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Abstract

Gradients of smooth functions with non-independent variables are relevant for ex-

ploring complex models and for the optimization of functions subjected to con-

straints. In this paper, we investigate new and simple approximations and com-

putations of such gradients by making use of independent, central and symmetric

variables. Such approximations are well-suited for applications in which the compu-

tations of the gradients are too expansive or impossible. The derived upper-bounds

of the biases of our approximations do not su�er from the curse of dimensional-

ity for any 2-smooth function, and theoretically improve the known results. Also,

our estimators of such gradients reach the optimal (mean squared error) rates of

convergence (i.e., O(N−1)) for the same class of functions. Numerical comparisons

based on a test case and a high-dimensional PDE model show the e�ciency of our

approach.

Keywords: Dependent variables, Gradients, High-dimensional models,, Optimal
estimators, Tensor metric of non-independent variables
AMS: 26A24, 60H25, 62Gxx, 49Qxx.

1. Introduction

Non-independent variables arise when at least two variables do not vary inde-

pendently, and such variables are often characterized by their covariance matrices,

distribution functions, copulas, weighted distributions (see e.g., [1, 2, 3, 4, 5, 6, 7]).

Recently, dependency models provide explicit functions that link these variables to-

gether by means of additional independent variables ([8, 9, 10, 11, 12]). Models with

non-independent input variables, including functions subjected to constraints, are

widely encountered in di�erent scienti�c �elds, such as data analysis, quantitative

risk analysis, and uncertainty quanti�cation (see e.g., [13, 14, 15]).

1Corresponding author: matieyendou.lamboni[at]gmail.com or [at]univ-guyane.fr; June 16, 2024
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Analyzing such functions requires being able to calculate or to compute their

dependent gradients, that is, the gradients that account for the dependencies among

the inputs. Recall that gradients are involved in i) inverse problems and optimiza-

tion (see e.g., [16, 17, 18, 19, 20]), ii) exploring complex mathematical models or

simulators (see [21, 22, 23, 24, 25, 26, 27, 28] for independent inputs and [9, 15] for

non-independent variables); iii) Poincaré inequalities and equalities ([29, 30, 9, 28]),

and recently in iv) derivative-based ANOVA (i.e., exact expansions) of functions

([28]). While the �rst-order derivatives of functions with non-independent variables

have been derived in [9] for screening dependent inputs of high-dimensional models,

the theoretical expressions of the gradients of such functions (dependent gradients)

have been introduced in [15], enhancing the di�erence between the gradients and the

�rst-order partial derivatives when the input variables are dependent or correlated.

In high-dimensional settings and for time-demanding models, having an e�-

cient approach for computing the dependent gradients provided in [15] using a

few model evaluations is worth investigating. So far, the adjoint methods can

provide the exact classical gradients for some classes of PDE/ODE-based models

([31, 32, 33, 34, 35, 36]). Additionally, Richardson's extrapolation and its general-

ization considered in [37] provide accurate estimates of the classical gradients using a

number of model runs that strongly depends on the dimensionality. In contrary, the

Monte-Carlo approach allows for computing the classical gradients using a number of

model runs that can be very less than the dimensionality (i.e., d ∈ N) ([38, 39, 17]).
The Monte-Carlo approach is a consequence of the Stokes theorem, which claims

that the expectation of a function evaluated at a random point about x ∈ Rd is the

gradient of a certain function. Such a property leads to randomized approximations

of the classical gradients in derivative-free optimization or zero-order stochastic op-

timization (see [16, 18, 19, 20] and references therein). Such approximations are also

relevant for applications in which the computations of the gradients are impossible

([20]).

Most of the randomized approximations of the classical gradients, including the

Monte-Carlo approach, rely on randomized kernels and/or random vectors that are

uniformly distributed on the unit ball. The qualities of such approximations are

often assessed by the upper-bounds of the biases and the rates of convergence. The

upper-bounds provided in [40, 19, 20] depend on the dimensionality in general.

In this paper, we propose new surrogates of the gradients of smooth functions

with non-independent inputs and the associated estimators that

� are simple and applicable to a wide class of functions by making use of model
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evaluations at randomized points, which are only based on independent, central

and symmetric variables;

� lead to a dimension-free upper-bound of the bias, and improve the best known

upper-bounds of the bias for the classical gradients;

� lead to the optimal and parametric (mean squared error) rates of convergence;

� are going to increase the computational e�ciency and accuracy of the gradients

estimates by means of a set of constraints.

Surrogates of dependent gradients are derived in Section 3 by combining the prop-

erties of i) the generalized Richardson extrapolation approach thanks to a set of

constraints, and ii) the Monte-Carlo approach based only on independent random

variables that are symmetrically distributed about zero. Such expressions are fol-

lowed by their order of approximations, biases and a comparison with known results

for the classical gradients. We also provide the estimators of such surrogates and

their associated mean squared errors, including the rates of convergence for a wide

class of functions (see Section 3.3). A number of numerical comparisons is considered

so as to assess the e�ciency of our approach. While Section 4 presents comparisons

of our approach to other methods, simulations based on a high-dimensional PDE

(spatio-temporal) model with given auto-collaborations among the initial conditions

are considered in Section 5 to compare our approach to the adjoint-based methods.

We conclude this work in Section 6.

2. Preliminaries

For an integer d > 0, let X := (X1, . . . , Xd) be a random vector of continuous

and non-independent variables having F as the joint cumulative distribution func-

tion (CDF) (i.e., X ∼ F ). For any j ∈ {1, . . . , d}, we use Fxj
or Fj for the marginal

CDF of Xj and F−1
j for its inverse. Also, we use (∼ j) := (1, . . . , j − 1, j + 1, . . . , d)

and X∼j := (X1, . . . , Xj−1, Xj+1, . . . , Xd). The equality (in distribution) X
d
= Z

means that X and Z have the same CDF.

As the sample values of X are dependent, here we use ∂f
∂xk

for the formal partial

derivative of f w.r.t. xk, that is, the partial derivative obtained by considering other

inputs as constant or independent of xk. Thus, ∇f :=
[

∂f
∂x1

, . . . , ∂f
∂xd

]T
stands for the

formal or classical gradient of f .

Given an open set Ω ⊆ Rd, consider a weak partial di�erentiable function f :

Ω → R ([41, 42]). Given ı⃗ := (i1, . . . , id) ∈ Nd, denote D(⃗ı)f :=
(∏d

k=1
∂ik

∂xk

)
f ;
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(x)ı⃗ = xı⃗ :=
∏d

k=1 x
ik
k , ı⃗! = i1! . . . id!, and consider the Hölder space of α-smooth

functions given by ∀x,y ∈ Rd

Hα :=

{
f : Rd → Rn :

∣∣∣∣∣f(x)− ∑
0≤i1+...+id≤α−1

D(⃗ı)f(y)

ı⃗!
(x− y)ı⃗

∣∣∣∣∣ ≤ Mα ||x− y||α2

}
,

with α ≥ 1 and Mα > 0. We use ||·||2 for the Euclidean norm, || · ||1 for the L1-norm,

E(·) for the expectation and V(·) for the variance.

For the stochastic evaluations of functions, consider L, q ∈ N \ {0}, βℓ ∈ R
with ℓ = 1, . . . , L, h := (h1, . . . , hd) ∈ Rd

+, and denote with V := (V1, . . . , Vd) a

d-dimensional random vectors of independent variables satisfying: ∀ j ∈ {1, . . . , d},

E [Vj] = 0; E
[
(Vj)

2] = σ2; E
[
(Vj)

2q+1] = 0; E
[
(Vj)

2q] < +∞ .

Random vectors of independent variables that are symmetrically distributed about

zero are instances of V, including the standard Gaussian random vector and sym-

metric uniform distributions about zero.

Also, denote hV := (h1V1; . . . , hdVd); h−1V := (V1/h1; . . . , Vd/hd) and βℓhV :=

(βℓh1V1; . . . , βℓhdVd). The reals βℓ's are used for controlling the order of approxima-

tions and the order of derivatives (i.e., ||⃗ı||1 = 1, 2) we are interested in. Finally,

hj's are used to de�ne a neighborhood of a sample point of X (i.e., x). Thus, using

βmax := max (|β1|, . . . , |βL|) and keeping in mind the variance of βℓhjVj, we assume

that ∀ j ∈ {1, . . . , d},

Assumption (A1) : βmaxhjσ ≤ 1/2 or equivalently 0 < βmaxhj|Vj| ≤ 1 for boundedV ′
j s.

3. Main results

This section aims at providing new expressions of the gradient of a function

with non-independent variables, and the associated order of approximations. We

are also going to derive the estimators of such a gradient, including the optimal

and parametric rates of convergence. Recall that the input variables are said to be

non-independent whenever there exists at least two variables Xj, Xk such that the

joint CDF Fj,k(xj, xk) ̸= Fj(xj)Fk(xk).
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3.1. Stochastic expressions of the gradients of functions with dependent variables

Using the fact X ∼ F with F (x) ̸=
∏d

j=1 Fj(xj), we are able to model X as

follows ([8, 10, 9, 14, 11, 12, 43]):

X∼j
d
= rj (Xj,Z∼j) (1)

= [r1,j (Xj,Z∼j) , . . . , rj−1,j (Xj,Z∼j) , rj+1,j (Xj,Z∼j) . . . , rd,j (Xj,Z∼j)]
T ,

where rj : Rd → Rd−1; Xj and Z∼j := (Z1, . . . , Zj−1, Zj+1, . . . Zd) are independent.

Moreover, we have (Xj, X∼j)
d
= (Xj, rj (Xj,Z)), and it is worth noting that the

function rj is invertible w.r.t. Z∼j for continuous variables, that is,

Z∼j = r−1
j (X∼j |Xj) .

Note that the formal Jacobian matrix of g : Rd → Rd, x 7→ x is the identity matrix.

As x is a sample value of X, the dependent Jacobean of g based on the above

dependency function is clearly not the identity matrix due to the fact that such

a matrix accounts for the dependencies among the elements of x. The dependent

partial derivatives of x w.r.t. xj is then given by ([9, 15])

J (j) (x) :=
∂x

∂xj

=

∂r1,j
∂xj

. . . 1︸︷︷︸
jth position

. . .
∂rd,j
∂xj

T (
xj, r

−1
j (x∼j|xj)

)
,

and the dependent Jacobian matrix becomes (see [15] for more details)

Jd (x) :=
[
J (1) (x) , . . . , J (d) (x)

]
.

Moreover, the gradient of f with non-independent variables is given by ([15])

grad(f)(x) :=
[
Jd (x)T Jd (x)

]−1

∇f(x) = G−1(x)∇f(x) , (2)

with G(x) := Jd (x)T Jd (x) the tensor metric and G−1(x) its generalized inverse.

Based on the above framework, Theorem 1 provides the stochastic expression of

grad(f)(x). In what follows, denote 1I• := [1, . . . , 1]T ∈ Rd.

Theorem 1. Assume f ∈ Hα with α ≥ 2L, (A1) holds and βℓ's are distinct. Then,

there exists α1 ∈ {1, . . . , L} and reals coe�cients C1, . . . , CL such that

grad(f)(x) = G−1(x)
L∑

ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]
+O

(
||h||2α1

2

)
1I• . (3)
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Proof. See Appendix A for the detailed proof.

Using the Kronecker symbol δ1,r, the setting L = 1, β1 = 1, C1 = 1 or the con-

straints
∑L=2

ℓ=1 Cℓβ
r
ℓ = δ1,r; r = 0, 1 lead to the order of approximation O

(
||h||22

)
,

while the constraints
∑L

ℓ=1 Cℓβ
r
ℓ = δ1,r; r = 1, 3, 5, . . . , 2L − 1 allow for increasing

that order up to O
(
||h||2L2

)
. For distinct β's, the above constraints lead to the

existence of the constants C1, . . . , CL. Indeed, some constraints rely on the Vander-

monde matrix of the form

AL :=


1 1 . . . 1

β1 β2 . . . βL

β2
1 β2

2 . . . β2
L

...
...

...
...

 ,

which is invertible for distinct values of βℓ's (i.e., βℓ1 ̸= βℓ2) because the determinant

det (AL) =
∏

1≤ℓ1<ℓ2≤L (βℓ1 − βℓ2).

Remark 1. For an even integer L , the following nodes may be considered: {β1, . . . , βL} ={
±2k, k = 0, . . . , L−2

2

}
. When L is odd, one may add 0 to the above set. Of course,

there are other possibilities provided that
∑L

ℓ=1 Cℓβℓ = 1.

Beyond the strong assumption made on functions in Theorem 1, and knowing

that increasing L will require more evaluations of f at random points, we are going to

derive the upper-bounds of the biases of our appropriations under di�erent structural

assumptions on the deterministic functions f and V, such as f ∈ Hα with α > 1.

To that end, denote with R := (R1, . . . , Rd) a d-dimensional random vector of

independent variables that are centered about zero and standardized (i.e., E[R2
k] = 1,

k = 1, . . . , d), and Rc the set of such random vectors. De�ne

K1 := inf
R∈Rc

∣∣∣∣∣∣G−1(x)
∣∣E [R2 ||R||2

]∣∣∣∣
1
; K2 := inf

R∈Rc

∣∣∣∣∣∣G−1(x)
∣∣E [R2 ||R||2

]∣∣∣∣
2
;

with |G−1| the matrix obtained by putting the entries of G−1 in the absolute value.

When 1 < α ≤ 2, only L = 1 or L = 2 can be considered for any function that

belongs to Hα. To be able to derive the parametric rates of convergence, Corollary 1

starts providing the upper-bounds of the bias when L = 2.

Corollary 1. Consider β1 = 1, β2 = −1; C1 = 1/2; C2 = −1/2. If f ∈ H2 and

(A1) holds, then there exists M2 > 0 such that∣∣∣∣∣
∣∣∣∣∣grad(f)(x)−G−1(x)

L=2∑
ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
1

≤ σM2K1 ||h||2 ; (4)
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∣∣∣∣∣
∣∣∣∣∣grad(f)(x)−G−1(x)

L=2∑
ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ σM2K2 ||h||2 . (5)

Proof. Detailed proofs are provided in Appendix B.

For a particular choice of V, we obtain the results below.

Corollary 2. Consider β1 = 1, β2 = −1; C1 = 1/2; C2 = −1/2. If Vk ∼ U(−ξ, ξ)

with ξ > 0, k = 1, . . . , d; f ∈ H2 and (A1) holds, then∣∣∣∣∣
∣∣∣∣∣grad(f)(x)−G−1(x)

L=2∑
ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
1

≤ M2ξ
∣∣∣∣∣∣G−1(x)

∣∣ 1I•∣∣∣∣1 ||h||1 ;

(6)∣∣∣∣∣
∣∣∣∣∣grad(f)(x)−G−1(x)

L=2∑
ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ M2ξ
∣∣∣∣∣∣G−1(x)

∣∣ 1I•∣∣∣∣2 ||h||1 .

(7)

Proof. Since |Vk| ≤ ξ, we have ||hV||1 ≤ ξ ||h||1 and the results hold using the upper-
boundsM2

∣∣∣∣∣∣|G−1(x)|E
[
V2

σ2 ||hV||1
]∣∣∣∣∣∣

1
andM2

∣∣∣∣∣∣|G−1(x)|E
[
V2

σ2 ||hV||1
]∣∣∣∣∣∣

2
obtained

in Appendix B.

It is worth noting that, choosing hk = h and ξ = 1/d2 leads to the dimension-free

upper-bound of the bias, that is,∣∣∣∣∣
∣∣∣∣∣grad(f)(x)−G−1(x)

L=2∑
ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
1

≤ M2h

d

∣∣∣∣∣∣G−1(x)
∣∣ 1I•∣∣∣∣1 ,

because |||G−1(x)| 1I•||2 is a function of d in general.

For the sequel of generality, Corollary 3 provides the bias of our approximations

for highly smooth functions. To that end, de�ne

K2,L := inf
R∈Rc

∣∣∣∣∣∣∣∣G−1(x)
∣∣E [R2 ||R||L2

]∣∣∣∣∣∣
2
; K3 :=

L+1∑
ℓ=1

∣∣Cℓβ
1+L
ℓ

∣∣ .
Corollary 3. For an odd integer L > 2, consider

∑L+1
ℓ=1 Cℓβ

r
ℓ = δ1,r; r = 0, 1, . . . , L.

If f ∈ H1+L and (A1) holds, then there exists M1+L > 0 such that∣∣∣∣∣
∣∣∣∣∣grad(f)(x)−G−1(x)

L+1∑
ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ σLM1+LK2,LK3 ||h||L2 .
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Moreover, if Vk ∼ U(−ξ, ξ) with ξ > 0 and k = 1, . . . , d, then∣∣∣∣∣
∣∣∣∣∣grad(f)(x)−G−1(x)

L+1∑
ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ ξLM1+L

∣∣∣∣∣∣G−1(x)
∣∣ 1I•∣∣∣∣2 ||h||L1 K3 .

Proof. The proofs are similar to those of Corollary 1 (see Appendix B).

In view of the results provided in Corollary 3, �nding β's and C's that minimize

the quantity K3 =
∑L+1

ℓ=1

∣∣Cℓβ
1+L
ℓ

∣∣ might be helpful for improving the above upper-

bounds.

3.2. Links to other works for independent input variables

Recall that for independent input variables, the matrix |G−1(x)| comes down to

the identity matrix, and grad(f) = ∇f . Thus, Equation (7) becomes∣∣∣∣∣
∣∣∣∣∣∇f(x)−

L=2∑
ℓ=1

Cℓ E
[
f (x+ βℓhV)

Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ M2h ,

when ξ =
√
d/d2. Taking ξ =

√
d/d leads to the upper-bound M2hd.

Other results about the upper-bounds of the bias of the (formal) gradient ap-

proximations have been provided in [19, 20] (and the references therein) under the

same assumptions made on f and evaluations of f . Such results rely on a random

vector S that is uniformly distributed on the unit ball and a kernel K. Under such

a framework, the upper-bound derived in [19, 20] is∣∣∣∣∣∣∣∣∇f(x)− d

h
E [f(x+ UhS)SK(U)]

∣∣∣∣∣∣∣∣
2

≤ 2
√
2αdMαh

α−1 ,

where U ∼ U(−1, 1) is independent of S. Therefore, our results improve the upper-

bound obtained in [19, 20] when α = 2 for instance.

3.3. Computation of the gradients of functions with dependent variables

Consider a sample of V given by {Vi := (Vi,1, . . . , Vi,d)}Ni=1. Using Equation (3),

the estimator of grad(f)(x) is derived as follows:

̂grad(f)(x) := G−1(x)
1

N

N∑
i=1

L∑
ℓ=1

Cℓf (x+ βℓhVi)
Vih

−1

σ2
.

To assess the quality of such an estimator, it is common to use the mean squared

error (MSE), including the rates of convergence. The MSEs are often used in statis-

tics for determining the optimal value of h as well. Theorem 2 and Corollary 4
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provide such quantities of interest. To that end, de�ne

K4 := inf
R∈Rc

E
[∣∣∣∣G−1(x)Rh−1

∣∣∣∣2
2

∣∣∣∣R2
∣∣∣∣
2

]
.

Theorem 2. Consider β1 = 1, β2 = −1; C1 = 1/2; C2 = −1/2. If f ∈ H2 and (A1)

holds, then

E
[∣∣∣∣∣∣ ̂grad(f)(x)− grad(f)(x)

∣∣∣∣∣∣2
2

]
≤ σ2M2

2K
2
2 ||h||

2
2 +

M2
1K4

∣∣∣∣h2
∣∣∣∣
2

N
. (8)

Moreover, if Vk ∼ U(−ξ, ξ) with ξ > 0 and k = 1, . . . , d and R0 := V/σ, then

E
[∣∣∣∣∣∣ ̂grad(f)(x)− grad(f)(x)

∣∣∣∣∣∣2
2

]
≤ M2

2 ξ
2
∣∣∣∣∣∣G−1(x)

∣∣ 1I•∣∣∣∣22 ||h||21 (9)

+
3
√
dM2

1

∣∣∣∣h2
∣∣∣∣
2

N
E
[∣∣∣∣G−1(x)R0h

−1
∣∣∣∣2
2

]
.

Proof. See Appendix C.

Using a uniform bandwidth, that is, hk = h with k = 1, . . . , d, the upper-bounds

of MSEs provided in Theorem 2 have simple expressions. Indeed, the upper-bounds

in Equations (8)-(9) become, respectively,

σ2M2
2K

2
2dh

2 +
M2

1

√
d

N
inf

R∈Rc

E
[∣∣∣∣G−1(x)R

∣∣∣∣2
2

∣∣∣∣R2
∣∣∣∣
2

]
;

M2
2 ξ

2
∣∣∣∣∣∣G−1(x)

∣∣ 1I•∣∣∣∣22 d2h2 +
3dM2

1

N
E
[∣∣∣∣G−1(x)R0

∣∣∣∣2
2

]
.

It comes out that the second-terms of the above upper-bounds do not depend on

the bandwidth h. This key observation leads to the derivation of the optimal and

parametric rates of convergence of the proposed estimator.

Corollary 4. Under the assumptions made in Theorem 2, if ξ = d−3/2 and hk =

h ∝ N−γ/2 with γ ∈]1, 2[, then we have

E
[∣∣∣∣∣∣ ̂grad(f)(x)− grad(f)(x)

∣∣∣∣∣∣2
2

]
= O

(
N−1d2

)
.

Proof. The proof is straightforward since h2 ∝ N−γ and Nh → ∞ when N → ∞.

It is worth noting that the upper-bound of the squared bias obtained in Corollary

4 does not depend on the dimensionality thanks to the choice ξ = d−3/2. But, the

derived rate of convergence depends on d2, meaning that our estimator su�ers from

9



the curse of dimensionality. In higher-dimensions, an attempt to improve our results

consists in controlling the upper-bound of the second-order moment of the estimator

through
∑L

ℓ=1 |Cℓβℓ|. For instance, requiring
∑L

ℓ=1 |Cℓβℓ| = 1/d2 with L = 2 admits

a solution in C and not in R.

Remark 2. For highly smooth functions (i.e., f ∈ H1+L with L > 3) and under the

assumptions made in Corollary 3, we can check that (see Appendix C)

E
[∣∣∣∣∣∣ ̂grad(f)(x)− grad(f)(x)

∣∣∣∣∣∣2
2

]
≤ ξ2LM2

1+L

∣∣∣∣∣∣G−1(x)
∣∣ 1I•∣∣∣∣22 ||h||2L1 K2

3

+
3
√
dM2

1

∣∣∣∣h2
∣∣∣∣
2

N

(
L+1∑
ℓ=1

|Cℓβℓ|

)2

E
[∣∣∣∣G−1(x)R0h

−1
∣∣∣∣2

2

]
.

4. Computations of the formal gradient of Rosenbrock's function

For comparing our approach to i) the �nite di�erences method (FDM) using

the R-package numDeriv ([44]) with h = 10−4, ii) the Monte Carlo (MC) approach

provided in [17] with h = 10−4, let us consider the Rosenbrock function given as

follows: ∀x ∈ Rd,

r(x) :=
d−1∑
k=1

[
(1− xk)

2 + 100
(
xk+1 − x2

k

)2]
.

The gradient of that function at 0 is ∇r(0) = [−2, . . . ,−2, 0]T ∈ R100 (see [17]). To

assess the numerical accuracy of each approach, the following measure is considered:

Err :=

∣∣∣∣∣∣∇r(0)− ∇̂r(0)
∣∣∣∣∣∣
1

||∇r(0)||1
,

where ∇̂r(0) is the estimated value of the gradient. Table 1 reports the values of

Err for the three approaches. To obtain the results using our approach, we have

used h = 1/
√
N with N the sample size and ξ = 1/d2 = 10−4 with d = 100. Also,

the Sobol sequence is used for generating the values of Vj's, and the Gram-schmidt

algorithm is applied to obtain (perfect) orthogonal vectors for a given N .

Based on Table 1, our approach provides e�cient results compared to other

methods. Since the FDM is not possible when N < 2d = 200, it comes out that

our approach is much �exible thanks to L and the fact that the gradient can be

computed for every value of N . Increasing N improves our results, as expected.
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Number of total model evaluations (i.e., LN)
100 150 200 200 1000 1000

Methods
FDM ([44]) - - - 0.005 - -
MC ([17]) 0.042 - - - - -

L = 1 L = 1 L = 1 L = 2 L = 1 L = 2
This paper 0.035 0.014 0.009 0.009 0.0020 0.00199

Table 1: Values of Err for three di�erent approximations of the formal gradients.

5. Application to a heat PDE model with stochastic initial conditions

5.1. Heat di�usion model and its formal gradient

Consider a time-dependent model f(x, t) de�ned by the one-dimensional (1-D)

di�usion PDE with stochastic initial conditions, that is,
∂f
∂t

−D ∂2f
∂2x

= 0, x ∈]0, 1[, t ∈ [0, T ]

f(x, t = 0) = Z(x) x ∈ [0, 1]

f(x = 0, t) = 0, f(x = 1, t) = 1, t ∈ [0, T ]

,

whereD ∈ R+ represents the di�usion coe�cient. It is common to consider J(Z(x)) :=
1
2

∫ T

0

∫ 10

0
(f(x, t))2 dxdt as the quantity of interest (QoI). The spatial discretisation

consists in subdividing the spatial domain [0, 1] in d equally-sized cells, which lead to

d initial conditions or inputs given by Z(xj) with j = 1, . . . , d. Given zero-mean ran-

dom variables (Rj, j = 1, . . . , d), assume that Xj := Z(xj) = sin(2πxj) + sjRj, j =

1, . . . , d, where sj ∈ R+ represents the inverse precision about our knowledge on the

initial conditions. For the dynamic aspect, a time step of 0.025 is considered starting

from 0 up to T = 5.

Given a direction z(x) and the Gâteaux derivative f̌(x, t) := ∂f
∂z(x)

, the tangent linear

model is derived as follows:
∂f̌
∂t

−D ∂2f̌
∂2x

= 0, x ∈]0, 1[, t ∈ [0, T ]

f̌(x, t = 0) = z(x), x ∈ [0, 1]

f̌(x = 0, t) = f̌(x = 1, t) = 0, t ∈ [0, T ]

,

and we can check that the adjoint model (AM) (i.e., fa) is given by
−∂fa

∂t
−D ∂2fa

∂2x
= f, x ∈]0, 1[, t ∈ [0, T ]

fa(x = 0, t) = fa(x = 1, t) = 0, t ∈ [0, T ]

fa(x, T ) = 0, x ∈ [0, 1]

.

11



The formal gradient of J(Z(x)) w.r.t. the inputs Z(x) is ∇ZJ(Z(x)) = fa(x, 0).

Remark that the above gradient relies on fa(x, 0), and only one evaluation of such

a function is needed.

5.2. Spatial auto-correlations of initial conditions and the tensor metric

Recall that the above gradient is based on the assumption of independent input

variables, suggesting that the initial conditions within di�erent cells are uncorrelated.

To account for the spatial auto-correlations between di�erent cells, assume that the

d input variables follow the Gaussian process with the following auto-correlation

function:

ρ(Xj1 , Xj2) =

(
1

2

)|j1−j2|

1I[0,3](|j1 − j2|); ∀ j1, j2 ∈ {1, . . . , d} ,

where 1I[0,3](|j1 − j2|) = 1 if |j1 − j2| ∈ [0, 3] and zero otherwise. Such spatial

auto-correlations lead to the correlation matrix of the form

R :=


1 0.5 0.25 0.125 0 0 0 . . . 0

0.5 1 0.5 0.25 0.125 0 0 . . . 0

0.25 0.5 1 0.5 0.25 0.125 0 . . . 0

0.125 0.25 0.5 1 0.5 0.25 0.125 0 . . . 0

0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

 .

Using the same standard deviation sj = s leads to the following covariance matrix

Σ = s2R, and X = (X1, . . . , Xd) ∼ Nd (µ, Σ) with µ := (sin(2πc1), . . . , sin(2πcd))

and c1, . . . , cd the centers of the cells. The associated dependency model is given

below.

Consider the diagonal matrix D∼j = diag (Σ1,1, . . . ,Σj−1,j−1,Σj+1,j+1, . . . ,Σd,d), and

the Gaussian random vector W ∼ Nd−1

(
µ∼j, D∼j

)
. Denote with Σ(j) the matrix

obtained by moving the jth row and column of Σ to the the �rst row and column;

L(j) the Cholesky factor of Σ(j), and µ(j) := (µj, µ1, . . . , µj−1, µj+1, . . . , µd). We can

see that (Xj, X∼j) ∼ Nd

(
µ(j),Σ(j)

)
, and the dependency model is given by ([10])

(Xj,X∼j) = L(j)

[
1√
Σj,j

(Xj − E[Xj])

D
−1/2
∼j

(
W − µ∼j

)
]
+ µ(j); j = 1, . . . , d . (10)

Based on Equation (10), we have
∂X∼j

∂xj
=

L(j)
∼1,1√
Σj,j

=
Σ

(j)
∼1,1

Σj,j
=

Σ∼j,j

Σj,j
. Thus, we can

deduce that J (j) =
Σ•,j
Σj,j

with Σ•,j the j
th column of Σ, and the dependent Jacobian

becomes Jd =
[
J (1), . . . , J (d)

]
=
[
Σ•,1
Σ1,1

, . . . ,
Σ•,d
Σd,d

]
= Σ

s2
= R, as Σj,j = s2j = s2 and

12



Σ = s2R. The tensor metric is given by G = RTR.

5.3. Comparisons between exact gradient and estimated gradients

For running the above PDE-based model using the R-package deSolve ([45]),

we are given D = 0.0011 and s = 1.96. The exact and formal gradient associated

with the mean values of the initial conditions is obtained by running the corre-

sponding adjoint model. For estimating the gradient using the proposed estimators,

we consider L = 2, 3 and N = 50, 100, 150, 200. We also use h = 1/
√
N and

Vj ∼ N (0, 1), j = 1, . . . , d = 50. The Sobol sequence is used for generating the

random values of Vj's, and the Gram-schmidt algorithm is applied to obtain perfect

orthogonal vectors for a given N .

Figure 1 shows the comparisons between the estimated and the exact values of

the formal gradient ∇f (i.e., ρ(Xj1 , Zj2) = 0) for L = 1, 2. Likewise, Figures 2-3

depict the dependent gradient grad(f) =
(
RTR

)−1∇f and its estimation. The

estimates of both gradients are in line with the exact values using only NL = 50

(resp. NL = 100) model evaluations when L = 1 and N = 50 (resp. L = 1 and

N = 100 or L = 2 and N = 50). Increasing the values of L and N gives the same

quasi-perfect results for both the formal and dependent gradients (see Figure 3).
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Figure 1: Exact gradient versus estimated gradients using L = 1 (◦) and L = 2 (+) of the QoI by
considering the inputs as independent (formal gradients).
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Figure 2: Exact gradient versus estimated gradients using L = 1 (◦) and L = 2 (+) of the QoI by
considering the auto-correlations anong the inputs (dependent gradients).
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Figure 3: Exact gradient versus estimated gradients using L = 2 (◦) and L = 3 (+) of the QoI by
considering the auto-correlations anong the inputs (dependent gradients).
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6. Conclusion

In this paper, we have proposed new, simple and generic approximations of the

gradients of functions with non-independent input variables by means of indepen-

dent, central and symmetric variables and a set of constraints. It comes out that

the biases of our approximations for a wide class of functions, such as 2-smooth

functions, do not su�er from the curse of dimensionality by properly choosing the

set of independent, central and symmetric variables. For functions including only

independent input variables, a theoretical comparison has shown that the upper-

bounds of the bias of the formal gradient derived in this paper outperform the best

known results.

For computing the dependent gradient of the function of interest, we have pro-

vided estimators of such a gradient by making use of evaluations of that function

at LN randomized points. Such estimators reach the optimal (mean squared er-

ror) rates of convergence (i.e., O(N−1d2)) for a wide class of functions. Numerical

comparisons using a test case and simulations based on a PDE model with given

auto-collaborations among the initial conditions have shown the e�ciency of our

approach, even when L = 1, 2 constraints are used. Our approach is then �exible

thanks to L and the fact that the gradient can be computed for every value of the

sample size N in general.

While the proposed estimators reach the parametric rate of convergence, note

that the second-order moments of such estimators depend on d2. An attempt to

reach a dimension-free rate of convergence requires working in C rather than R
when L = 2. In next future, it is worth investigating the derivation of the optimal

rates of convergence that are dimension-free or (at least) are linear with respect to d

by considering L > 3 constraints. Also, combining such a promising approach with

a transformation of the original space might be helpful for reducing the number of

model evaluations in higher dimensions.
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Appendix A Proof of Theorem 1

As ı⃗ = (ı1, . . . , ıd), let k⃗ =

0, . . . , 0, 1︸︷︷︸
k th position

, 0 . . . , 0

 ∈ Rd and q⃗ =

(q1, . . . , qd) ∈ Nd. Multiplying the Taylor expansion of f (x+ βℓhV) about x, that

is,

f (x+ βℓhV) =
m∑
p=0

∑
||⃗ı||1=p

D(⃗ı)f(x)

ı⃗!
βp
ℓ (hV)ı⃗ +O

(
||βℓhV||m+1

2

)
,

by Vh−1

σ2 ∈ Rd and the constant Cℓ, and taking the sum over ℓ = 1, . . . , L, we can

see that the expectation E :=
∑L

ℓ=1CℓE
[
f (x+ βℓhV) Vh−1

σ2

]
becomes

E =
∑
p≥0

∑
||⃗ı||1=p

D(⃗ı)f(x)

ı⃗!

(∑
ℓ

Cℓβ
p
ℓ

)
E

[
(V)ı⃗ (h)ı⃗Vh−1

σ2

]
.

Firstly, for a given k ∈ {1, . . . , d} and by independence, we can see that

E
[
(V)ı⃗ (h)ı⃗ Vkh

−1
k

]
= E

[
(V)ı⃗+k⃗ (h)ı⃗−k⃗

]
̸= 0

i� ık = 2qk + 1; ıj = 2qj for any j ∈ {1, . . . , d} \ {k} with qk, qj ∈ N, which implies

that ı⃗ = k⃗ + 2q⃗. Thus, one obtains ∂f
∂xk

when ||⃗ı||1 = ||⃗k + 2q⃗||1 = 1, and the fact

that E [V 2
k ] = σ2; E [Vj] = 0 and

∑
ℓ Cℓβℓ = 1. At this point, by taking k = 1, . . . , d

and setting L = 1, βℓ = 1 and Cℓ = 1 result in the approximation of ∇f(x) of order

O(||h||22) because when ||⃗ı||1 = 2, E
[
(V)ı⃗ (h)ı⃗ Vkh

−1
k

]
= 0.

Secondly, for L > 1 the constraints
∑L

ℓ=1 Cℓβ
r+1
ℓ = δ0,r r = 0, 2, . . . , 2(L − 1) allow

to eliminate some higher-order terms so as to reach the order O
(
||h||2L2

)
. Using

other constraints complete the proof, bearing in mind Equation (2).

Appendix B Proof of Corollary 1

For q⃗ = (q1, . . . , qd) ∈ Nd; k ∈ {1, . . . , d} and k⃗ =

0, . . . , 0, 1︸︷︷︸
k th position

, 0 . . . , 0

 ∈

Rd, consider sk :=
{
q⃗+ k⃗ : ||q⃗||1 = 1

}
. As f ∈ H2, we can write

f(x+βℓhV) =
1∑

||⃗ı||1=0

D(⃗ı)f(x)β
||⃗ı||1
ℓ

(hV)ı⃗

ı⃗!
+
∑

||⃗ı||1=2
ı⃗/∈sk

D(⃗ı)f(x)
β2
ℓ (hV)ı⃗

ı⃗!
+Rk (h, βℓ,V) ,
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with the remainder term

Rk (h, βℓ,V) =
∑

||⃗ı||1=2
ı⃗∈sk

D(⃗ı)f(x+ βℓhV)
β2
ℓ (hV)ı⃗

ı⃗!
=
∑

||q⃗||1=1
ı⃗∈sk

D(k⃗+q⃗)f(x+ βℓhV)
β2
ℓ (hV)q⃗+k⃗

(k⃗ + q⃗)!

= hkVkβ
2
ℓ

∑
||q⃗||1=1

D(k⃗+q⃗)f(x+ βℓhV)
(hV)q⃗

(k⃗ + q⃗)!
.

Denote R0
k :=

∑
||q⃗||1=1D(k⃗+q⃗)f(x+βℓhV) (hV)q⃗

(k⃗+q⃗)!
, and remark that |R0

k| ≤ M2 ||hV||1.
Using Theorem 1, we can see that the absolute value of the bias, that is,

B :=
∣∣∣∣∣∣grad(f)(x)−G−1(x)

∑L
ℓ=1Cℓ E

[
f (x+ βℓhV) Vh−1

σ2

]∣∣∣∣∣∣
1
is given by

B =

∣∣∣∣∣
∣∣∣∣∣G−1(x)E

[
∇f(x)−

L∑
ℓ=1

Cℓf (x+ βℓhV)
Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
1

=

∣∣∣∣∣
∣∣∣∣∣G−1(x)

L∑
ℓ=1

Cℓ
β2
ℓ

σ2
E
[
V 2
1 R

0
1, . . . , V

2
d R

0
d

]T ∣∣∣∣∣
∣∣∣∣∣
1

≤
L∑

ℓ=1

|Cℓ|
β2
ℓ

σ2

∣∣∣∣∣∣G−1(x)E
[
V 2
1 R

0
1, . . . , V

2
d R

0
d

]T ∣∣∣∣∣∣
1

≤
L∑

ℓ=1

|Cℓ| β2
ℓM2

∣∣∣∣∣∣∣∣∣∣G−1(x)
∣∣E [V2

σ2
||hV||1

]∣∣∣∣∣∣∣∣
1

,

using the expansion of the product between matrices.

Using the same reasoning and taking the Euclidean norm, we obtain

B2 =

∣∣∣∣∣
∣∣∣∣∣G−1(x)E

[
∇f(x)−

L∑
ℓ=1

Cℓf (x+ βℓhV)
Vh−1

σ2

]∣∣∣∣∣
∣∣∣∣∣
2

≤
L∑

ℓ=1

|Cℓ| β2
ℓM2

∣∣∣∣∣∣∣∣∣∣G−1(x)
∣∣E [V2

σ2
||hV||1

]∣∣∣∣∣∣∣∣
2

.

The results hold using R := V/σ.

Appendix C Proof of Theorem 2

Firstly, remark that MSE := E
[∣∣∣∣∣∣ ̂grad(f)(x)− grad(f)(x)

∣∣∣∣∣∣2
2

]
is given by

MSE = E
[∣∣∣∣∣∣ ̂grad(f)(x)− E

[
̂grad(f)(x)

]∣∣∣∣∣∣2
2
+
∣∣∣∣∣∣E [ ̂grad(f)(x)

]
− grad(f)(x)

∣∣∣∣∣∣2
2

]
.
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Since, the bias E
[∣∣∣∣∣∣E [ ̂grad(f)(x)

]
− grad(f)(x)

∣∣∣∣∣∣2
2

]
has been derived in previous

Corollaries, we are going to treat the second-order moment.

Secondly, as f ∈ H2 implies that f ∈ H1, we have |f(x+ βℓhV)− f(x)| ≤ M1 ||βℓhV||2 .

Also, as
∑L

ℓ=1 Cℓ = 0, we then have

L∑
ℓ=1

Cℓf(x+ βℓhV) =
L∑

ℓ=1

Cℓ [f(x+ βℓhV)− f(x)] ,

which leads to
∣∣∣∑L

ℓ=1C
(|u|)
ℓ f(x+ βℓhV)

∣∣∣ ≤∑L
ℓ=1 |Cℓβℓ|M1 ||hV||2 and

Q(x) := G−1(x)
Vh−1

σ2

L∑
ℓ=1

Cℓf(x+βℓhV) = G−1(x)
Vh−1

σ2

L∑
ℓ=1

Cℓ [f(x+ βℓhV)− f(x)] .

(11)

Thirdly, using (3), we can see that E [Q(x)] = E
[
̂grad(f)(x)

]
. Bearing in mind

the de�nition of the Euclidean norm and the variance, the centered second-order

moment, that is, Vgrad := E
[∣∣∣∣∣∣ ̂grad(f)(x)− E

[
̂grad(f)(x)

]∣∣∣∣∣∣2
2

]
is given by

Vgrad ≤ 1

N
E

∣∣∣∣∣
∣∣∣∣∣G−1(x)

Vh−1

σ2

L∑
ℓ=1

Cℓf(x+ βℓhV)− E
[
̂grad(f)(x)

]∣∣∣∣∣
∣∣∣∣∣
2

2


≤ 1

N
E

∣∣∣∣∣
∣∣∣∣∣G−1(x)

Vh−1

σ2

L∑
ℓ=1

Cℓf(x+ βℓhV)

∣∣∣∣∣
∣∣∣∣∣
2

2


(11)
=

1

N
E

∣∣∣∣∣
∣∣∣∣∣G−1(x)

Vh−1

σ2

L∑
ℓ=1

Cℓ {f(x+ βℓhV)− f(x)}

∣∣∣∣∣
∣∣∣∣∣
2

2


≤ 1

N
E

[∣∣∣∣∣∣∣∣G−1(x)
Vh−1

σ2

∣∣∣∣∣∣∣∣2
2

||hV||22

]
M2

1

(
L∑

ℓ=1

|Cℓβℓ|

)2

≤ 1

N
E

[∣∣∣∣∣∣∣∣G−1(x)
Vh−1

σ2

∣∣∣∣∣∣∣∣2
2

∣∣∣∣V2
∣∣∣∣
2

] ∣∣∣∣h2
∣∣∣∣
2
M2

1

(
L∑

ℓ=1

|Cℓβℓ|

)2

bearing in mind the Hölder inequality. The results hold using R := V/σ, and the

fact that when Vk ∼ U(−ξ, ξ), ||V2||2 ≤
√
dξ2 and σ2 = ξ2/3.
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