×d2

. . . Jd
πK

(xπK
)

 , (14)

(iii) The partial derivatives of f are given by

∂f

∂x
(x) := Jd (x)

T ∇f(x) , (15)

Proof. See Appendix D.

□

Although the results from Theorem 3 require di�erent DMs, such results are more comprehen-

sive than the actual partial derivatives because no supplementary assumption is available for each

non-independent variables.

To derive the second-order partial derivatives of f , we use f
′′

xixj
for the formal cross-partial

derivative of f w.r.t. xi, xj and Hπk
:=
(
f

′′

xj1
xj2

)
j1,j2∈πk

for the formal or ordinary Hessian

matrices of f restricted to Xπk
with k = 1, . . . ,K. In the same sense, we use Hπk1

,πk2
:=(

f
′′

xj1
xj2

)
j1∈πk1

, j2∈πk2

for the formal cross-Hessian matrix of f restricted to (Xπk1
, Xπk2

) for ev-

ery pair k1, k2 ∈ {1, . . .K} with k1 ̸= k2. To ensure the existence of the second-order partial

derivatives, we assume that

(A5): the function f is twice (formal) di�erentiable w.r.t. each input;

(A6): every dependency function rπj,k
is twice di�erentiable w.r.t. Xπj,k

.

By considering the dk DMs of Xπk
(i.e., X∼πi,k

= rπi,k

(
Xπi,k

, Zπi,k

)
with i = 1, . . . , dk) used

to derive the dependent Jacobian, we can write

∂J (πi,k)

∂xπi,k

(xπk
) :=

∂2Xπk

∂2xπi,k

=

∂2rπ1,k

∂2xπi,k

. . . 0︸︷︷︸
ith position

. . .
∂2rπdk,k

∂2xπi,k

T (
xπi,k

, r−1
πi,k

(
x∼πi,k

|xπi,k

))
,

for the second partial derivatives of Xπk
w.r.t. Xπi,k

. Using diag(x) ∈ Rd×d for a diagonal matrix

10



with x the diagonal elements and

DJd
πk

(x) := diag

[∂J (π1,k)

∂xπ1,k

(xπk
) , . . . ,

∂J (πdk,k)

∂xπdk,k

(xπk
)

]T
∇fxπk

(x)

 Jd
πk

(xπk
) , (16)

for all k ∈ {2, . . . ,K}, Theorem 4 provides the dependent second-order partial derivatives (i.e.,
∂2f
∂2x ).

Theorem 4. Let x be a sample value of X. If (A2), (A5) and (A6) hold, then

∂2f

∂2x
(x) :=



Hπ1(x) Hπ1,π2(x)J
d
π2

(xπ2) . . . Hπ1,πK
(x)Jd

πK
(xπk

)

Jd
π2

(xπ2)
T
Hπ2,π1

(x) Jd
π2

(xπ2
)
T
Hπ2

(x)Jd
π2

(xπ2
) . . . Jd

π2
(xπ2

)
T
Hπ2,πK

(x)
+DJd

π2
(x) ×Jd

πK
(xπk

)
...

...
. . .

...

Jd
πK

(xπk
)
T
HπK ,π1(x) Jd

πK
(xπK

)
T
HπK ,π2(x)J

d
π2

(xπ2) . . . Jd
πK

(xπK
)
T
HπK

(x)
×Jd

πK
(xπK

) + DJd
πK

(x)


.

Proof. See Appendix E.

□

Example 1 (revisited)

Since f(X1, X2) = X1 +X2 +X1X2 and the DMs of X are given by

X2 = ρX1 +
√

1− ρ2Z2 =⇒ Z2 = (X2 − ρX1)/
√

1− ρ2 ,

X1 = ρX2 +
√
1− ρ2Z1 =⇒ Z1 = (X1 − ρX2)/

√
1− ρ2 ,

we can check that

Jd =

[
1 ρ

ρ 1

]
;

∂f

∂x
(X) =

[
1 +X2 + ρ(1 +X1)

ρ(1 +X2) + 1 +X1

]
;

∂2f

∂2x
(X) =

[
2ρ 1 + ρ2

1 + ρ2 2ρ

]
.

For instance, when ρ = 1, we have ∂f
∂x (X) = ∂af

∂x (X), and when ρ = 0 we have ∂f
∂X (X) = ∇f(X)

and ∂2f
∂2X (X) = H(X). Thus, the dependent partial derivatives of f are coherent with the formal

gradient and Hessian matrix when the inputs are independent.

5. Expansion of functions with non-independent variables

Although Section 4 provides the partial derivatives and cross-partial derivatives of f , it is mis-

leading to think that in�nitesimal increment of f given by f(Xπk
+ ϵeπj,k

)− f(Xπk
) should result

in the individual e�ect quanti�ed by
∂f(Xπk

)

∂xπj,k
ϵ with eπj,k

:=

0, . . . , 0, 1︸︷︷︸
πth

j,k position

, 0, . . . , 0


T

and

ϵ > 0. Indeed, moving Xπj,k
turns out to move the other variables partially, and the e�ects we

obtain (i.e., ∇fT
xπk

J (πj,k)) can be imputed to other variables as well. The dependence structures of

such e�ects are given by the dependent Jacobian matrix Jd
πk

(xπk
) (see Equation (13)). Therefore,
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the de�nition of gradient and the Hessian of f with non-independent variables need an introduction

of the tensor metric or the Riemannian tensor.

In di�erential geometry, the function of the form

cπj,k
: Rdk → Rdk(

Xπj,k
,Zπj,k

)
7→ X := (Xπ1,k

, . . . , Xπj,k
, . . . , Xπdk,k

); X∼πj,k
= rπj,k

(
Xπj,k

,Zπj,k

) ,

for every πi,k ∈ πk can be seen as a parametrization of a manifold Mk in Rdk . The dk column

entries of the dependent Jacobian matrix Jd
πk

(xπk
) ∈ Rdk×dk span a local mk-dimensional vector

space a.k.a. the tangent space at xπk
with mk the rank of J

d
πk

(xπk
), that is, the number of linearly

independent columns of Jd
πk

(xπk
).

By considering all the K groups of inputs and the corresponding dependent Jacobian matrix

Jd(x), we see that the support of the random vector X is a m-dimensional manifold M in Rd with

m the rank of Jd(x). When m ≤ d, we are going to work in the tangent space TRm (or local

coordinate system) spanned out by the m column entries of Jd(x) that are linearly independent.

Working in TRm rather than TRd ensures that the Riemannian tensor induced by x 7→ x using

the dot product is invertible. Since the Riemannian tensor metric is often symmetric, the Moore-

Penrose generalized inverse of symmetric matrices ([26, 27, 28]) allows us to keep working in TRd

in what follows. Using the �rst fundamental form (see e.g., [9, 10, 11]), the induced tensor metric

is de�ned as the inner-product between the column entries of the dependent Jacobian matrix of

the dependency functions, that is,

G(x) := Jd(x)TJd(x) . (17)

Based on these elements, the gradient and the Hessian matrix are provided in Corollary 2. To

that end, we use G−1 for the inverse of the metric G given by Equation (17) when m = d or the

generalized inverse of G for every m < d ([26, 27, 28]). For any k ∈ {1, . . . , d}, the Christo�el

symbols are de�ned by ([29, 9, 11, 30])

Γk
ij :=

1

2

m=d∑
ℓ=1

G−1
kℓ (x)

(
G

′

iℓ,xj
(x) +G

′

jℓ,xi
(x)−G

′

ij,xℓ
(x)
)
; ∀ i, j = 1, . . . , d ,

with G
′

iℓ,xj
the formal partial derivative of Giℓ w.r.t. xj .

Corollary 2. Let x be a sample value of X, and assume that (A2), (A5)-(A6) hold.

(i) The gradient of f is given by

grad(f)(x) := G−1(x)∇f(x) , (18)

(ii) The Hessian matrix of f is given by

Hessij(f)(x) := f
′′

xixj
(x)−

m=d∑
k=1

Γk
ij(x)f

′

xk
(x) . (19)

Proof. Points (i)-(ii) result from the de�nition of the gradient and the Hessian matrix in a

Riemannian geometric endowed with the metric G (see [9, 11, 10, 31]).

□
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Taylor's expansion is widely used for approximating functions with independent variables. In

what follows, we are concerned with the approximation of a function with non-independent vari-

ables. The Taylor-type expansion of a function with non-independent variables is provided in

Corollary 3 using the gradient and the Hessian matrix.

Corollary 3. Let x, x0 be two sample values of X, and assume (A2), (A5)-(A6) hold. Then, we
have

f(x) ≈ f(x0) + (x− x0)
T
grad(f)(x0) +

1

2
(x− x0)

T
Hess(f)(x0) (x− x0) , (20)

provided that x is close to x0.

Proof. The proof is straightforward using the dot product induced by the tensor metric G in the

tangent space and bearing in mind the Taylor expansion provided in [11].

□

Example 1 (revisited)

For the function in Example 1, we can check that the tensor metric is

G(X) =

[
1 + ρ2 2ρ

2ρ 1 + ρ2

]
; G−1(X) = 1

(ρ2−1)2

[
1 + ρ2 −2ρ

−2ρ 1 + ρ2

]
; and the gradient is

grad(f)(X) =
1

(ρ2 − 1)2

[
(1− ρ)2 +X2(1 + ρ2)− 2ρX1

(1− ρ)2 +X1(1 + ρ2)− 2ρX2

]
,

which comes down to ∇f(X) when the variables are independent (i.e., ρ = 0).

6. Application

In this section, consider three independent input factors Xj ∼ N (0, 1) with j = 1, 2, 3, X :=

(X1, X2, X3), a constant c ∈ R+ and the function

f(X) = X2
1 +X2

2 +X2
3 .

Also, consider the constraint f(X) ≤ c. It is known in [15] (Corollary 4) that the DM of

Xw := (Xw
1 , Xw

2 , Xw
3 ) :=

{
Xj ∼ N (0, 1), j = 1, 2, 3 : X2

1 +X2
2 +X2

3 ≤ c
}

is given by

Xw
2 = R2Z2

√
c− (Xw

1 )
2
; Xw

3 = R3Z3

√
c− (Xw

1 )
2
√

1− Z2
2 .

We can then write
∂Xw

2

∂Xw
1

= −Xw
1 R2Z2

1√
c− (Xw

1 )2
=

−Xw
1 Xw

2

c− (Xw
1 )2

,

∂Xw
3

∂Xw
1

= −Xw
1 R3Z3

√
1− Z2

2√
c− (Xw

1 )2
=

−Xw
1 Xw

3

c− (Xw
1 )2

.

Using the above derivatives and symmetry among the inputs, the dependent Jacobian and the

tensor metric are given by
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Jd (Xw) =


1

−Xw
1 Xw

2

c−(Xw
2 )2

−Xw
1 Xw

3

c−(Xw
3 )2

−Xw
1 Xw

2

c−(Xw
1 )2 1

−Xw
2 Xw

3

c−(Xw
3 )2

−Xw
1 Xw

3

c−(Xw
1 )2

−Xw
2 Xw

3

c−(Xw
2 )2 1

 , G (Xw) =
[
Jd (Xw)

]T
Jd (Xw) .

The following partial derivatives of f can be deduced:

∂f

dxw
=


1

−Xw
1 Xw

2

c−(Xw
1 )2

−Xw
1 Xw

3

c−(Xw
1 )2

−Xw
1 Xw

2

c−(Xw
2 )2 1

−Xw
2 Xw

3

c−(Xw
2 )2

−Xw
1 Xw

3

c−(Xw
3 )2

−Xw
2 Xw

3

c−(Xw
3 )2 1


 2Xw

1

2Xw
2

2Xw
3

 =


2Xw

1

(
1− (Xw

2 )2

c−(Xw
1 )2 − (Xw

3 )2

c−(Xw
1 )2

)
2Xw

2

(
1− (Xw

1 )2

c−(Xw
2 )2 − (Xw

3 )2

c−(Xw
2 )2

)
2Xw

3

(
1− (Xw

1 )2

c−(Xw
3 )2 − (Xw

2 )2

c−(Xw
3 )2

)
 .

For given values of Xw
1 , X

w
2 and Xw

3 and when c → ∞, we can see that ∂f
dxw

1
= 2Xw

1 , which is

exactly the partial derivative of f when the inputs are independent. Note that c → ∞ implies that

the inputs are independent, as the constraint imposed on X is always satis�ed.

Keeping in mind Equation (6), it is woth noting that the partial derivatives of f can be directly

derived by making use of an equivalent DM of Xw, that is, (Xw
2 )2 = Z2(c − (Xw

1 )2), (Xw
3 )2 =

Z3(c− (Xw
1 )2)(1− Z2), where (Xw

1 )2 ∼ B1(c, 1/2, 2), Z2 ∼ Beta(1/2, 3/2) and Z3 ∼ Beta(1/2, 1)

are independent with B1 the beta distribution of �rst-kind (see [15], Corollaries 2). Indeed, we

have

f(Xw) = (Xw
1 )2(1−Z2−Z3(1−Z2))+cZ2+cZ3(1−Z2) = (Xw

1 )2(1−Z2)(1−Z3)+cZ2+cZ3(1−Z2) ;

and
∂f

dxw
1

= 2Xw
1 (1− Z2)(1− Z3) = 2Xw

1

c− (Xw
1 )2 − (Xw

2 )2 − (Xw
3 )2

c− (Xw
1 )2

,

because

Z2 =
(Xw

2 )2

c− (Xw
1 )2

; 1− Z2 =
c− (Xw

1 )2 − (Xw
2 )2

c− (Xw
1 )2

; Z3 =
(Xw

3 )2

c− (Xw
1 )2 − (Xw

2 )2
.

As a matter of fact, we obtain the same partial derivatives of f bearing in mind the symmetry

among the inputs.

7. Conclusion

A new approach for calculating and computing the partial derivatives, gradient and Hessian

of functions with non-independent variables is proposed and studied in this paper. It relies on i)

dependency functions that model the dependency structures among dependent variables, including

correlated variables, ii) the dependent Jacobian of the dependency functions, and iii) the tensor

metric using the dependent Jacobian. Based on the unique tensor metric thanks to the �rst funda-

mental form, the unique gradient of a function of non-independent variables is provided. Since the

so-called dependent partial derivatives and the dependent Jacobian do not require any additional

assumption (which is always the case), such derivatives (including the gradient) should be used.

The results obtained depend on the parameters of the distribution function or the density

function of non-independent variables. For the values of such parameters that lead to indepen-

dent variables, the proposed gradient and partial derivatives come down to the formal gradient or
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the gradient w.r.t. the Euclidean metric. In the same sense, the proposed tensor metric comes

down to the Euclidean metric using the above values of the parameters of the distribution function.

Using the proposed gradient and Hessian matrix, the Taylor-type expansion of a function with

non-independent variables is provided. Although, the generalized inverse of a symmetric matrix

is used in some cases, more investigation is needed for the gradient calculus when the tensor

metric is not invertible. The proposed gradient is going to be used for i) the development of the

active subspaces of functions with non-independent variables, and ii) enhancing the optimization

of functions subject to constraints.

Appendix A Proof of Proposition 1

For continuous random variables and prescribed (w1, . . . , wd−1), the Rosenblatt transform of

X∼j |Xj is unique and strictly increasing ([16]). Therefore, the inverse of the Rosenblatt transform

of X∼j |Xj is also unique ([17]), and we can write

X∼j
d
= r′j (Xj ,U) ,

where U ∼ U (0, 1)
d−1

. For the prescribed distribution of the d − 1 innovation variables Z =(
Zwi ∼ FZwi

, i = 1, . . . , d− 1
)
, the above model becomes

X∼j
d
= r′j (Xj , U1, . . . , Ud−1)

d
= r′j

(
Xj , FZw1

(Zw1
) , . . . , FZwd−1

(
Zwd−1

))
= rj (Xj ,Z) ,

because Zwi

d
= F−1

Zwi
(Ui) ⇐⇒ Ui = FZwi

(Zwi
) for continuous variable. Thus, Point (i) holds.

For Point (ii), since X∼j
d
= r′j (Xj ,U) is the inverse of the Rosenblatt transform of X∼j |Xj , we

then have the unique inverse

U = r
′−1

j (X∼j |Xj) ,

which yields to the unique inverse of the DM. Indeed,

(FZ1(Z1), . . . , FZd−1
(Z1)) = r

′−1

j (X∼j |Xj) =⇒ Z = r−1
j (X∼j |Xj) .

Appendix B Proof of Lemma 1

Using the partial derivatives
∂rπi,k

∂xπj,k

(
Xπj,k

, Z
)
with i = 1, . . . , dk given by Equation (8) and the

unique inverse ofX∼πj,k
= rπj,k

(
Xπj,k

,Zk

)
for any distribution of Zk given by Zk = r−1

πj,k

(
X∼πj,k

|Xπj,k

)
(see Proposition 1), the result is immediate.

Appendix C Proof of Theorem 2

Firstly, using the partial derivatives ofXπk
w.r.tXπj,k

in (9), that is, J (πj,k) =
[
∂Xπ1,k

∂xπj,k
. . .

∂Xπdk,k

∂xπj,k

]T
with

∂Xπi,k

∂xπj,k
=

∂rπi,k

∂xπj,k
= J

(πj,k)
i for any πi,k ∈ πk, the reciprocal rule allows for writing

∂Xπj,k

∂Xπi,k

=
1

∂Xπi,k

∂Xπj,k

=
1

J
(πj,k)
i

.
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Applying the chain rule yields

∂Xπi1,k

∂Xπi2,k

=
∂Xπi1,k

∂Xπj,k

∂Xπj,k

∂Xπi2,k

=
J
(πj,k)
i1

J
(πj,k)
i2

.

Thus, the partial derivatives of Xπk
w.r.t. Xπi,k

are given by

∂Xπk

∂Xπi,k

:=

[
J
(πj,k)
1

J
(πj,k)
i

. . .
J
(πj,k)
dk

J
(πj,k)
i

]T
=

J (πj,k)

J
(πj,k)
i

,

and the actual Jacobian matrix of Xπk
(i.e.,

∂aXπk

∂Xπk
) is given by

Ja
πk

:=

[
J(πj,k)

J
(πj,k)

1

. . . J(πj,k)

J
(πj,k)

dk

]
.

Secondly, under the organization of input variables (O) and for every pair k1, k2 ∈ {1, . . . ,K} with
k1 ̸= k2, we have the following cross-Jacobian matrices:

∂Xπk1

∂xπk2

= Odk1
×dk2

; Jπ1
:=

∂Xπ1

∂xπ1

= Id1×d1
.

Therefore, the actual Jacobian matrix of X is given by

Ja :=


∂Xπ1

∂xπ1

∂Xπ1

∂xπ2
. . .

∂Xπ1

∂xπK
∂X2

∂xπ1

∂X2

∂xπ2
. . . ∂X2

∂xπK

...
...

. . .
...

∂XπK

∂xπ1

∂XπK

∂xπ2
. . .

∂XπK

∂xπK

 =


Id1×d1

O . . . O

O Ja
π2

. . . O
...

...
. . .

...

O O . . . Ja
πK

 .

Finally, using the formal gradient of f in (7), that is, ∇f :=
[
∇fT

xπ1
∇fT

xπ2
. . . ,∇fT

xπK

]T
and

bearing in mind the cyclic rule, we can write

∂f

∂xπ1

=

(
∇fT ∂X

∂xπ1

)T

= ∇fxπ1
,

∂f

∂xπk

=

(
∇fT ∂X

∂xπk

)T

=
(
∇fT

xπk
Ja
πk

)T
,

and the actual partial derivatives of f are then given by ∂af
∂x = Ja(x)T∇f(x).

Appendix D Proof of Theorem 3

For Point (i), building the dk dependency functions for every explanatory input Xπi,k
with

i = 1, . . . , dk, the partial derivatives of Xπk
w.r.t Xπi,k

evaluated at xπk
is given by (see Equation

(9))

J (πi,k)(xπk
) = J (πi,k)

(
(xπi,k

, r−1
πi,k

(
xπi,k

|xπi,k

))
; i = 1, . . . , dk .

Points (ii)-(iii) are similar to those of Theorem 2 using the dependent Jacobian matrix given by

Point (i).
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Appendix E Proof of Theorem 4

First, using Equation (15) given by ∂f
∂x (x) := Jd (x)

T ∇f(x), we can extract

∂f

∂xπ1

(x) = ∇fxπ1
(x);

∂f

∂xπk

(x) = Jd
πk

(xπk
)
T ∇fxπk

(x) ,

By applying the vector-by-vector derivatives of ∂f
∂xπ1

(x) w.r.t. xπ1 and xπk
, we have

∂2f

∂2xπ1

(x) =
∂
[
∇fxπ1

]
∂xπ1

(x) = Hπ1
(x);

∂2f(x)

∂xπ1∂xπk

=
∂
[
∇fxπ1

(x)
]

∂x

∂x

∂xπk

= Hπ1,πk
(x)Jd

πk
,

as Xπ1 is a vector of independent variables and ∂X
∂xπk

=



Od1×dk

...

Jd
πk

...

OdK×dk


, bearing in mind the depen-

dent Jacobian matrix provided in Equation (14).

In the same sense, the derivatives of ∂f
∂xπk

(x) w.r.t. xπ1 and xπℓ
with ℓ ̸= k are

∂2f

∂xπk
∂xπ1

=
∂
[
Jd
πk

(xπk
)
T ∇fxπk

(x)
]

∂xπ1

= Jd
πk

(xπk
)
T
∂
[
∇fxπk

(x)
]

∂xπ1

= Jd
πk

(xπk
)
T
∂
[
∇fxπk

(x)
]

∂x

∂x

∂xπ1

= Jd
πk

(xπk
)
T
Hπk,π1

(x) ,

∂2f

∂xπk
∂xπℓ

=
∂
[
Jd
πk

(xπk
)
T ∇fxπk

(x)
]

∂xπℓ

= Jd
πk

(xπk
)
T
∂
[
∇fxπk

(x)
]

∂xπℓ

= Jd
πk

(xπk
)
T
∂
[
∇fxπk

(x)
]

∂x

∂x

∂xπℓ

= Jd
πk

(xπk
)
T
Hπk,πℓ

(x)Jd
xπℓ

(xπℓ
) .

Finally, we have to derive the quantity ∂2f
∂2xπk

=
∂
[
Jd
πk
(xπk)

T∇fxπk
(x)

]
∂xπk

. For each πℓ,k ∈ πk, we can

write

∂2f

∂xπk
∂xπℓ,k

=
∂
[
Jd
πk

(xπk
)
T ∇fxπk

(x)
]

∂xπℓ,k

=
∂
[
Jd
πk

(xπk
)
T
]

∂xπℓ,k

∇fxπk
(x) + Jd

πk
(xπk

)
T
∂
[
∇fxπk

(x)
]

∂xπℓ,k

=

[
∂J (π1,k)

∂xπℓ,k

. . .
∂J (πdk,k)

∂xπℓ,k

]T
∇fxπk

(x) + Jd
πk

(xπk
)
T
∂
[
∇fxπk

(x)
]

∂x

∂x

∂xπℓ,k

=

[
J
(πℓ,k)
1

∂J (π1,k)

∂xπ1,k

. . . J
(πℓ,k)
dk

∂J (πdk,k)

∂xπdk,k

]T
∇fxπk

(x) + Jd
πk

(xπk
)
T
Hπk

(x)J (πℓ,k)(xπk
) ,
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because for all i ∈ {1, . . . , dk}, we can write (thanks to the chain rule)

∂J (πi,k)

∂xπℓ,k

:=

[
∂2Xπ1,k

∂2xπi,k

∂xπi,k

∂xπℓ,k

. . .
∂2Xπdk,k

∂2xπi,k

∂xπi,k

∂xπℓ,k

]T
=

∂xπi,k

∂xπℓ,k

∂J (πi,k)

∂xπi,k

= J
(πℓ,k)
i

∂J (πi,k)

∂xπi,k

.

Re-organizing the �rst element of the right-hand terms of the above equation yields

∂2f

∂xπk
∂xπℓ,k

= diag

[∂J (π1,k)

∂xπ1,k

. . .
∂J (πdk,k)

∂xπdk,k

]T
∇fxπk

(x)

 J (πℓ,k) + Jd
πk

(xπk
)
T
Hπk

(x)J (πℓ,k) .

By running ℓ = 1, . . . , dk, we obtain the result.
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