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Abstract

A methodology for assessing the inputs-outputs association for time-dependent pre-

dictive models subjected to safety objectives is investigated. Firstly, new depen-

dency models for sampling random values of uncertain inputs that comply with the

safety objectives are provided by making use of the desirability measures. Secondly,

combining predictive risk-models with such dependency models leads to the de-

velopment of new kernel-based statistical tests of independence between the (safe)

dynamic outputs and inputs. The associated test statistics are then normalized

so as to introduce the �rst-order and total sensitivity indices that account for the

desirability measures. Such indices rely on time-dependent sensitivity functionals

(SFs) and kernel methods, which allow for treating non-stationary SFs as well as

SFs having skewed or heavy-tailed distributions. Our approach is also well-suited

for dynamic hazard models with prescribed copulas of inputs.

Keywords: Copulas, Independence tests, Spatio-temporal models, Uncertainty
quanti�cation, Weighted distributions.

1. Introduction

Integrated dynamic systems are widely used in engineering for quantitative risk

assessment and management. Monitoring and controlling an identi�ed hazard at

di�erent time steps are crucial in quantitative risk analysis, including quantitative

microbiological risk analysis, so as to bring the systems under control, to prevent

natural disasters, and to minimize damages. It is known that quantitative risk as-

sessment (QRA) is one of the most challenging steps in risk analysis when relevant

dataset is available. Some QRA approaches aim at evaluating directly the risk out-

put, that is, the probability of occurrence of hazards. Other QRA methods rely

on predictive models of the level of hazards at di�erent time steps. Among others,
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2024

1



site-speci�c hazard curves for earthquake damage management ([1, 2]); the equity

capital of a �rm (which should be positive); the Black-Scholes dynamic model for

a portfolio value in �nance; process-risk models that simulate the concentrations of

microbiological hazards ([3, 4, 5]), socio-environmental models ([6]) and �ood-risk

models ([7, 8, 9]) are examples.

For risk management based on predictive models, making decisions often relies

on contextual indicators, involving the hazard levels and thresholds that are used

for de�ning critical and/or failure conditions. Such thresholds (also known as safety

objectives) are provided by competent authorities or are available in the literature

or can be estimated as the values at risk using previous data. Contextual indicators

represent speci�c system behaviors such as the safety of the products, structural

failures, safety systems, and sustainability. Conceptually, only outputs of predictive

models that comply with the safety objectives or not are going to be considered, de-

pending on the purpose of the analysis. Mathematically, it consists in clustering the

dynamic outputs of hazard models using either the binary classi�cation or the fuzzy

classi�cation. Reliable predictive models rely on a suitable choice of parameters

and/or input variables (e.g., risk factors) for describing an hazard and its evolution

over time, and such inputs are often uncertain. Denote withX such uncertain inputs.

Performing uncertainty quanti�cation (UQ) and sensitivity analysis (SA) for as-

sessing the strengths of un-controllable and/or controllable inputs (e.g., policy and

management levers) on the dynamic outputs subjected to safety objectives (i.e.,

safe outputs) are worth investigating, but require measuring the ability of each

dynamic output or curve to meet the safety objectives ([5]). There are di�erent

possibilities to measure such abilities, depending on risk managers. To de�ne one

reasonable desirability measure, denote with x a sample point of the inputs X of the

hazard model given by Y (t) := f(X, t) with t ∈ [0, T ] and T a time period. Obvi-

ously, each sample point will not lead to meet a safety objective (noted S), that is,

(y(t) = f(x, t) ≤ S, ∀ t ∈ [0, T ]). Moreover, two di�erent sample points that meet

a safety objective can perform di�erently. Thus, to bring the system under control,

the following desirability measure is considered:

D(x) :=

{ ∫ T

0
|f(x, t)− S| dt if y(t) ≤ S ∀ t ∈ [0, T ]

0 otherwise
. (1)

The above desirability measure can be seen as a mixture of the crisp and fuzzy

clustering membership functions of the output values according to their abilities to

meet the safety objective. Regarding the theory of multivariate weighted distribu-
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tions (e.g., [10, 11, 12]), D(x) gives di�erent chances to the sample points of being

included in UQ and SA, and it is also known as the weight function. For instance,

such a desirability measure includes the payo� of the European call option, that is,

max {f(x, T )−K, 0} with f(x, T ) the price at maturity T and K a strike.

While other desirability measures can be considered, it is worth noting that

taking account of such measures is going to modify the initial distribution of the

model inputs by introducing or adding new dependence structures (see [5, 13]).

Thus, performing UQ and SA require the distributions of the model inputs that

account for every desirability measure (i.e., new joint distribution of the inputs).

Such joint distribution functions have been derived in [13, 14] as well as the condi-

tional distribution functions and the dependency models, that is, regression-based

representations of random vectors following such distributions (see also [15, 16, 17]).

Dependency models have been used for developing dependent multivariate sensitiv-

ity analysis (DMSA) for models with dependent and/or correlated input variables

([15, 16, 17, 13]), and those derived in [13, 14] rely on the weighted distribution asso-

ciated with the initial distribution function of inputs rather than the margins of the

new joint distribution. Although di�erent statistical moments, including the �rst-

order and total dependent generalized sensitivity indices, can be computed using the

weighted distributions ([13, 14]), generating directly random values according to the

new joint distribution is much convenient for the sample-based risk assessment.

Moreover, among global SA (GSA) (e.g., [18, 19, 20, 21, 22, 23, 24, 25, 26, 15, 16,

27, 28, 29, 30]), DMSA ([15, 16, 13, 14]), including multivariate sensitivity analysis

(MSA, [31, 32, 28, 33, 24, 29]), relies on sensitivity functionals (SFs). Sensitivity

functionals for dynamic models are time-dependent random processes that contain

di�erent information about the contrition of each input (including interactions) on

the whole dynamic outputs. Since MSA and DMSA make use of variance as the im-

portance measure, the resultant sensitivity indices account only for the second-order

moments of SFs, and such indices may not exist for some distributions of SFs such

as Cauchy's distribution. Therefore, DMSA may be ine�cient for capturing all the

moments or su�cient moments or desirable moments of SFs associated with the safe

outputs because such SFs can follow skewed and heavy-tailed distributions and/or

may be non-stationary ([34]).

This paper aims at providing measures of association between inputs and outputs

for time-dependent predictive models that incorporate the desirability measures or

comply with the safety objectives. Our contributions are twofold: �rstly, dependency
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models are derived in Section 2 for sampling the random values of inputs that follow

the new joint distribution without using the weighted distributions. Note that the

new distribution is often that of non-independent variables, keeping in mind Equa-

tion (1).

Secondly, by combining predictive models with such dependency models, we propose

new dependence measures of inputs-outputs association that rely on statistical tests

of independence between the dynamic outputs and inputs. The asymmetric role of

the outputs and inputs motivates the construction of our test statistics by making

use of time-dependent SFs. Moreover, to account for relevant statistical properties

of SFs, SFs are going to be embedded into the appropriate Reproducing Kernel

Hilbert Space (RKHS) ([35, 36]) by properly choosing the kernels (see Section 3).

The kernel-based test statistics are normalized in Section 4.2 to provide the kernel-

based sensitivity indices (Kb-SIs) for time-dependent models of hazards subjected to

safety objectives. Such new measures (i.e., Kb-SIs) satisfy the Renyi axioms ([37])

and lead to a statistical foundation of sensitivity indices for time-dependent models

or processes. Consistent estimators of the �rst-order and total Kb-SIs are derived

in Section 5, and a case study is provided in Section 6. We conclude this work in

Section 7.

General notation

For an integer d ∈ N \ {0}, X := (X1, . . . , Xd) denotes a random vector of the

model inputs. For u ⊆ {1, . . . , d}, we use Xu := (Xj,∀ j ∈ u); X∼u := (Xj,∀ j ∈
{1, . . . , d} \ u) and we have the following partition X = (Xu, X∼u). We use ||·||p
for the p-norm, E[·] for the expectation and V[·] for the variance-covariance.

2. Distribution of inputs under safety objectives and dependency models

This section deals with the distribution of the inputs that comply with a safety

objective and the statistical representation of the inputs, following that distribution.

Given t ∈ [0, T ], the time-dependent model f(·, t) : Rd → R includes X as inputs

and provides Y (t) = f(X, t) as the output at time t.

Without loss of generality, let us consider a safety condition, which is often

described by (Y (t) ≤ S, ∀ t ∈ [0, T ]) with S the safety objective for an identi�ed

hazard. Taking account of the desirability measure given by Equation (1) or every

non-negative desirability measure to bring the system under control is going to

modify the initial distribution of the model inputs. Indeed, the resultant distribution
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is going to avoid the failed input values (i.e., xf ) de�ned by{
xf ∈ Rd : ∃ t0 ∈ [0, T ] such that f(xf , t) > S

}
,

by giving them a zero chance of being included in further analysis under safety ob-

jectives. The resultant distribution also gives di�erent or equal weights to other

(safe) input values xs, satisfying (f(xs, t) ≤ S, ∀ t ∈ [0, T ]). Nevertheless, the

above failure condition is of great interest since it can be used for identifying the

key inputs that drive a system to fail. While in what follows, we are going to treat

the safety condition, it is worth noting that the following proposed methodology is

well-suited for dealing with failure conditions as well by just replacing Equation (1)

with a failure-desirability measure.

Formally, let ρ : Rd → R+ be the initial probability density function (PDF) or

mass function of X and D : Rd → R+ a desirability measure. The PDF or mass

function of the inputs that comply with the safety objective is given by (see e.g.,

[10, 11, 12])

ρs(x) :=
ρ(x)D(x)

E [ρ(X)D(X)]
, ∀x ∈ Rd .

To avoid any ambiguity, let us use Xs := (Xs
1 , . . . , X

s
d) for a d-dimensional random

vector of inputs that have ρs(x) as PDF or mass function. Obviously, the random

vector Xs will lead to meet the safety objective, while X will not in general. To

generate random values of Xs in general, the conditional sampling algorithm (see

[38, 39, 15, 16] for more details) requires knowing the exact cumulative distribution

function (CDF) of Xs. By denoting with F1, . . . , Fd the margins of the distribution

of X, the exact CDF of Xs (i.e., F s) is given by (see Corollary 2 in [13])

F s(x) := W (F1(x1), . . . , Fd(xd)) , ∀x ∈ Rd , (2)

where W : [0, 1]d → [0, 1] is a distribution function, which is similar to a copula (see

Equation (4)). If we use F←j for the generalized inverse of Fj with j = 1, . . . , d, then

W (·) is given by

W (u1, . . . , ud) =
EV [we (F

←
1 (V1), . . . , F

←
d (Vd))]

EU [we (F←1 (U1), . . . , F←d (Ud))]

d∏
k=1

uk , (3)

where Vj ∼ U(0, uj); Uj ∼ U(0, 1) and EV (resp. EU) means that the expectation

is taken w.r.t. V (resp. U). The weight function we used in (3) comes down to

the desirability measure when X is a random vector of independent variables. In
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general, the weight function we(·) is de�ned as follows ([13]):

we(x) =


D(x) if ρ(x) =

∏d
j=1 ρj(xj)

c (F1(x1); . . . , Fd(xd))D(x) if c(·) is the copula PDF of X

w(x)D(x) if ρ(x) = w(x)
∏d

j=1 ρj(xj)

,

with w(·) : Rd → R+ and ρj(·) the marginal PDF or mass function of Xj. Proposi-

tion 1 shows that W given by (3) is the CDF of a known random vector.

Proposition 1. Consider Xs = (Xs
1 , . . . , X

s
d) ∼ F s. Then, we have

(F1(X
s
1), . . . , Fd(X

s
d)) ∼ W . (4)

Proof. See Appendix A.

In view of Proposition 1, for every desirability measure or weight function, there

exists always a CDF with margins supported on [0, 1] such that the random vector

(F1(X
s
1), . . . , Fd(X

s
d)) follows that distribution function. Contrary to copulas, the

marginal CDFs of W are not necessarily the uniform distribution. Using the CDF of

Xs given by Equation (2), we are able to derive its marginal CDFs (i.e., Xs
j ∼ F s

j )

and the generalized inverse of F s
j (i.e., F s←

j ) that rely on W (·). The following

propositions deal with such issues.

Proposition 2. For any j ∈ {1, . . . , d}, the jth margin of the joint CDF W is

Wj(uj) := W (1, . . . , uj−1 = 1, uj , uj+1 = 1, . . . , 1) , ∀uj ∈ [0, 1] .

The proof is straightforward keeping in mind that W is a probability (see Ap-

pendix B for instance). Denote with W←
j the generalized inverse of Wj.

Proposition 3. Consider Uj ∼ U(0, 1) and xj ∈ R. Then, we have

F s
j (xj) = Wj (Fj(xj)) ; Xs

j = F s←
j (Uj) = F←j

(
W←

j (Uj)
)
a.s. . (5)

Proof. See Appendix B.

Based on the above marginal CDFs, a new expression of the copula of Xs ∼ F s

is derived in the following corollary. To that end, let RanF s
j := {F s

j (xj) : xj ∈ R}
denote the range of F s

j for any j ∈ {1, . . . , d}.

Corollary 1. Consider uj ∈ RanF s
j with j = 1, . . . , d. Then, the copula of Xs is

C(u1, . . . , ud) := W (W←
1 (u1), . . . ,W

←
d (ud)) . (6)
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Proof. See Appendix C.

Note that W becomes a copula when Wj(uj) = uj for any j ∈ {1, . . . , d}. Using
the known CDFs W and C, the fact that (F1(X

s
1), . . . , Fd(X

s
d)) ∼ W (see Equation

(4)), (F s
1 (X

s
1), . . . , F

s
d (X

s
d)) ∼ C, and bearing in mind the conditional sampling

algorithm (see [38, 39, 15, 16] for more details), we are able to derive the dependency

models (DMs) ofXs ∼ F s in order to sample the random values ofXs (see Corollaries

2-3). To derive such DMs for the purpose of SA, denote with (π1, . . . , πd−1) an

arbitrary permutation of (∼ j) := {1, . . . , d} \ {j}, ∀ j ∈ {1, . . . , d}, and de�ne the

permuted random vectors(
Fj(X

s
j ), Fπ1(X

s
π1
) . . . , Fπd−1

(Xs
πd−1

)
)
∼ W̃ ;

(
F s
j (X

s
j ), F

s
π1
(Xs

π1
) . . . , F s

πd−1
(Xs

πd−1
)
)
∼ C̃.

It is worth noting thatW and W̃ (resp. C and C̃) share the same class of distribution

functions, but the parameters of such functions may be di�erent. To provide the �rst-

type of DMs, consider a d-dimensional random vector
(
Zj, Zπ1 , . . . , Zπd−1

)
∼ W̃ , and

denote with W̃π1|j (resp. W̃π2|j,π1) the CDF of Zπ2 conditional on Zj (resp. Zj, Zπ1),

and W̃←
π1|j (resp. W̃

←
π2|j,π1

) the associated generalized inverse.

Corollary 2. Assume that X is continuous and
(
Zj, Zπ1 , . . . , Zπd−1

)
∼ W̃ . Then,

there exists a dependency function rwj : Rd → Rd−1 and a random vector U∼j ∼
U(0, 1)d−1 which is independent of Xs

j ∼ F s
j such that

Xs
∼j = rwj

(
Xs

j ,U∼j
)
:=

(
F←π1

(Zπ1), . . . , F
←
πd−1

(Zπd−1
)
)
, (7)

where 
Zπ1 := W̃←

π1|j
(
Uπ1 |Fj

(
Xs

j

))
Zπ2 := W̃←

π2|j,π1

(
Uπ2 |Fj

(
Xs

j

)
, Zπ1

)
...

Zπd−1
:= W̃←

πd−1|j,π1,...,πd−2

(
Uπd−1

|Fj

(
Xs

j

)
, Zπ1 , . . . , Zπd−2

)

 .

Proof. See Appendix D.

To give the copula-based DMs of Xs ∼ F s in the following corollary, consider

now
(
Zj, Zπ1 , . . . , Zπd−1

)
∼ C̃, and denote with C̃π1|j (resp. C̃π2|j,π1) the CDF of Zπ2

conditional on Zj (resp. Zj, Zπ1), and C̃←π1|j (resp. C̃
←
π2|j,π1

) the associated generalized

inverse.

Corollary 3. Consider independent variables U∼j ∼ U(0, 1)d−1 and Xs
j ∼ F s

j , and
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assume X is continuous and
(
Zj, Zπ1 , . . . , Zπd−1

)
∼ C̃. Then, a DM of Xs is

Xs
∼j = rcj

(
Xs

j ,U∼j
)

:=
(
F←π1

(
W←

π1
(Zπ1)

)
, . . . , F←πd−1

(
W←

πd−1
(Zπd−1

)
))

, (8)

where 
Zπ1 := C̃←π1|j

(
Uπ1 |F s

j

(
Xs

j

))
Zπ2 := C̃←π2|j,π1

(
Uπ2 |F s

j

(
Xs

j

)
, Zπ1

)
...

Zπd−1
:= C̃←πd−1|j,π1,...,πd−2

(
Uπd−1

|F s
j

(
Xs

j

)
, Zπ1 , . . . , Zπd−2

)

 ,

provided that F s
j is continuous.

Proof. See Appendix E.

The dependency models provided in Corollaries 2-3 are going to be used for i)

generating the random values of Xs and ii) deriving the sensitivity functionals (see

Section 3). It is to be noted that such sampling designs rely directly on Xs
j and are

di�erent from the one used in [13], which makes use of the weighted distribution of

Xj. Thus, we are able to work with Xs using W or W̃ and the prescribed CDFs

F1, . . . , Fd without keeping in mind the desirability measure.

Remark 1. The above dependency models require computing the inverse of condi-

tional distributions of the CDF W or the copula C. When W and C are smooth

enough and are not time-demanding for the computations, the di�erential approach

can be used for computing the conditional distributions (see [40, 39]). For time-

demanding desirability measures or equivalently W or C, it is common to approxi-

mate the copula given by Equation (6) using fundamental copulas such as elliptical,

Frank, Clayton or other class of copulas. For instance, Equation (6) can be used

for easily computing the Spearman rho in general, and the Kendall tau for elliptical

copulas ([39]).

3. Testing the e�ects of dependent inputs on dynamic outputs

In general the components of the random vector Xs are not independent (corre-

lated or dependent), and Equations (7)-(8) provide the statistical representations of

such dependency structures for every j ∈ {1, . . . , d}. Combining the time-dependent

safe outputs (i.e., f(Xs, t)) with any DM (i..e, rj
(
Xs

j ,U∼j
)
) given by Equations (7)-

(8)) yields

Ys

(
Xs

j ,U∼j, t
)
:= f

(
Xs

j ,X
s
∼j, t

)
= f

(
Xs

j , rj
(
Xs

j ,U∼j
)
, t
)
, ∀ t ∈ [0, T ] . (9)
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Note that Ys(X
s
j ,U∼j, t) includes only independent variables as inputs thanks to the

dependency functions.

3.1. Dynamic sensitivity functionals for dependent variables

Using the output Ys

(
Xs

j ,U∼j, t
)
, the SFs associated with the input Xs

j with

j ∈ {1, . . . , d} are formally de�ned below. The �rst-order and total SFs of Xs
j are

respectively given by ([41, 25, 28, 14])

f fo
j (Xs

j , t) := E
[
Ys

(
Xs

j ,U∼j, t
)
|Xs

j

]
− E

[
Ys

(
Xs

j ,U∼j, t
)]

, ∀ t ∈ [0, T ] ;

f tot
j (Xs

j ,U∼j, t) := Ys

(
Xs

j ,U∼j, t
)
− E

[
Ys

(
Xs

j ,U∼j, t
)
|U∼j

]
, ∀ t ∈ [0, T ] .

We also de�ne the centered output by

Y c
s

(
Xs

j ,U∼j, t
)
:= Ys

(
Xs

j ,U∼j, t
)
− E

[
Ys

(
Xs

j ,U∼j, t
)]

.

We can see that SFs are zero-mean time-dependent stochastic-processes, and such

SFs contain the primary information about the inputs e�ects on the whole safe

outputs. Such SFs and the centered outputs may follow the Gaussian processes or

other processes. The Karhunen-Loeve expansion (e.g., [42, 43]), which relies on the

theory of RKHS ([44, 35, 45, 46]), allows for concentrating the second-order moments

of such random processes in a few uncorrelated components.

3.2. Test hypotheses

3.2.1. Initial null hypothesis for the independence test

Since Ys

(
Xs

j ,U∼j, t
)
∈ R includes only independent inputs, it is known in [47]

(Proposition 1) that Ys

(
Xs

j ,U∼j, t
)
does not depend on Xs

j at time t ∈ [0, T ] if and

only if the total SF f tot
j (Xs

j ,U∼j, t) = 0 almost surely (a.s.). Thus, our initial null

hypothesis of the independence test between Xs
j and the dynamic outputs is

f tot
j (Xs

j ,U∼j, t) = 0, ∀ t ∈ [0, T ] a.s. ;

because, it can happen that some inputs contribute to the model outputs at the

beginning of the process and others at the end ([48, 49]). The above null hypothesis

is equivalent to V
[
f tot
j (Xs

j ,U∼j, t)
]
= 0, ∀ t ∈ [0, T ], which is well-suited for the

total SFs following the Gaussian processes. Since SFs may follow skewed and heavy-

tailed distributions and/or may be non-stationary random processes ([34]), adequate

measures of association between time-dependent outputs and inputs are going to be

considered so as to account for the main properties of such random processes.
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3.2.2. Kernel-based test hypotheses

To account for the necessary or desirable moments of the stochastic processes

such as SFs, we are going to embed the total SFs into the appropriate RKHS or

feature spaces ([44, 35, 45, 46]), which o�er an interesting framework for statistical

independence tests of two random vectors ([45, 46, 50]).

Formally, consider an arbitrary space X and an Hilbert spaceH endowed with the

inner product ⟨·, ·⟩. For a feature map ϕ : X → H, a symmetric and positive-de�nite

kernel is de�ned as follows ([44]): k : X×X → R with k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. Given
a random variable such as the total SFs at time t0 ∈ [0, T ], that is, f tot

j (Xs
j ,U∼j, t0),

its mean element is de�ned by ([45, 46, 51, 50])

µF0

(
f tot
j (Xs

j ,U∼j, t0)
)
:= EF0

[
k
(
·, f tot

j (Xs
j ,U∼j, t0)

)]
,

with F0 the CDF of f tot
j (Xs

j ,U∼j, t0). The symbol EF0 means that the expectation

is taken w.r.t. f tot
j (Xs

j ,U∼j, t0) ∼ F0. We can see that this mean element is a linear

statistic of the embedded random variable (i.e., k
(
·, f tot

j (Xs
j ,U∼j, t0)

)
) lying in the

RKHS induced by the kernel k(·), and it accounts for all the moments or desirable

moments of f tot
j (Xs

j ,U∼j, t0), depending on the kernels used. It is used for entirely

characterizing the distributions of f tot
j (Xs

j ,U∼j, t0) in the case of characteristic ker-

nels. A characteristic kernel is de�ned as follows ([45, 46, 51, 50]): given two CDFs

G1, G2 and two random variables Y1 ∼ G1 and Y2 ∼ G2,

µG1(Y1) = µG2(Y2) =⇒ G1 = G2 ,

with µG1(Y1) = EG1 [k (·, Y1)].

To introduce the kernel-based test hypotheses, the concept of equivalent kernels

is needed (see De�nition 1 and [14]). In what follows, we assume that

(A1) :
(∫ T

0
E
√
k
(
f tot
j (Xs

j ,U∼j, t), f
tot
j (Xs

j ,U∼j, t)
)
dt < +∞, ∀ j ∈ {1, . . . , d}

)
.

De�nition 1. Let (Xs′
j ,U

′
∼j) be an i.i.d. copy of (Xs

j ,U∼j) and assume (A1) holds.

A kernel k(·) is said to be an equivalent kernel for the independence criterion between

Xs
j and (f(Xs, t), ∀ t ∈ [0, T ]) whenever ∀ t ∈ [0, T ]

E
[
k
(
f tot
j (Xs

j ,U∼j, t), f
tot
j (Xs′

j ,U
′
∼j, t)

)]
−k(0, 0) = 0 =⇒ f tot

j (Xs
j ,U∼j, t) = 0 a.s. .

For instance, we can check that the quadratic kernel given by kq(y, y
′) := y2(y′)2

10



and the absolute kernel given by ka(y, y
′) := |y||y′| are equivalent kernels for the

independence criterion between Xs
j and f(Xs, t). For performing the independence

tests in what follows, we use KE for the set of equivalent kernels. Thus, the kernel-

based test hypotheses are de�ned as follows: ∀ k(·) ∈ KE and ∀ q > 0,{
H0 :

∫ T

0

∣∣E [
k
(
f tot
j (Xs

j ,U∼j, t), f
tot
j (Xs′

j ,U
′
∼j, t)

)]
− k(0, 0)

∣∣q dt = 0

H1 :
∫ T

0

∣∣E [
k
(
f tot
j (Xs

j ,U∼j, t), f
tot
j (Xs′

j ,U
′
∼j, t)

)]
− k(0, 0)

∣∣q dt ̸= 0
, (10)

where here (Xs′
j ,U

′
∼j) and (Xs

j ,U∼j) are two independent random vectors.

3.3. Test statistics

To build the test statistic, we are given two independent samples of the total

SFs, that is, {
f tot
j

(
Xs

i,j,Ui,∼j, t
)}m

i=1
;

{
f tot
j

(
Xs′

i,j,U
′
i,∼j, t

)}m

i=1
,

and two independent samples of the centered outputs, that is,

{
Y c
s

(
Xs

i,j,Ui,∼j, t
)}M

i=1
;

{
Y c
s

(
Xs′

i,j,U
′
i,∼j, t

)}M

i=1
,

for integers m,M with m ≤ M . Based on such samples, the usual, unbiased and

consistent estimator of µtot
k (t) := E

[
k
(
f tot
j (Xs

j ,U∼j, t), f
tot
j (Xs′

j ,U
′
∼j, t)

)]
and of

σtot
k (t) := V

[
k
(
f tot
j (Xs

j ,U∼j, t), f
tot
j (Xs′

j ,U
′
∼j, t)

)]
are respectively given by

µ̂tot
k (t) :=

1

m

m∑
i=1

k
(
f tot
j

(
Xs

i,j,Ui,∼j, t
)
, f tot

j

(
Xs′

i,j,U
′
i,∼j, t

))
,

σ̂tot
k,H0

(t) :=
1

m

m∑
i=1

(
k
(
f tot
j

(
Xs

i,j,Ui,∼j, t
)
, f tot

j

(
Xs′

i,j,U
′
i,∼j, t

))
− k(0, 0)

)2

,

for all t ∈ [0, T ]. It is to be noted that σ̂tot
k,H0

(t) is an unbiased estimator only under

H0. Moreover, given the centered outputs, consider the unbiased and consistent

estimator of µc
k(t) := E

[
k
(
Y c
s (X

s
j ,U∼j, t), Y

c
c (X

s′
j ,U

′
∼j, t)

)]
given by

µ̂c
k(t) :=

1

M

M∑
i=1

k
(
Y c
s

(
Xs

i,j,Ui,∼j, t
)
, Y c

s

(
Xs′

i,j,U
′
i,∼j, t

))
.

Under H0, the central limit theorem ensures that ∀ t ∈ [0, T ],

√
m

(
µ̂tot
k (t)− k(0, 0)

)
D−→ N

(
0, σtot

k (t)
)
. (11)
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Now, let us consider the zero-mean Gaussian random process given by G(t) ∼
N (0, σtot

k (t)) with t ∈ [0, T ], and assume that the time-dependent outputs have

been observed at time tℓ ∈ [0, T ] with ℓ = 1, . . . , L. The test statistic under

H0 and its asymptotic distribution are given below. To that end, denote with

{Zr ∼ N (0, 1)}∞r=1 i.i.d. variables; {λr}∞r=1 the eigenvalues related to the Karhunen-

Loeve expansion of (G(t), t ∈ [0, T ]), and assume that

(A2) : the kernel k(·) ∈ KE.

Corollary 4. If q = 2 and (A1)-(A2) hold, then the test statistic is given by

T tot
k,H0

:= m

L∑
ℓ=1

∣∣∣µ̂tot
k (tℓ)− k(0, 0)

∣∣∣2 D−→
+∞∑
r=1

λrZ
2
r if m,L → +∞ . (12)

Proof. See Appendix F.

Obviously, the test statistic T tot
k,H0

vanishes in the case of independence between

inputs and outputs. The critical values (i.e., Tα) can be computed as the empirical

quantile of
∑R

r=1 λrZ
2
r at the value α ∈ [0, 1], where λ1 > λ2 > . . . > λR and λr ≈ 0

for all r > R. In the case H0 is rejected (i.e., T tot
k,H0

> Tα), the power of this test

(i.e., the probability of the rejection region under H1 ([52])) gives the probability to

detect the e�ect of Xs
j when such an e�ect e�ectively exits. This power depends on

kernels.

Remark 2. Under H0 and for any real q > 0, Slutsky's theorem implies

mq/2
∣∣∣µ̂tot

k (t)− k(0, 0)
∣∣∣q D−→ |G(t)|q .

This equation is relevant for generalizing the test statistic given by (12).

Remark 3. The expressions f tot
j

(
Xs

j ,U∼j, t
)
and Y c

s

(
Xs

j ,U∼j, t
)
need to be com-

puted in general. Thus, the following consistent estimators are going to be used:

µ̂(U∼j, t) :=
1

m

m∑
i=1

Ys(X
s
i,j,U∼j, t)

P−→ EXs
j

[
Ys

(
Xs

j ,U∼j, t
)]

,

µ̂(Xs
j , t) :=

1

m

m∑
i=1

Ys(X
s
j ,Ui,∼j, t)

P−→ EU∼j

[
Ys

(
Xs

j ,U∼j, t
)]

,

µ̂(t) :=
1

m

m∑
i=1

Ys(X
s
i,j,Ui,∼j, t)

P−→ E
[
Ys

(
Xs

j ,U∼j, t
)]

.

12



Thus, the plug-in estimators of µtot
k (t) and µc

k(t) are respectively given by

µ̂tot′
k (t) :=

1

m

m∑
i=1

k
(
Ys(X

s
i,j,Ui,∼j, t)− µ̂(Ui,∼j, t), Ys(X

s′

i,j,U
′
i,∼j, t)− µ̂(U′i,∼j, t)

)
,

µ̂c′
k (t) :=

1

M

M∑
i=1

k
(
Ys(X

s
i,j,Ui,∼j, t)− µ̂(t), Ys(X

s′

i,j,U
′
i,∼j, t)− µ̂(t)

)
.

4. Dependence measures: kernel-based sensitivity indices

This section aims at introducing new dependence measures between time-dependent

outputs and non-independent inputs that satisfy Renyi' axioms, that is, each mea-

sure takes its values within [0, 1]. The null value means that the involved quanti�es

are independent, while the value one suggests a strict dependence between both

quantities (see [37] for more details).

4.1. Deviation measures

It comes out from Corollary 4 that when Xs
j contributes to dynamic outputs, the

theoretical expression of the generalized test statistic up to a normalized constant,

that is,

D1,q
k (f tot

j ) :=

∫ T

0

∣∣∣E [
k
(
f tot
j (Xs

j ,U∼j, t), f
tot
j (Xs′

j ,U
′
∼j, t)

)]
− k(0, 0)

∣∣∣q dt, ∀ q > 0 ,

can serve as a reasonable measure of the deviation from independence. To account

for the auto-correlations in particular and the cross-components in general, the above

deviation measure is extended as follows: ∀ t1, t2 ∈ [0, T ],

D2,q
k (f tot

j ) :=

∫ T

0

∫ T

0

∣∣∣E [
k
(
f tot
j (Xs

j ,U∼j, t1), f
tot
j (Xs′

j ,U
′
∼j, t2)

)]
− k(0, 0)

∣∣∣q dt1dt2 .

Both measures can be included in a wide class of the deviation measures from

independence between Xs
j and Ys(X

s
j ,U∼j) de�ned below.

De�nition 2. Let (Xs
j ,U∼j) and

(
X

s(1)
j ,U

(1)
∼j

)
be two random vectors that are iden-

tically distributed. Assume that (A1)-(A2) hold. The generalized deviation-measure

is de�ned by

Dq
k(f

tot
j ) :=

∫ T

0

∫ T

0

∣∣∣E [
k
(
f tot
j (Xs

j ,U∼j, t1), f
tot
j

(
X

s(1)
j ,U

(1)
∼j , t2

))]
− k(0, 0)

∣∣∣q dt1dt2 .

Remark 4. The deviation measure Dq
k(f

tot
j ) comes down to D2,q

k (f tot
j ) when

(
X

s(1)
j ,U

(1)
∼j

)
is an i.i.d. copy of (Xs

j ,U∼j), and D2,q
k (f tot

j ) comes down to D1,q
k (f tot

j ) when t2 = t1.
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While these measures of deviation rely on the total SF of Xs
j , such measures

can be applied to the �rst-order SF of Xs
j as well (i.e., D2,q

k (f fo
j )). As f fo

j (Xs
j , t) =

EU∼j

[
f tot
j (Xs

j ,U∼j, t)
]
with t ∈ [0, T ], f fo

j (Xs
j , t) contains partial information com-

pared to f tot
j (Xs

j ,U∼j, t). Therefore, a reasonable kernel or the associated measure

of deviation should be able to incorporate such a kind of information, and this leads

to the following de�nition.

De�nition 3. Assume that (A1)-(A2) hold. A kernel k(·) is said to be sensitivity-

compatible whenever ∀ t1, t2 ∈ [0, T ]∣∣∣E [
k
(
f fo
j

(
Xs

j , t1
)
, f fo

j

(
Xs′

j , t2

))]
− k(0, 0)

∣∣∣ ≤∣∣∣E [
k
(
f tot
j (Xs

j ,U∼j, t1), f
tot
j (Xs′

j ,U
′
∼j, t2)

)]
− k(0, 0)

∣∣∣ .

When (Xs
j ,U∼j) and (Xs′

j ,U
′
∼j) are independent, it is to be noted that the

quadratic kernel kq(y, y
′) := y2(y′)2 and the absolute kernel ka(y, y

′) := |y||y′| are
sensitivity-compatible kernels according to Lemma 1. Also, such kernels are not

characteristic kernels in general (see [45, 46, 50]). However, we can check that the

quadratic kernel is a characteristic kernel for the class of Gaussian SFs.

Lemma 1. Assume that (A1)-(A2) hold. If k(·, x) is convex and k(·, 0) = 0, then

D1,q
k (•) and D2,q

k (•) are sensitivity-compatible measures of deviation.

Proof. The results hold by applying Jensen's inequality, bearing in mind that f fo
j (Xs

j , t) =

EU∼j

[
f tot
j (Xs

j ,U∼j, t)
]
, ∀ t ∈ [0, T ].

Note that it is su�cient to require the kernels to be convex only on the support

of the centered outputs.

4.2. Kernel-based sensitivity indices for dynamic models

Using the di�erent measures of deviation and Lemma 1, this section aims at

introducing two types of dependence measures. Formally, the �rst-type dependence

measures are de�ned as follows: the total kernel-based SI (Kb-SI) of Xs
j is given by

S1,k,q
Tj

:=
D1,q

k (f tot
j )

D1,q
k (Y c

s )
, (13)

and the �rst-order Kb-SI of Xs
j is de�ned as

S1,k,q
j :=

D1,q
k (f fo

j )

D1,q
k (Y c

s )
. (14)
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In the same sense, the second-type Kb-SIs of Xs
j are de�ned as follows:

S2,k,q
Tj

:=
D2,q

k (f tot
j )

D2,q
k (Y c

s )
; S2,k,q

j :=
D2,q

k (f fo
j )

D2,q
k (Y c

s )
. (15)

It is to be noted that the second-type Kb-SIs account for the cross-components

of the time-dependent SFs, while the �rst-type Kb-SIs treat independently the SFs

at time t1 and t2 with t1 ̸= t2. The main properties of such measures are provided

in Theorem 1. To provide such results, we assume that

(A3) : the kernel k(·) is a sensitivity-compatible kernel.

Theorem 1. Consider a symmetric and positive de�nite kernel k(·), and assume

that (A1)-(A3) hold. Then, we have

S1,k,q
Tj

= S2,k,q
Tj

= 0 ⇐⇒ f(X) does not depend onXj ;

0 ≤ S1,k,q
j ≤ S1,k,q

Tj
≤ 1 ; 0 ≤ S2,k,q

j ≤ S2,k,q
Tj

≤ 1 . (16)

Proof. The proofs are straightforward using De�nition 3 and the conditional Jensen's

inequality.

Obviously, the choice of the type of the dependence measures and/or the kernels

should rely on the elements or information one wants to account for. In general,

characteristic kernels such as the Gaussian kernels and the Laplacian kernels allow

for capturing all the moments of SFs provided that such kernels are sensitivity-

compatible on the support of SFs.

4.3. Extension to spatio-temporel models

For a spatio-temporel model given by f(·, t) : Rd → Rn with t ∈ [0, T ], we can

see that the SFs at a given time t are n-dimensional random vectors. Thus, the

kernel-based sensitivity indices of Section 4.2 can be extended to cope with spatio-

temporel models by using the multivariate kernels such as k2(y,y
′) := ⟨y,y′⟩2,

kp(y,y
′) := ||y||p||y′||p with y,y′ ∈ Rn.

5. Computational issues: empirical kernel-based sensitivity indices

For computing the Kb-SIs in general, we are given four independent samples

from
(
Xs

j ,U∼j
)
, that is,

{(
Xs

i,j,Ui,∼j
)}m

i=1
;

{(
Xs′

i,j,U
′
i,∼j

)}m

i=1
;

{(
Xs

i,j,Ui,∼j
)}M

i=1
;

{(
Xs′

i,j,U
′
i,∼j

)}M

i=1
,
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with integers m ≤ M . Using the �rst two samples and the consistent estimators

provided in Remark 3 in one hand, and keeping in mind the method of moments and

the Slutsky theorem in the other hand, the consistent estimators of SFs are given as

follows: ∀ t ∈ [0, T ],

f̂ fo
j (Xs

j , t) := µ̂(Xs
j , t)− µ̂(t)

P−→ f fo
j (Xs

j , t) ,

f̂ tot
j (Xs

j ,U∼j, t) := Ys(X
s
j ,U∼j, t)− µ̂(U∼j, t)

P−→ f tot
j (Xs

j ,U∼j, t) ,

Ŷ c
s (X

s
j ,U∼j, t) := Ys(X

s
j ,U∼j, t)− µ̂(t)

P−→ Y c
s (X

s
j ,U∼j, t) .

In the same sense, we use the second sample for computing f̂ fo
j (Xs′

j , t), f̂
tot
j (Xs′

j ,U
′
∼j, t)

and Ŷ c
s (X

s′
j ,U

′
∼j, t). Based on these estimators, the plug-in approach leads to the

derivation of the consistent estimators of Kb-SIs (see Corollaries 5-6). To that end,

assume that we have observed the model output Ys(X
s
j ,U∼j, t) at time tℓ ∈ [0, T ]

with ℓ = 1, . . . , L, and consider now the two last samples.

Corollary 5. For the �rst-type Kb-SIs, assume that (A1)-(A3) hold and m,M,L →
+∞. Then,

Ŝ1,k,q
j :=

∑L
ℓ=1

∣∣∣∣ 1
M

∑M
i=1 k

(
f̂ fo
j (Xs

i,j, tℓ), f̂
fo
j (Xs′

i,j, tℓ)

)
− k(0, 0)

∣∣∣∣q∑L
ℓ=1

∣∣∣ 1
M

∑M
i=1 k

(
Ŷ c
s (X

s
i,j,Ui,∼j, tℓ), Ŷ c

s (X
s′
i,j,U

′
i,∼j, tℓ)

)
− k(0, 0)

∣∣∣q P−→ S1,k,q
j ;

Ŝ1,k,q
Tj

:=

∑L
ℓ=1

∣∣∣ 1
M

∑M
i=1 k

(
f̂ tot
j (Xs

i,j,Ui,∼j, tℓ), f̂ tot
j (Xs′

i,j,U
′
i,∼j, tℓ)

)
− k(0, 0)

∣∣∣q∑L
ℓ=1

∣∣∣ 1
M

∑M
i=1 k

(
Ŷ c
s (X

s
i,j,Ui,∼j, tℓ), Ŷ c

s (X
s′
i,j,U

′
i,∼j, tℓ)

)
− k(0, 0)

∣∣∣q P−→ S1,k,q
Tj

.

Likewise, Corollary 6 provides the estimators of the second-type Kb-SIs.

Corollary 6. Assume that (A1)-(A3) hold and m,M,L → +∞. Then, we have

Ŝ2,k,q
j :=

∑L
ℓ1=1
ℓ2=1

∣∣∣∣ 1
M

∑M
i=1 k

(
f̂ fo
j (Xs

i,j, tℓ1), f̂
fo
j (Xs′

i,j, tℓ2)

)
− k(0, 0)

∣∣∣∣q∑L
ℓ1=1
ℓ2=1

∣∣∣ 1
M

∑M
i=1 k

(
Ŷ c
s (X

s
i,j,Ui,∼j, tℓ1), Ŷ

c
s (X

s′
i,j,U

′
i,∼j, tℓ2)

)
− k(0, 0)

∣∣∣q P−→ S2,k,q
j ;

Ŝ2,k,q
Tj

:=

∑L
ℓ1=1
ℓ2=1

∣∣∣ 1
M

∑M
i=1 k

(
f̂ tot
j (Xs

i,j,Ui,∼j, tℓ1), f̂
tot
j (Xs′

i,j,U
′
i,∼j, tℓ2)

)
− k(0, 0)

∣∣∣q∑L
ℓ1=1
ℓ2=1

∣∣∣ 1
M

∑M
i=1 k

(
Ŷ c
s (X

s
i,j,Ui,∼j, tℓ1), Ŷ

c
s (X

s′
i,j,U

′
i,∼j, tℓ2)

)
− k(0, 0)

∣∣∣q P−→ S2,k,q
Tj

.

The proofs of Corollaries 5-6 are straightforward using µ̂tot′
k (t), µ̂c′

k (t) and bearing

in mind the method of moments and Slutsky's theorem. It is worth noting that such
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generic estimators can be improved for some speci�c kernels, such as the quadratic

kernel by making use of the theory of U-statistics (see [41, 25] for instance).

6. Real case study

6.1. Model description

This section deals with the application of Kb-SIs to the mean component of the

dynamic and stochastic risk-model used in [5] (see Appendix G). Such an academic

model simulates the concentration of L.Monocytogenes in a cheese at an hourly

time-step under some crude simpli�cations. During the processing times of a cheese,

the Codex Alimentarius encourages controlling the chemical and process parame-

ters in such a way that the �nal products meet a food safety objective (FSO). For

L.Monocytogenes , the FSO is about 100 CFU ([5, 4]). Thus, the cheese processing is

going to be said safe when the concentration of L.Monocytogenes in a 25-g portion

of that cheese is less than 100 CFU or equivalently the log-concentration at time t

(i.e., Y (t)) satis�es: Y (t) ≤ 2. Only the outputs at days 1, 2, . . . , 28 are considered

in this paper.

This hazard model includes four independent input variables X, that is, the tem-

peratures during the three main periods of cheeses processing and the initial con-

centration of L.Monocytogenes . The initial distributions of such inputs used in this

paper are listed in Table 1. To work with the safe outputs, the following desirability

measure is applied ([5]). Given a sample point x of the model inputs X, its ability

to meet a FSO is measured by

D(x) :=

∫ T

0

|Y (x, t)− 2| dt , if Y (x, t) ≤ 2 for every t ∈ [0, T ] and 0 otherwise .

The above desirability measure gives di�erent chances to the sample points of be-

ing included in SA. Therefore, the new distribution of the model inputs (i.e, the

distribution of Xs) is no more that of X.

Inputs Description Unit Probability distribution
T1 Temperature of �rst

period

oC Truncated normal N (8, 5) on [−1.72, 45.5]

T2 Temperature of sec-
ond period

oC Truncated normal N (8, 5) on [−1.72, 45.5]

T3 Temperature of third
period

oC Truncated normal N ((8, 5) on [−1.72, 45.5]

C0 Initial concentration log CFU Uniform U(−4, 1)

Table 1: Initial distributions of inputs. In N (5, 10), we have mean=5, standard deviation=10.
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6.2. Numerical results

For computing the Kb-SIs, the copula given by (6) is approximated by a fun-

damental copula since its evaluation is time-demanding (see Remark 1). But, the

exact margins are used for running the dependency models. The Spearman rhos

(i.e., ρ12 := 12E [C12 (U1, U2)] − 3) are computed using the exact copula with 500

sample points for each pair of the copula inputs. The estimates are

ρ12 = 0.086, ρ13 = 0.085, ρ14 = 0.078, ρ23 = 0.085, ρ24 = 0.078, ρ34 = −0.079 .

Using the estimated Spearman rhos, the Gaussian and Student-t copulas are consid-

ered for approximating the exact copula. Figure 1 compares the exact-copula values

with the approximated values using the Gaussian copula and Student-t copula with

7 degrees of freedom. Taking the absolute value of the di�erence between the exact

copula and each approximated copula, and computing the maximum and the sum

yield Table 2.

Copula Maximun Sum
Gaussian 0.053 4.947
Student-t 0.043 4.848

Table 2: Statistics of the absolute di�erence between the exact copula and approximated copulas.

Thus, the student-t copula with 7 degrees of freedom is used in what follows.

The conditional distributions of the approximated copula are computed using the

R-package copula, and all random values are generated using Sobol' sequence (R-

package randtoolbox). For computing the Kb-SIs, we used m = M = 1000 as the

sample size and considered the absolute kernel ka(y, y
′) := |y||y′|, the quadratic ker-

nel kq(y, y
′) := y2(y′)2, the Laplacian kernel kl(y, y

′) := exp (−0.05 |y − y′|) and the

Gaussian kernel kg(y, y
′) := exp (−0.05 (y − y′)2). The estimated Kb-SIs associated

with such kernels are provided in Table 3.

It comes out from Table 3 that C0 is the most in�uential input followed by T3.

Thus, the initial concentration and T3 are the important drivers for monitoring and

controlling L.Monocytogenes in the cheese processing.

7. Conclusion

New kernel-based dependence measures between time-dependent model outputs

and inputs under the safety objectives have been developed. Such dependence mea-

sures are based on the normalized test statistics for the independence test between
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Indices First-order Kb-SIs Total Kb-SIs
T1 T2 T3 C0 T1 T2 T3 C0

S
1,ka,1/2
• 0.000 0.000 0.352 0.877 0.000 0.000 0.353 0.877

S
1,kq ,1/2
• 0.000 0.000 0.383 0.665 0.000 0.000 0.392 0.666

S
1,kg ,1/2
• 0.000 0.000 0.358 0.909 0.000 0.000 0.358 0.909

S
1,kl,1/2
• 0.000 0.000 0.378 0.843 0.000 0.000 0.381 0.840

S
2,ka,1/2
• 0.000 0.000 0.352 0.877 0.000 0.000 0.353 0.877

S
2,kq ,1/2
• 0.000 0.000 0.383 0.665 0.000 0.000 0.392 0.666

S
2,kg ,1/2
• 0.000 0.000 0.475 0.894 0.000 0.000 0.474 0.895

S
2,kl,1/2
• 0.000 0.000 0.468 0.831 0.000 0.000 0.472 0.828

Table 3: Kernel-based sensitivity indices for the dynamic risk-model.

dynamic outputs and inputs, which comply with the safety objectives. Such mea-

sures lead to a statistical foundation of Kb-SIs for time-dependent models or pro-

cesses using the asymmetric role of inputs and outputs. Mainly, two types of Kb-SIs

are provided so as to account for the auto-correlations among SFs. Thanks to kernel

methods, our approaches are �exible enough so that the proposed indices extend de-
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Figure 1: Comparison of the exact, Gaussian and Student-t copulas using 1000 sample points.
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pendent generalized sensitivity indices ([15, 16]) to cope with i) desirable or su�cient

moments of SFs, ii) every distribution of SFs, including skewed and heavy-tailed dis-

tributions, and iii) non-stationary SFs.

For computing such indices, we have derived a new CDF W (similar to copula)

and the copula (i.e., C) of the inputs that takes account of the desirability measures.

For the risk-model considered in this paper, the exact copula is approximated by

the Student-t copula since its evaluation is time-demanding. But, the exact margins

of the distribution of inputs (derived in this paper) are used. Numerical results

have shown that di�erent values of the sensitivity indices can be obtained using

di�erent kernels. Thus, among the set of equivalent kernels for the independence

tests that are also sensitivity-compatible, the choice of a kernel should be based on

the information we want to account for (e.g., statistical properties of SFs). Further

investigations are needed for more precision about the choice of kernels, such as

kernels that may lead to powerful tests.

The computations of Kb-SIs require more model runs compared to those of de-

pendent generalized sensitivity indices since the SFs are unknown in general. More-

over, when the desirability measures involve the hazard risk-model, the number of

model runs still increases with respect to the number of inputs. In future work, it

is worth investigating low-cost computations of such indices.
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Appendix A Proof of Proposition 1

Consider uj ∈ {Fj(xj) : xj ∈ R} with j = 1, . . . , d. Using Equation (2) and the

fact that F←j is an increasing function, we can write the probability

P (F1(X
s
1) ≤ u1, . . . , Fd(X

s
d) ≤ ud) = P (Xs

1 ≤ F←1 (u1), . . . , X
s
d ≤ F←d (ud))

(2)
= W (F1 (F

←
1 (u1)) , . . . , Fd (F

←
d (ud)))

= W (u1, . . . , ud) .
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Appendix B Proof of Proposition 3

For the �rst result, we have by de�nition and Equation (2)

F s
j (xj) = P

(
Xs

1 ≤ +∞, . . . , Xs
j ≤ xj, . . . , X

s
d ≤ +∞

)
(2)
= W (1, . . . , 1, Fj(xj) , 1, . . . , 1) = Wj (Fj(xj)) ,

because limx→+∞ Fj(x) = 1 for any j ∈ {1, . . . , d}. The second result becomes

obvious.

Appendix C Proof of Corollary 1

It is known in [13] (Corollary 2) that the copula of Xs is

C(u1, . . . , ud) = W (F1 (F
s←
1 (u1)) , . . . , Fd (F

s←
d (ud))) .

Combining the above copula with the fact that F s←
j (Uj) = F←j

(
W←

j (Uj)
)
(see

Proposition 3) yields the result because Fj

(
F s←
j (uj)

)
= Fj

(
F←j

(
W←

j (uj)
))

=

W←
j (uj).

Appendix D Proof of Corollary 2

The general conditional sampling algorithm ([38, 39, 15, 16]) allows to write
Zj := W̃←

j (Uj)

Zπ1 := W̃←
π1|j (Uπ1 |Zj)

Zπ2 := W̃←
π2|j,π1

(Uπ2 |Zj, Zπ1)
...

Zπd−1
:= W̃←

πd−1|j,π1,...,πd−2

(
Uπd−1

|Zj, Zπ1 , . . . , Zπd−2

)

 ∼ W̃ .

According to Proposition 3, Zj = Fj

(
Xs

j

)
for continuous distribution Fj, and the

result holds.

Appendix E Proof of Corollary 3

It is an adaptation of the general conditional sampling algorithm ([38, 39, 15, 16]

for more details). Indeed, we have

Xs
∼j

d
= rcj

(
Xs

j ,U∼j
)
:=

(
F s←
π1

(Zπ1), . . . , F
s←
πd−1

(Zπd−1
)
)
,

and the result holds using Proposition 3.

21



Appendix F Proof of Corollary 4

According to Equation (13), (G(t), t ∈ [0, T ]) is a zero-mean Gaussian process.

Therefore, the result holds using the Karhunen-Loeve expansion, that is, the squared

norm of a zero-mean Gaussian process can be represented as
∑+∞

r=1 λrZ
2
r (see [42],

Chapter 1).

Appendix G Dynamic risk model (see Section 6)

The time-dependent hazard model is based on the following equations that in-

volve the characteristics of L.Monocytogenes and the process parameters. The model

output at time t (i.e., Y (t)) is the log-concentration of L.Monocytogenes (CFU) in

a cheese. It is given by

Y (t) = 9− log10

[
1 +

(
109

10C0
− 1

)
exp(−r(t) ∗ t)

]
,

where the growth rate (i.e., r(t)) is the product of the optimal growth rate (i.e.,

µopt = 1/4), the factors of temperature (i.e., γ(T )), pH (i.e., γ(pH)) and water

activity (i.e., γ(aw)). This rate is given by

r(t) =
1

4
× γ(T (t))× γ(pH(t))× γ(aw),

where T (t) and pH(t) are the temperature and pH at time t, respectively. We use

T1 = T (t) from days 0 to 7; T2 = T (t) from days 8 to 14; T3 = T (t) from days 15 to

28; and

γ(T (t)) =
(T (t)− 45.5)(T (t) + 1.72)2

(38.72 [38.72(T (t)− 37) + 8.5(35.28− 2T (t))])
,

γ(pH(t)) =

{
(pH(t)−9.61)(pH(t)−4.71)

2.59(pH(t)−7.1)+2.51(4.71−pH(t))
if 4.71 < pH(t) < 9.61

0 otherwise
,

with

pH(t) = −1.14× 10−9t3 +3.04× 10−6t2 − 5.2× 10−4t+4.58 , γ(aw) = 0.91666 .
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