
HAL Id: hal-04621130
https://hal.science/hal-04621130

Preprint submitted on 24 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Open Stack of Tasks Library: OpenSoT
Enrico Mingo Hoffman, Arturo Laurenzi, Nikos G. Tsagarakis

To cite this version:
Enrico Mingo Hoffman, Arturo Laurenzi, Nikos G. Tsagarakis. The Open Stack of Tasks Library:
OpenSoT. 2024. �hal-04621130�

https://hal.science/hal-04621130
https://hal.archives-ouvertes.fr

1

The Open Stack of Tasks Library: OpenSoT
Enrico Mingo Hoffman1,2, Arturo Laurenzi2, and Nikos G. Tsagarakis2

Abstract—The OpenSoT library is a state-of-the-art frame-
work for instantaneous whole-body motion planning and control
based on Quadratic Programming optimization. The library is
designed to enable users to easily write and solve a variety
of complex instantaneous whole-body control problems with
minimal input, facilitating the addition of new tasks, constraints,
and solvers. OpenSoT has been designed to be real-time safe and
can be conveniently interfaced with other software components
such as ROS or other robotic-oriented frameworks. This paper
aims to present the usage of the OpenSoT library to a large
audience of researchers, engineers, and practitioners, as well as
to provide insights into its software design, which has matured
over nearly 10 years of development.

Index Terms—Constrained reactive control, whole-body con-
trol, model-based control, software frameworks

I. INTRODUCTION

In recent years, we have witnessed the emergence of sophis-
ticated robotic systems characterized by multiple degrees of
freedom (DOFs) and limbs, enabling them to navigate through
and interact with their environment. For instance, mobile
platforms equipped with manipulators, quadrupeds, and more
recently, full humanoids, are transitioning from laboratory
settings to practical applications [1]. These systems surpass
classical industrial manipulators in terms of capabilities, in-
cluding a broader workspace, extended range of motions, and
enhanced control of interaction forces through their whole
body. However, it is widely acknowledged that these robots de-
mand sophisticated motion and interaction controllers. These
controllers must consider hardware limitations, and manage a
large number of DOFs and multiple tasks simultaneously.

One of the most well-established control paradigms in
robotics is based on computing the next control action by
solving an inverse problem linearized at the robot’s current
state. Following this paradigm, various control schemes have
been implemented in real robotic systems, including resolved-
rate control, closed-loop inverse kinematics, operational space
control, and Cartesian impedance control, among others. These
methods also allow for the management of actuation and
force redundancies and have been adapted for use with
both fixed- and floating-base robots. Optimization techniques,
particularly Quadratic Programming (QP), have become the
standard approach for efficiently solving these types of control
problems with the possibility to include linear constraints,
e.g. joint limits or collision avoidance. The development of

1 Université de Lorraine, CNRS, Inria, LORIA, France, 615 rue du Jardin
Botanique, 54600 Villers les Nancy, France. E-mail:
enrico.mingo-hoffman@inria.fr

2 Humanoid and Human Centered Mechatronics (HHCM) Lab, Istituto
Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy. E-mail:
{arturo.laurenzi, nikos.tsagarakis}@iit.it

these methods has been particularly active in the context of
whole-body control where multiple tasks and constraints need
to be resolved simultaneously, for example when controlling
humanoids and quadrupeds.

Fig. 1: Some of the robots that utilized OpenSoT as a whole-body
motion engine include MARM in the top-left, COMAN+ in the
bottom-left, CENTAURO in the center, and WALK-MAN on the
right.

This article describes an open-source software library writ-
ten in C++ to write instantaneous whole-body control prob-
lems and resolve them using optimization, designed for re-
search, educational, and industrial applications, named Open
Stack of Tasks: OpenSoT. OpenSoT is aimed at different
audiences: motion planning and control researchers, robotics
educators, practitioners, and end users in the robotics industry.
Within the robotics community, showcasing the superiority of
a new task, constraint, solver, or formulation, over existing
ones, can be a daunting task. It requires a considerable
investment of time and effort for a researcher to implement
these components and conduct a thorough comparison with the
existing state-of-the-art. Furthermore, the whole-body algo-
rithms should effectively and efficiently address motion control
problems for systems with numerous DOFs in real-time. To
address this challenge, we developed OpenSoT to simplify this
process and facilitate the exploration of innovative ideas. The
division between abstract base classes, which solely define the
interface, and derived classes responsible for implementing the
specified functionality, contributes to a clearer comprehension
of general concepts in whole-body planning and control. From
its inception, OpenSoT has been designed to be practical and
applicable in real-world scenarios, and it has been deployed
in many real robotic systems, e.g. see Figure 1. Another
crucial requirement is the seamless integration of OpenSoT
with other software components on a robot, including high-
level planning, perception, kinematics and dynamics modeling,
and low-level control. This paper aims to introduce the soft-
ware’s evolution, illuminate key lessons learned throughout
its development, and underscore its enduring significance in

2

current robotic applications.

II. BACKGROUND

We address control problems involving the linear mapping
of quantities from operational space, such as Cartesian space,
to generalized coordinates. These problems comprise various
atomic elements that can be categorized into two main groups:
tasks and constraints. Generally, a task can be accurately
mapped into generalized coordinates when constraints are
absent. Tasks can be mathematically formalized as linear least-
squares pieces of a cost function to be minimized. Each task
can be characterized by a task matrix Ai ∈ Rm×n, a task
vector bi ∈ Rm, and a task weight matrix Wi ∈ Rm×m. Con-
straints are in the form of linear equalities and/or inequalities
characterized by a constraint matrix C ∈ Rl×n and lower and
upper constraint vectors, respectively l,u ∈ Rl:

min
x

N∑
i=0

∥Aix− bi∥Wi + ϵ∥x∥

s.t. l ≤ Cx ≤ u,

(1)

with x ∈ Rn the vector of unknowns, e.g. generalized
coordinates, and m the task size. The second term in the
cost function in (1) is referred to as Tikhonov regularization.
Its purpose is to regularize ill-posed problems that may arise
during the computation of the Lagrangian function associated
with the optimization problem. Without this regularization, the
Hessian matrix H = ATWA ∈ Rn×n would lack invert-
ibility to solve the Karush-Kuhn-Tucker (KKT) conditions,
as rank(A) = rank(H) = m, when m < n. This particular
condition is quite common when mapping a Cartesian task in
a redundant robot.

When multiple tasks need to be mapped together, or if
the generalized coordinates do not provide enough DOFs,
priorities need to be established between them. Priorities can
be divided into two types: Soft and Hard. Soft priorities can
be mathematically formalized as weighted sums in the cost
function, where high weights are assigned to the most im-
portant tasks, as in (1). Hard priorities can be mathematically
formalized as low-priority tasks resolved in the null-space of
high-priority ones. This can be implemented in multiple ways;
we will briefly address common methods to implement hard
priorities between tasks throughout the paper. The distinction
between hard and soft priorities lies in the fact that, in soft
priorities, all tasks are concurrently minimized (in the least-
square sense), and their optimality is contingent upon the
relative weights assigned to each task, leading to average-
like solutions when tasks conflict. In contrast, hard priorities
involve minimizing secondary tasks without compromising the
optimality of the primary task. In robotic systems with many
DOFs, normally hard and soft priorities are mixed. Constraints
are usually hard unless slack variables are used. Therefore,
when two constraints conflict, the QP problem defined in (1)
becomes infeasible. Two major families of mapping problems
in robotics use the QP problem in (1): differential inverse
kinematics and inverse dynamics.

A. Differential Inverse Kinematics

In Differential Inverse Kinematics (DIK) instantaneous
Operational Space velocities are mapped into joint space
velocities. The QP problem in the DIK case with multiple
soft tasks is formulated as follows:

q̇∗ = argmin
q̇

N∑
i=0

∥J(q)iq̇− vi∥Wi + ϵ∥q̇∥

s.t. l ≤ C(q)q̇ ≤ u.

(2)

First-order integration of q̇∗ permits to solve the non-linear
Inverse Kinematics (IK) problem for the ith task given by:

Ti,d = fi(q), (3)

where Ti,d is a desired Cartesian pose and fi(·) representing the
Forward Kinematic (FK) function for the ith task. The actual
and desired poses are often utilized to compute an appropriate
error, which is then employed as a Cartesian velocity reference
in the task. This error exponentially tends to zero based on a
positive definite proportional gain.

B. Inverse Dynamics

Similarly, it is possible to formulate the QP problem in
terms of joint acceleration variables and subsequently use the
optimized joint accelerations to solve the IK problem through
second-order integration. Another application of the optimized
joint accelerations is the computation of joint torques associ-
ated with the motion, i.e., the Inverse Dynamics (ID).

An interesting case is the floating-base ID where other than
the joint accelerations, also the contact forces are computed
within the QP optimization:

min
ν̇,f

N∑
i=0

∥Ji(q)ν̇ + J̇i(q,ν)ν − ai∥Wi + ϵν̇∥ν̇∥+ ϵf∥f∥

s.t. Mb(q)ν̇ + hb(q,ν)ν = JT
c,b(q)f

Jc(q)ν̇ + J̇c(q,ν)ν = 0 (4)
l ≤ C(q,ν)ν̇ ≤ u,

with q ∈ Rn + SO(3), ν ∈ Rn+6, Jc(q) ∈ R3c×n+6 the
stack of the Jacobians of the contacts and Jc,b(q) ∈ R3c×6

its floating-base part, Mb(q) ∈ R6×n+6,hb(q,ν)ν ∈ R6 the
floating-base dynamics and non-linear terms, respectively, and
f ∈ R3c where c are the number of contacts. Also in this
case, the optimized joint accelerations and contact forces can
be used to compute the joint torques:

M(q)ν̇ + h(q,ν) = τ + JT
c,j(q)f , (5)

with Jc,j(q) ∈ R3c×n the joint space part of the stacked
contact Jacobians.

III. STATE OF THE ART

Considerable effort has been dedicated to both algorithm
and software development for instantaneous whole-body mo-
tion planning and control. The primary objectives of these
software frameworks are twofold: first, to simplify the formu-
lation of optimization problems like those in (2) or (4); second,

3

to enable efficient solving of such problems. The first goal is
typically addressed by segregating each task and constraint
into atomic entities that can be flexibly combined to construct
the optimization problem. This optimization problem is then
tackled by a solver, which is often partitioned into a front-end,
responsible for generating elements (matrices and vectors), and
a back-end, that is, an off-the-shelf optimization library that
uses these elements to solve the problem.

A pioneering work in this direction has been the Stack of
Tasks [2] (SoT), which allowed the formulation and resolution
of complex Inverse Kinematics (IK) problems with hard prior-
ities in humanoid robots, eventually extended to Inverse Dy-
namics (ID) [3]. In the SoT, each task is represented as an en-
tity class loaded through a plugin within a scripting language,
enabling the construction of a stack defining the problem to be
solved, where each level of the stack corresponds to a priority
level. As the reader may infer, OpenSoT draws significant
inspiration from this foundational work. Similar software
frameworks to the SoT have been developed within several
laboratories. For instance, the Optimization-Based Controllers
for Robotics Applications (OCRA) [4] was developed within
the YARP community for the humanoid robot iCub. Another
example is the ihmc-whole-body-controller [5], developed for
the DARPA Robotics Challenge (DRC) and based on Java.
Other notable frameworks include Drake [6], ControlIt! [7],
TSID [8], and iTask [9]. While many of these software frame-
works are intended to function as comprehensive packages for
robotics, OpenSoT was specifically crafted to focus solely on
generic formulations of whole-body controllers. OpenSoT pro-
vides an extensive library of implemented tasks, constraints,
and solvers, along with a clearly defined developer API for
adding new ones. Its abstraction level and generic components
make it straightforward to integrate OpenSoT with various
other libraries for creating new tasks and constraints, as well
as with other software frameworks.

IV. OPENSOT: OVERVIEW AND MAIN COMPONENTS

In contrast to other existing whole-body control software
libraries, OpenSoT does not incorporate a representation of
the robot model and avoids assuming a specific controller
formulation or priority resolution strategy. The advantage of
this minimalist approach is that it enables the design of a
library suitable for the generic creation and resolution of hier-
archical QP and Linear Programming (LP) problems subject
to linear constraints. For instance, beyond the conventional
formulations of whole-body controllers discussed in Section
II, OpenSoT can be utilized to address problems like contact
force distribution or floating-base estimation.

The OpenSoT framework is built upon the hierarchical
paradigm: initially, an external model of the robot is updated,
allowing the computation of kinematics and dynamics quanti-
ties necessary for various tasks and constraints. Subsequently,
tasks and constraints are updated to compute all the matrices
and vectors required to formulate and solve the optimization
problem using a dedicated Solver. While the model can be
updated using measured or derived quantities, each task and
constraint contains a reference to the model to retrieve all

the necessary matrices and vectors. Additionally, each task
and constraint independently manages various settings, such
as gains, parameters, and high-level references.

Tasks and constraints are organized into a Stack, providing
a convenient means to specify types and levels of priorities.
Now, we will examine the fundamental concepts associated
with OpenSoT’s component (see Fig. 2). Throughout the
following sections, references to the robot model will be
made. However, it’s crucial to note that, as introduced earlier,
the OpenSoT API doesn’t encompass classes for representing
robots. This design choice offers the advantage of creating
a library that can function independently and seamlessly inte-
grate with various generic model libraries, such as RBDL [10],
or Pinocchio [11]. For tasks and constraints implemented
in the library that utilize the robot’s model, we depend on
a generic ModelInterface class, developed within the
XBotCore [12] software suite, which can be easily specialized
using the aforementioned kinematic and dynamic modeling li-
braries. The development of the OpenSoT library commenced
in 2015 as the motion engine for the COMAN and WALK-
MAN robot , participating in the DARPA Robotics Challenge
(DRC) Finals.The initial version of OpenSoT was closely tied
to the YARP robotics framework [13], utilizing yarp::sig
matrices and vectors, and the iDynTree model library. Its
functionality was limited to resolving Inverse Kinematics and
Differential Inverse Kinematics problems. Following the DRC,
the library underwent significant restructuring, transitioning to
the Eigen library for all linear algebra computations, and
adding further capabilities.

A. Tasks

OpenSoT employs a different expression for the cost func-
tion compared to similar software frameworks:

∥Aix− bi∥Wi + cTi x, (6)

where ci ∈ Rn, allowing the specification of both least-
squares (ci = 0) and linear problems (Ai = 0), e.g., for
Lasso regression. A task object is inherited from the base
class OpenSoT::Task, where the method update() must
be implemented to assign the matrix A and vectors b and c,
at every control loop. As mentioned earlier, this assignment
is typically done by requesting kinematics and dynamics
quantities from a reference to the model, which is updated
outside the task. The weight matrix W can be set using
a dedicated method exposed to users. The GenericTask
class provides users with methods to assign all the internal
matrices and vectors, eliminating the need to derive from the
base class. For this reason, the GenericTask is a convenient
way to easily interface with libraries for prototyping reasons.
To exclude joints that belong to a kinematic chain inside a
task, it is possible to use the applyActiveJointsMask()
method, which selectively sets columns in the A matrix of the
task to 0. Finally, a task can be activated or deactivated using
the setActive() method. When a task is not active, its A
matrix is set to 0.

A SubTask comprises a specific number of rows from a
task and is constructed from a task object along with the rows

4

Task

Generic Task
To easily interface with

external WBC frameworks

User Task
Derived from task,
contains user code

SubTask
Portions of a task Constraint

Generic Constraint
To easily interface with

external WBC frameworks

User Constraint
Derived from constraint,

contains user code

Sub Constraint
Portions of a constraint

Aggregated
Constraints

Multiple constraints
can be assembled

together
Aggregated Tasks

Multiple tasks can be
assembled together

Variables
To write complex problems

Stack
Contains several tasks and

constraints

MoT
Tasks and constraints

operators to assemble them

Solver
Uses task’s and constraint’s

matrices and vectors to create an
optimization problem and solve it

Solver Back-End
Solve the QP/LP problem

User Solver
Derived from solver. User strategy to

construct the optimization problem, may
use a back-end, contains user code

User Back-End
Derived from solver back-end,

contains user code Used by

Inherit from

Fig. 2: Main components in OpenSoT.

of interest. The SubTask class facilitates the selection of
adjacent and non-adjacent rows from a task by extracting sub-
matrices from A and W, along with a sub-vector from b1.
A SubTask holds a reference to the task that was used to
instantiate it; therefore, the original task is still used to handle
settings and references. As a result, any modifications applied
to the original task are reflected in the SubTask, and vice versa.
The referenced task is also updated when the update()
method is invoked on the SubTask. A common application
of a SubTask is to focus on a specific portion of a task. For
instance, in a Cartesian task, a SubTask can be employed
to isolate the positional component while disregarding the
orientation. A library of ready-to-use tasks is available in
OpenSoT. The most important available tasks are reported in
Table I with the implemented formulation. Tasks with “∗” are
mostly used as equality constraints.

TABLE I: Implemented tasks in OpenSoT

Task Formulation
Cartesian Velocity/Acceleration
Postural Velocity/Acceleration

CoM Velocity/Acceleration
Angular Momentum Velocity/Acceleration

Gaze Velocity
Pure Rolling∗ Velocity

Floating-Base Dynamics∗ Acceleration + Force
Min Effort Velocity

Manipulability Velocity

B. Constraints

A constraint object is inherited from the base class
OpenSoT::Constraint, where the method update()
must be implemented to assign the matrix C, and the vectors
cl and cu, for the lower and upper bounds respectively. As
for the Subtask, a SubConstraint comprises a specific number
of rows from a constraint, and the GenericConstraint
permits assigning internal matrices and vectors without the
need to derive from the base Constraint class. A library

1SubTasks do not make use of the c vector

of ready-to-use constraints is also available in OpenSoT. In
Table II are reported the most significative constraints with the
implemented formulation and typology. In particular, joint po-

TABLE II: Implemented constraints in OpenSoT

Constraint Formulation Type
Joint Pos./Vel./Acc. Limits Velocity/Acceleration Inequality

Torque Limits Acceleration + Force Inequality
CoP Limits Wrench Inequality

Friction Cone Limits Force Inequality
Normal Torque Limits Wrench Inequality
Collision Avoidance Velocity Inequality

OmniWheels Velocity Equality

sition, velocity, and acceleration limits are implemented using
exponential control barrier functions and invariance. Friction
cones use pyramidal approximation, and normal torque limits
implement bounds on the contact normal torque as in [14].

C. Variables

In OpenSoT, the matrix A and the vectors b and c
completely define a task, and similarly, the matrix C and
the vectors cl and cu completely define a constraint. When
formulating the optimization problem using these matrices, the
optimization variables are implicit and depend on how these
matrices and vectors are written. In other words, we do not
explicitly write the variables of the problem; instead, we infer
them from the structure of these matrices and vectors.

For example, in the DIK problem (2) the generic Cartesian
task is defined by the task matrix A = J, and the variables are
the joint velocities x = q̇. In the ID problem (4), the generic
Cartesian task is defined by the task matrix A = [J 0],
whose size depends on the number of contacts, in fact the

variables of the problem are x =
[
ν̇T fT

]T
. From a devel-

oper’s point of view, this is not convenient because, depending
on the number of contact forces, the size of the task matrix
will vary, requiring more code to handle a variable that is not
used in that particular task. This also complicates the process
of reusing the task, particularly in scenarios like differential

5

inverse kinematics at the acceleration level, where contact
forces and dynamics are not present. Ideally, a developer
should be able to implement the task irrespective of other
variables, focusing solely on joint accelerations.

To address this issue, OpenSoT introduces the concept of
explicit variables through the OpenSoT::AffineHelper
class. An affine variable is defined as:

y = Mx+ p (7)

and can be used to define (or extract) explicit variables from
x. For example, considering the variables in (4):

ν̇ = Mν̇x

f = Mfx
(8)

with Mν̇ = [In+6×n+6 0n+6×3c] and Mf =
[03c×n+6 I3c×3c]. In this way is possible to write tasks
and constraints that are independent of the definition of
the problem optimization variables. If we consider again
the Cartesian task in acceleration, the task matrix will be
A = JMν̇ .

The AffineHelper class exposes an easy-to-use API
to create the vector of variables x and compute the ma-
trices to extract these variables. The VariableVector
type allows stacking multiple variables together using the
emplace_back(var_name, var_size) method. It is
then possible to retrieve the variable by name using the
getVariable(var_name) method along with the asso-
ciated M matrix and p vector.

Some tasks in OpenSoT can be constructed using a variable,
for example, all the tasks formulated in joint acceleration or
contact forces, to be easy to combine. Utilities to transform
tasks and constraints that do not make use of variables are pro-
vided, allowing the inclusion of implicit tasks and constraints
in explicit stacks.

D. Stack

In OpenSoT a Stack consists of one or more tasks and
constraints and their relations. Tasks and constraints can be ag-
gergated together through opportune stacking of the associated
matrices and vectors. Notice that such operation can be seen
from the point of view of the cost function as a sum of tasks.
OpenSoT uses a Domain Specific Language (DSL) called
Math of Tasks [15] which permits to easy specify various
types of relations between tasks and constraints objects. For
example, the sum of multiple tasks is done by the “+” (sum)
operator, while relative weights can be set by using the “*”
(product) operator. A SubTask can be specified inside a stack
using the “%” (modulo) operator. Finally, constraints can be
inserted into a stack using the “<<” (left shift) operator2.

Applying these operators creates a stack object, imple-
mented through the OpenSoT::AutoStack class. An au-
tostack carries pointers to the associated tasks and con-
straints, therefore when the autostack is updated through the
update() method, also the internal tasks and constraints are
updated.

2This operator can be used also with tasks to create equality constraints

E. Solvers

Solvers are responsible for resolving the optimization prob-
lem presented in Equation (1). A user solver is derived
from the base class OpenSoT::Solver, where the user is
required to implement the method solve(). Solvers typically
consist of two components: a Front-end and a Back-end:
the front-end utilizes the stack to construct the matrices and
vectors that will be utilized by the back-end to solve the
problem. For instance, the inequality Hierarchical QP (iHQP)
solver [16] adheres to this framework. The front-end calculates
the Hessian and constraints and sets up a series of QP problems
corresponding to the number of hard priorities specified in the
stack, which are sequentially addressed. At each priority level,
the front-end incorporates an additional constraint considering
the solution from the preceding solved QP. Each QP is tackled
by a dedicated back-end, implemented by an out-of-the-shelf
QP solving library. This framework can be applied to various
techniques implemented in the front-end, while the back-ends
can be reused, thereby promoting reusability.

Back-ends can be developed by utilizing the base class
OpenSoT::BackEnd. When creating a back-end, the meth-
ods initProblem() and solve() need to be imple-
mented. Additional methods are mandatory: setOptions()
and getOptions() to transmit and retrieve options
to and from the solvers, respectively, and the method
getObjective() to retrieve the residual from the opti-
mization. Solvers that deviate from this pattern can be directly
implemented using the Solver base class. Table III lists
the solvers already integrated into OpenSoT. Specifically, we
interface with the HCOD implementation available in the
soth package. While Table IV lists the available back-ends in

TABLE III: Implemented solvers in OpenSoT

Solver Constraints Type Use Back-end
eHQP [17] equality only ×
iHQP [16] equality/inequality ✓
nHQP [18] equality/inequality ✓
HCOD [19] equality/inequality ×

OpenSoT. It’s worth noting that unlike many similar software
packages, we also provide LP and MIP solvers, expanding the
range of applications for these formulations in whole-body
control problems, as well as facilitating their integration with
QP formulations (as done by the authors in [20]). We refer

TABLE IV: Implemented back-ends in OpenSoT

Solver Type
qpOASES [21] QP/LP

OSQP [22] QP/LP
proxQP [23] QP/LP

qpSWIFT [24] QP
eiQuadProg [25] QP

GLPK [26] LP/MIP

to the cited papers for detailed descriptions of the solvers and
back-ends. Finally in Figure 3 are reported benchmark results
on a IK problem casted on a 29 DOFs floating-base humanoid
robot. We considered 4 possible tasks varying the number of
hard priorities (from single layer to 4 priority levels) including
joint position and velocity limits and contact constraints. The

6

0 1 2 3 4 5

60

80

100

S
tack

1

0 1 2 3 4 5

60

80

100

S
tack

2

0 1 2 3 4 5

60

80

100

S
tack

3

0 1 2 3 4 5

60

80

100

S
tack

4

iHQP nHQP OSQP qpSWIFT qpOASES proxQP eiQuadProg

Solver Time [ms]

35-DOFs Inverse Kinematics Solvers Comparison

S
u

cc
es

s
R

at
e

[%
]

Fig. 3: 29 DOFs humanoid robot benchmark.

tasks include the positioning of the Center of Mass (CoM), left
and right hand poses, and a joint level posture. We randomly
selected 30 IK problems, each involving a transition from
an initial configuration to a goal configuration defined by a
specific Cartesian pose. Each IK problem was solved using
the iHQP and nHQP front-end solvers, using the back-ends:
OSQP, qpOASES, eigQuadProg, proxQP, and qpSWIFT. We
compared the average time taken to solve a single instance of
a hierarchical problem3, including the time needed to compute
the Hessian and gradient, as well as to fill the solver matrices.
Additionally, we calculated the success rate (SR), defined as
the number of times the back-end successfully found a solution
within certain conditions, divided by the total number of runs.
To confirm that the back-end successfully performs the task,
we consider the task error norm to be less than or equal to
1e−3 within the specified maximum number of iterations, set
to 1000. Local minima as well as near singular configurations
may reduce the SR. For robots with multiple DOFs, simple
constrained IK problems can be solved fast, within 1 ms and
10 ms. The success rate is for most of the cases between 80%
and 100%. Notably, in the case of the iHQP, the time taken
to resolve multiple layers does not change significantly when
increasing the number of layers to values typically used in
complex robotics systems (4-5 layers). Notice that these times
do not take into account the time needed to update the model
and stack. This duration can vary depending on the model
library utilized and the implementation of various tasks and
constraints. The tests were conducted without fully leveraging
the extensive capabilities of the examined QP solvers, both
in terms of tunable options and optimal implementation4. For
example, some of the QP solvers only offer a sparse interface,
necessitating the conversion of dense matrices, which are
typical of the problems in the whole-body framework, into
sparse format. Consequently, the obtained results may be
affected by suboptimal option tuning and less-than-optimal
implementation. For these reasons, these results are provided

3On an AMD® Ryzen 9 4900HS with 32 GiB of RAM
4An accurate comparison of QP solvers can be found in [27].

solely to offer a preliminary understanding of the performance
in solving specific control problems using OpenSoT.

V. MAIN EXTENSIONS AND INTEGRATION WITH OTHER
FRAMEWORKS

The OpenSoT control library has been integrated with other
frameworks to enhance its usability and capabilities, as well
as facilitate the development of new tasks or constraints.
Specifically, we will here discuss four of the major extensions
of OpenSoT.

A. CartesI/O & ROS

OpenSoT doesn’t prescribe a specific structure for con-
trollers but offers components for crafting controllers with an
intuitive programmatic interface. However, there are specific
scenarios where the controller’s structure remains consistent,
and the only variables are the stack and/or solver utilized. For
instance, in IK, the controller’s framework involves initializing
the reference to the current robot state, solving the opti-
mization problem, and integrating to calculate the subsequent
reference. CartesI/O [28] is a high-level framework designed
for two primary objectives: firstly, to provide user-friendly
high-level interfaces for tasks, constraints, and solvers, and
secondly, to offer readily configurable controllers. The core
concept is to furnish base classes for tasks and constraints,
necessitating the implementation of an interface class and a
computation class. In particular, interface classes are ROS-
based, while computation classes utilize OpenSoT. Conse-
quently, ROS topics and services are exposed for each task and
constraint, facilitating easy parameter tuning and reference set-
ting through interactive markers, among other functionalities.
Each component functions as a plugin that can be loaded with
a YAML file, wherein initial parameter values, stack structure,
solver types, and other pertinent information are specified.
This YAML file, also known as a .stack file, forms the
basis of a controller template, automatically configured to the
user’s requirements. This approach enables users to construct,

7

configure, and interact with controllers without the necessity
of low-level coding. Additionally, CartesI/O provides Python
bindings and integrates the Reflexxes motion library to smooth
commands for Cartesian tasks in OpenSoT.

B. Visp

The Visual Servoing Platform (Visp) is a well-known
framework in robotics dedicated to visual servoing [29].
Within OpenSoT, Visp is utilized for computing interaction
matrices, which map various type of visual features into
end-effector velocities, and for managing data structures to
handle these features. The opensot_visual_servoing
package implements a velocity task in OpenSoT, enabling the
tracking of desired visual features using image feedback. The
tasks::velocity::VisualServoing task contains a
tasks::velocity::Cartesian task object responsible
for computing Jacobians related to the specified camera frame.
The camera frame Jacobian is pre-multiplied by the interac-
tion matrix computed by Visp based on camera parameters.
Measured visual features are used as feedback and can be
provided to the task via the setFeatures() method at
every control loop. Visual features are computed from an RGB
image using a Python script, which then transmits the results
through a ROS topic to a CartesI/O interface designed for the
VisualServoing task.

C. HPP-FCL

HPP-FCL is a well-known library utilized for efficiently
computing distances between shapes [30]. This library has
been incorporated into the model interface library to enable
the utilization of self-collision and object-collision avoidance
inequality constraints in OpenSoT. Self-collision avoidance is
supported for any type of collision meshes. Through CartesI/O,
the PlanningScene from ROS is leveraged to seamlessly
insert or remove shapes and point clouds into the constraint.

D. OMPL

The Open Motion Planning Library (OMPL) is a compre-
hensive collection of state-of-the-art sampling-based motion
planning algorithms [31]. Within OMPL, OpenSoT is uti-
lized to project random state configurations for floating-base
systems onto the manifold defined by the contacts through
IK, implemented inside ompl::base::Constraint. This
projection is performed while simultaneously considering sec-
ondary tasks and constraints in various forms, such as stability
checks, collisions, and generalized preferred postures.

VI. AN EXAMPLE

In this section, we now describe an example of the usage
of the OpenSoT library to create and solve an ID stack for the
humanoid robot TALOS. Despite OpenSoT provides Python
bindings for its main components, our example will be written
using the C++ API. First, we create the model of the robot
starting from the URDF and SRDF descriptions:

Fig. 4: Open loop whole-body inverse dynamics performed on
TALOS model.

us ing namespace XBot ;
auto model = M o d e l I n t e r f a c e : : ge tModel (

R e a d F i l e (” r o b o t . u r d f ”) ,
R e a d F i l e (” r o b o t . s r d f ”) , ” p i n ”) ;

The SRDF model is used to specify further parameters than the
URDF such as initial configurations, kinematics chains, self-
collision maps, etc... The third parameter permits to specify
the kinematics/dynamics library to be used, i.e. Pinocchio.

Second, we declare the variables we will use, in particular,
joint accelerations and contact forces for each contact point:

us ing namespace OpenSoT ;
us ing namespace s t d ;

O p t v a r H e l p e r : : V a r i a b l e V e c t o r v a r i a b l e v e c ;
v a r i a b l e v e c . emplace back (” qddo t ” , model . getNv ()) ;
f o r (auto c o n t a c t : c o n t a c t p o i n t s)

v a r i a b l e v e c . emplace back (c o n t a c t , 3) ;

auto v a r i a b l e s =
make shared<Optva rHe lpe r >(v a r i a b l e v e c) ;

auto qddo t = v a r i a b l e s −>g e t V a r i a b l e (” qddo t ”) ;
v e c t o r<A f f i n e H e l p e r> c o n t a c t f o r c e s ;
f o r (auto c o n t a c t : c o n t a c t p o i n t s)

c o n t a c t f o r c e s . push back (
v a r i a b l e s −>g e t V a r i a b l e (c o n t a c t)) ;

Third, we declare the tasks and constraints that will com-
pose the stack:

d e f i n e MS(x) s t d : : make shared<typename x>

us ing namespace OpenSoT : : t a s k s : : a c c e l e r a t i o n ;
us ing namespace OpenSoT : : c o n s t r a i n t s : : a c c e l e r a t i o n ;
us ing namespace OpenSoT : : c o n s t r a i n t s : : f o r c e ;

/ / C a r t e s i a n t a s k s
auto l s o l e =

MS(C a r t e s i a n) (”LS” , model , ” l s o l e ” , qddo t) ;
. . .
/ / CoM t a s k
auto com = MS(CoM) (model , qddo t) ;

/ / P o s t u r a l t a s k
auto p o s t u r a l = MS(P o s t u r a l) (model , qddo t) ;
. . .

/ / U n d e r a c t u a t i o n c o n s t r a i n t
auto f l o a t i n g b a s e = MS(D y n a m i c F e a s i b i l i t y) (

” f l o a t i n g b a s e ” , model , qddot ,
c o n t a c t f o r c e s , c o n t a c t p o i n t s) ;

/ / F r i c t i o n cones
double mu = 0 . 8 ;

8

auto LFULFc = MS(F r i c t i o n C o n e) (
c o n t a c t p o i n t s [0] , c o n t a c t f o r c e [0] , model , mu) ;

. . .

Once the tasks and the constraints are declared, we can
compose them in a stack, for example, considering a single-
level stack:

/ / C o n c a t e n a t e t a s k s
auto s t a c k =

LS + RS + 1e−3* p o s t u r a l + base %{3 ,4 ,5} + . . .

/ / Add c o n s t r a i n t s
s t a c k<<f l o a t i n g b a s e <<v l ims<<j l i m s<<LFULFc<< . . .

notice that we are setting a relative weight of 1e−3 for the
postural task and we are considering the orientation part
for the base task using the operator “%” that creates a subtask
from the original task using the provided list of indices.

OSQP qpOASES proxQP eiQuadProg
0

500

1000

1500

2000

2500

3000

3500
Solver Time

Run Time

iHQP Whole-Body Inverse Dynamics

[µ
s]

Fig. 5: Comparison between different back-ends running the whole-
body inverse dynamics on the TALOS robot using the iHQP front-
end. The run time considers the solver time, the update of the model
and the stack, and a small overhead due to the communication to
ROS provided by the CartesI/O framework.

Finally, we instantiate the solver that will compute the
optimal joint accelerations and contact forces:

auto s o l v e r = MS(s o l v e r s : iHQP) (
a u t o s t a c k , s o l v e r s : : s o l v e r b a c k e n d : : proxQP) ;

The control loop consists of the following:

whi le (c o n t r o l o n)
{

/ / Update model and s t a c k
model−> s e t J o i n t P o s i t i o n (q) ;
model−> s e t J o i n t V e l o c i t y (qdo t) ;
model−>u p d a t e () ;

com−>s e t R e f e r e n c e (com p ref , com v ref) ;
. . .
a u t o s t a c k −>u p d a t e () ;

/ / So lve , r e t r i e v e s o l u t i o n and compute ID
i f (! s o l v e r −>s o l v e (x))

/ / do s o m e t h i n g . . .

qddot −>g e t V a l u e (x , q d d o t v a l) ;
f o r (i n t i = 0 ; i < c o n t a c t f o r c e s . s i z e () ; ++ i)

c o n t a c t f o r c e s [i]−>g e t V a l u e (x , f v a l [i]) ;

auto t a u = ID (q d d o t v a l , f v a l , c o n t a c t p o i n t s) ;
. . .

}

notice that any reference or parameter variation in tasks or
constraints has to be done before the autostack update to be
actualized. The getValue() method is used to retrieve the
variable values from the solution vector x.

The final stack is composed of Cartesian tasks for the
arm’s and leg’s end-effectors, CoM XY positions, centroidal
angular momentum regulation to zero, orientation of the base,
a postural for the upper body, and regularization of contact
forces and joint accelerations. The constraints are the floating-
base dynamics, joint torques, velocity and position limits, force
limits, pyramidal friction cones, and the unilaterality of contact
forces. The problem has a total of 60 variables, 24 contact
forces and 36 joint accelerations, and 172 constraints. The
stack has been implemented through a CartesI/O stack file
permitting the exploitation of the Python CartesI/O API and
ROS for setting references to tasks, and RVIZ for visualization.
For the sake of simplicity, we implemented an open-loop
scheme where optimal joint accelerations are integrated twice
and fed back to the model. To solve the optimization problem
we use the iHQP front-end. We command the right arm to
follow a linear path involving also a movement of the entire
body, as shown in Figure 4. We compared different back-end
solvers, as shown in Figure 5. In Figure 6 are reported the
computed torques and in Figure 7 the related contact forces.

0 1000 2000 3000 4000
−250

−200

−150

−100

−50

0

50

Joint Torques

[N
m

]

[µs]

Fig. 6: Computed torques.

VII. CONCLUSION AND FUTURE WORKS

This paper describes OpenSoT, an open-source library for
reactive whole-body control on generic robotic systems. The
main components of the library are discussed, including the
OpenSoT API, and its integration with other software libraries
and robotics frameworks. OpenSoT has been adopted in var-
ious robotics platforms, including manipulators, humanoids,
and quadrupedal robots. Its integration with CartesI/O provides
an introduction to the complexity of whole-body control:
without writing any code, users can construct whole-body
problems by combining ready-to-use tasks and constraints
written for different formulations, and solve such problems
using different solvers, vary parameters, and perform extensive

9

0 1000 2000 3000 4000
0

50

100

150

200

250

0 1000 2000 3000 4000

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Normal Forces
[N

]

Tangential Forces

[N
]

[µs]

Fig. 7: Contact forces.

benchmarking experiments. Through ongoing development in
our group and contributions from others, we expect OpenSoT
to become a valuable tool for researchers, robotics industry
users, and students. We envision utilizing OpenSoT in various
scenarios except from traditional whole-body control. It can be
leveraged for modeling and analyzing the design of complex
robotics systems, conducting preliminary studies, and offering
valuable insights. We have already discussed its integration
with OMPL for manifold projection, considering priorities.
Another potential application of OpenSoT could involve state
estimation, such as floating-base estimation. Lastly, we believe
that it could play a role in Reinforcement Learning by reducing
the size of the input of the policy through Cartesian mapping
into generalized coordinates.

REFERENCES

[1] E. M. Hoffman, S. Caron, F. Ferro, L. Sentis, and N. G. Tsagarakis,
“Developing humanoid robots for applications in real-world scenarios
[from the guest editors],” IEEE Robotics & Automation Magazine,
vol. 26, no. 4, pp. 17–19, 2019.

[2] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-
eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in International Conference on
Advanced Robotics, 2009, pp. 1–6.

[3] O. E. Ramos, N. Mansard, O. Stasse, C. Benazeth, S. Hak, and
L. Saab, “Dancing humanoid robots: Systematic use of osid to compute
dynamically consistent movements following a motion capture pattern,”
IEEE Robotics & Automation Magazine, vol. 22, no. 4, pp. 16–26, 2015.

[4] J. G. Eljaik, R. Lober, A. Hoarau, and V. Padois, “Optimization-based
controllers for robotics applications (ocra): The case of icub’s whole-
body control,” Frontiers in Robotics and AI, vol. 5, p. 24, 2018.

[5] T. Koolen, S. Bertrand, G. Thomas, T. De Boer, T. Wu, J. Smith,
J. Englsberger, and J. Pratt, “Design of a momentum-based control
framework and application to the humanoid robot atlas,” International
Journal of Humanoid Robotics, vol. 13, 03 2016.

[6] R. Tedrake, “the drake development team,” Drake: A planning, control,
and analysis toolbox for nonlinear dynamical systems, vol. 5, p. 8, 2016.

[7] C.-L. Fok, G. Johnson, J. D. Yamokoski, A. Mok, and L. Sentis,
“Controlit!—a software framework for whole-body operational space
control,” International Journal of Humanoid Robotics, vol. 13, no. 01,
2016.

[8] A. Del Prete, N. Mansard, O. E. Ramos, O. Stasse, and F. Nori, “Im-
plementing torque control with high-ratio gear boxes and without joint-
torque sensors,” International Journal of Humanoid Robotics, vol. 13,
no. 01, 2016.

[9] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
beliën, K. Claes, and H. Bruyninckx, “Constraint-based task specifica-
tion and estimation for sensor-based robot systems in the presence of

geometric uncertainty,” The International Journal of Robotics Research,
vol. 26, no. 5, pp. 433–455, 2007.

[10] M. L. Felis, “Rbdl: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, vol. 41, no. 2, pp. 495–511,
2017.

[11] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library: A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE/SICE International Symposium on Sys-
tem Integration (SII), 2019, pp. 614–619.

[12] L. Muratore, A. Laurenzi, E. Mingo Hoffman, and N. G. Tsagarakis,
“The xbot real-time software framework for robotics: From the developer
to the user perspective,” IEEE Robotics & Automation Magazine, vol. 27,
no. 3, pp. 133–143, 2020.

[13] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet another robot
platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, p. 8, 2006.

[14] S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts
for humanoid robots: Closed-form formulae of the contact wrench cone
for rectangular support areas,” in IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 5107–5112.

[15] E. M. Hoffman and N. G. Tsagarakis, “The math of tasks: A domain
specific language for constraint-based task specification,” International
Journal of Humanoid Robotics, vol. 18, no. 03, 2021.

[16] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Transactions on Robotics, vol. 27, no. 4, pp.
785–792, 2011.

[17] F. Flacco and A. De Luca, “Discrete-time redundancy resolution at the
velocity level with acceleration/torque optimization properties,” Robotics
and Autonomous Systems, vol. 70, pp. 191–201, 2015.

[18] M. de Lasa and A. Hertzmann, “Prioritized optimization for task-space
control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009, pp. 5755–5762.

[19] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[20] E. M. Hoffman, M. P. Polverini, A. Laurenzi, and N. G. Tsagarakis, “A
study on sparse hierarchical inverse kinematics algorithms for humanoid
robots,” IEEE Robotics and Automation Letters, vol. 5, no. 1, pp. 235–
242, 2020.

[21] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: a parametric active-set algorithm for quadratic program-
ming.” Math. Program. Comput., vol. 6, no. 4, pp. 327–363, 2014.

[22] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[23] A. Bambade, S. El-Kazdadi, A. Taylor, and J. Carpentier, “Prox-qp:
Yet another quadratic programming solver for robotics and beyond,” in
Robotics: Science and Systems, 2022.

[24] A. G. Pandala, Y. Ding, and H.-W. Park, “qpswift: A real-time sparse
quadratic program solver for robotic applications,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3355–3362, 2019.

[25] D. Goldfarb and A. Idnani, “A numerically stable dual method for solv-
ing strictly convex quadratic programs,” Mathematical programming,
vol. 27, no. 1, pp. 1–33, 1983.

[26] “Gnu linear programming kit.” [Online]. Available: http://www.gnu.org/
software/glpk/glpk.html

[27] S. Caron, A. Zaki, P. Otta, D. Arnström, J. Carpentier, and
F. Yang, “qpbenchmark: Benchmark for quadratic programming
solvers available in Python,” 2024. [Online]. Available: https:
//github.com/qpsolvers/qpbenchmark

[28] A. Laurenzi, E. Mingo Hoffman, L. Muratore, and N. G. Tsagarakis,
“Cartesi/o: A ros based real-time capable cartesian control framework,”
in International Conference on Robotics and Automation (ICRA), 2019,
pp. 591–596.

[29] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robotics and Automation Magazine, vol. 12, no. 4, pp. 40–52,
2005.

[30] L. Montaut, Q. L. Lidec, V. Petrik, J. Sivic, and J. Carpentier, “Collision
detection accelerated: An optimization perspective,” arXiv preprint,
2022.

[31] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012.

