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A B S T R A C T

Metarouting allows for the modeling of routing protocols using an algebraic structure called routing algebra.
Routing protocols requiring design or validation can easily be modeled using this approach. To date, however,
existing research on routing algebras has mainly focused on applying this approach to routing protocols that
are generally used in networks which have a single addressing and forwarding protocol. The basic algebraic
structures used in such contexts are semirings, Sobrinho’s algebras and algebras of endomorphisms. In this
paper, we propose the modification of these existing routing algebras to deal with networks that contain
multiple forwarding protocols where tunnels are omnipresent. To achieve this, we define new algebraic
structures derived from the three aforementioned ones, in order to model the generalized routing problem
with automatic tunneling entitled valid paths algebra. All of our routing algebras are defined as semi-direct
products of two structures, the well-known shortest paths algebra and the proposed valid paths algebra. These
new algebras are isotonic and non-monotonic with a partial order. We propose a fixed point for those new
algebras and we prove the iterative convergence to the optimal solution of the valid shortest paths problem.
1. Introduction

Routing algebras for classical routing protocols can be dated as far
back as 1971. It was not until 2003, however, that they were studied
in the context of Internet routing protocols such as BGP. In fact, the
problem of automatic tunneling management for multilayer network
routing has itself only been tackled since 2009 and has since attracted
increasing attention due to the advent of IPv6 (Raste and Kulkarni,
2008) and the deployment of VPNs. From this perspective, leveraging
routing algebras to derive properties on multilayer networks becomes
compelling. Our aim in this paper is to define such algebras and prove
some properties related to network routing with automatic tunneling.
Our contribution can be summarized as follow:

• We define three routing algebras for performing path compu-
tation with tunnels: one as a semiring, one as an algebra of
functions, and one as a Sobrinho’s algebra.

• We show that these routing algebras are isotonic and non-mono-
tonic with a partial order.

• We propose a fixed point for these new algebras.

✩ This work was funded by The French National Research Agency - HÉRA project. Grant no.: ANR-18-CE25-0002.
∗ Corresponding author.
E-mail addresses: noureddine.mouhoub@u-bordeaux.fr (N. Mouhoub), maria.moloney@ucd.ie (M. Moloney), damien.magoni@u-bordeaux.fr (D. Magoni).
URLs: https://www.labri.fr/perso/nmouhoub/ (N. Mouhoub), https://www.labri.fr/perso/magoni/ (D. Magoni).

• Finally, we prove the iterative convergence to the optimal solu-
tion of the valid shortest paths problem called 𝑣𝑠𝑝.

This paper is an extended version of a previous short paper by
Mouhoub et al. (2022c) presented at the Workshop on New IP and Be-
yond held in conjunction with the International Conference on Network
Protocols. The short paper only defined the semiring algebra and did
not include any proofs. In this extended version, we propose and define
two more routing algebras, as well as proving that all these algebras are
isotonic and not monotonic. Finally, we prove the convergence to an
optimal solution of the length of elementary multilayer paths in any
multilayer network.

This paper is organized as follows: Section 2 reviews research on
routing algebras and multilayer routing. Section 3 presents the alge-
braic foundations used throughout the paper, while Section 4 details
the multilayer network model on which we extend our routing algebras.
This is followed in Section 5 by three definitions for algebraic structures
(semiring, algebra of functions, and algebra of Sobrinho) needed for the
valid path problem. Finally, we prove a theorem in Section 6 which
vailable online 24 June 2024
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provides an upper bound on the length of every valid shortest path in
a free multilayer network. Section 9 concludes the paper.

2. Related work

2.1. Routing algebras

Routing algebra was initially studied by Carré (1971). The author
proposed an algebraic structure based on semirings for the formu-
lation of the path computation problem. He also proposed generic
solutions that were based on classical methods of linear algebra such
as the Jacobi and Gauss–Seidel method, and the Gauss and Jordan
elimination method. Several algebraic structures and algorithms have
been described in Carré (1979), Hebisch and Weinert (1998), Gondran
and Minoux (1995), Minoux (2001) to solve various optimization and
routing problems in networks. Mohri (2002) proposed a new algebraic
frameworks and generic algorithms for the shortest path problem and
the 𝑘−shortest paths problem.

More recently, work on routing algebras has been applied to existing
outing protocols. A first application of this was on path vector routing
rotocols proposed by Sobrinho (2003, 2005). Not only did the authors
ropose a sufficient condition to guarantee the correctness of the iBGP
rotocol, they also showed that if the algebra is monotonic1 then the

protocol converges in any network, but not necessarily to a global
optimal solution. If the algebra is isotonic, however, then the protocol
onverges to a global optimal solution.

An approach called metarouting proposed by Griffin and Sobrinho
2005a,b) which is based on Sobrinho’s algebra and used to define
outing protocols in a declarative and high-level way. They also intro-
uced a ‘‘scoped’’ product to model the combined metric of iBGP and
BGP. The lexicographic product to combine several QoS metrics into a
ingle composite metric proposed by Griffin et al. (Griffin and Sobrinho,
005a; Gurney and Griffin, 2007; Dynerowicz and Griffin, 2013). They
lso showed which properties are required to guarantee optimal global
nd local solutions in the case of lexicographic products. Another so-
alled functional product was used by Khayou and Sarakbi (2017) to
odel EIGRP non-lexical metrics.

An important work proposed by Daggitt et al. (2018) showed that
obrinho’s conditions are sufficient for a routing protocol to con-
erge to a single solution, particularly in the case of the asynchronous
ellman-Ford algorithm. More recently, Sobrinho and Ferreira (2020)
tudied the problem of routing with non-isotonic metrics and proposed
ew routing protocols based on a partial order in order to preserve
sotonicity.

Botero et al. have proposed the use of paths algebras to solve the link
mapping (Botero et al., 2013) and node mapping (Hesselbach et al.,
2016) stages of the virtual network embedding problem. In this case,
virtual networks, quite similar to multilayer networks in essence, are
constructed beforehand as opposed to the automatic and dynamic setup
of routing paths studied here.

2.2. Routing algorithms with automatic tunneling

The first routing algorithm with automatic tunneling presented by
Kuipers and Dijkstra (2009), which explored all possible paths using
a breadth-first search and gave an exponential worst-case complexity.
The related problem was shown to be 𝖭𝖯−ℎ𝑎𝑟𝑑 under bandwidth con-
straints. Later, Lamali et al. (2013), proposed a polynomial algorithm
based on a language theory approach. This approach was able to find
the best path between two nodes without bandwidth constraints by

1 Ferreira (Sobrinho and Ferreira, 2020) uses the term inflation, while
Daggitt (Daggitt et al., 2018) uses the term increasing to refer to the mono-
tonicity property defined by Sobrinho (2005). In this paper, we use the term
monotonicity.
2

Fig. 1. Example of a network encompassing IPv4 and IPv6 protocol conversions and
encapsulations.

minimizing either the number of hops or the number of adaptation
functions. A matrix model for finding shortest paths with a length of
at most 𝑘 was proposed by Iqbal et al. (2015). However the related
algorithms had an exponential complexity and could not compute paths
containing cycles.

In 2016, an algorithm for shortest path computation based on any
additive metric chosen by the user (e.g., weighted links, weighted
adaptation functions, etc.) was proposed by Lamali et al. (2016) as well
as heuristics to compute them under bandwidth constraints. This paper
also described an exponential algorithm yielding the valid shortest path
under various QoS constraints by generalizing the work of Van Mieghem
and Kuipers (2004). The downside to these algorithms is that they
are not distributed and do not build routing tables, only paths. Source
routing could, nonetheless, leverage them.

The first distributed algorithm based on a generalization of the
Bellman-Ford algorithm was then proposed by Lamali et al. (2019).
This algorithm propagates the protocol stack in addition to the distance.
A maximum protocol stack height is enforced to ensure termination in
the face of cycles. This algorithm is able to construct routing tables
and is therefore suitable for hop-by-hop routing. The path computation
process automatically determines tunnel endpoints in valid paths and
installs them in the routing tables. Another algorithm for routing with
automatic tunneling was proposed by Mouhoub et al. (2022b,a). The
main idea of this algorithm is to construct routing tables by using a
transitive closure operation. It is a generalization of the Floyd–Warshall
algorithm in which the path concatenation depends on the compati-
bility of protocol stacks. As it requires shared memory, this algorithm
can be used inside an SDN controller, which will then propagate the
resulting routing tables to the SDN switches.

2.3. Routing algebras with tunnels

Existing work on routing algebras and their application to network
routing algorithms focuses on single forwarding protocols and path
finding. In reality, the network is made up of heterogeneous forwarding
protocols (e.g., IPv6 and IPv4). Therefore, more research is required to
support the application of these algebras to multiprotocol routing and
automatic tunneling in modern networks. We aim to close this gap by
studying the application of routing algebras in a multilayer network
model, where tunnels are omnipresent.

An example of such a network where IPv4 and IPv6 protocols
coexist is shown in Fig. 1. In the (top) path between nodes 𝑣0 and
𝑣5, node 𝑣1 encapsulates an IPv4 packet within an IPv6 packet, thus
inducing a protocol stack, i.e., the stack of headers (IPv4.IPv6) (from
the bottom to the top of the stack). The node 𝑣4 performs the reverse
operation by decapsulating the inner IPv4 packet from the outer IPv6
one. The subpath from 𝑣1 to 𝑣4 is a tunnel. The whole path allows the
communication from 𝑣0 to 𝑣5. We call such a path a valid path. Another
valid path is the (bottom) path, node 𝑣2 converts an IPv4 packet into an
IPv6 one. The node 𝑣4 performs its second operation by transmitting,
without any change, the IPv6 packet to the node 𝑣5. In the directed
link from 𝑣0 to 𝑣3, the node 𝑣3 is not, however, able to transmit an
IPv4 packet as is, 𝑣5 cannot, thus, be reached from 𝑣0. We call such a

path an invalid path.
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As mentioned in the previous section, the only known algorithm
for routing with automatic tunneling is the stack-vector algorithm
proposed in Lamali et al. (2019). Based on this algorithm, our main
idea is to define new algebraic structures based on: a semiring as de-
scribed in Carré (1971), Mohri (2002), Dynerowicz and Griffin (2013),
Sobrinho’s algebra as proposed in Sobrinho (2003, 2005), Griffin and
Sobrinho (2005a) and an algebra of functions2 as proposed in Daggitt
and Griffin (2018), Daggitt et al. (2018). A quadrant model was pro-
posed by Gurney and Griffin (2007) to summarize the different existing
styles and their relations. These new structures must have the capacity
to enumerate all sets of valid shortest paths between every pair of nodes
in the network. These paths can be represented by pairs of protocol
stacks (or a compositions of adaptation functions that make a path as
valid) and weights.

In order to define these new structures, we aim to construct two
operations on the valid shortest paths set. The first operation is used to
concatenate valid shortest paths and the second one is used to choose
between them. The concatenation operation must make it possible to
calculate the weight sum of a path under the condition of preserving its
validity. However, the second operation must keep all valid paths. In
equality cases, i.e., valid paths having the same protocol stack (tunnel),
the second operation must keep the shortest one.

These proposed algebraic structures can be used to prove some
convergence properties of the stack-vector protocol proposed by Lamali
et al. (2019). They can also be used to find the optimal solution
for networks running ECMP when using QoS metrics as shown by
Dynerowicz and Griffin (2013).

2.4. Real-world multilayer networks

In real-world deployments, multilayer networks can be found as
IPv4/IPv6 networks (Raste and Kulkarni, 2008), as IP/MPLS/optical
networks (Urra et al., 2007; Ricciardi et al., 2015; Katib and Medhi,
2011; Amorim and Pavani, 2021; Xingfu and Deqiang, 2021), as
IP/EON (Etezadi et al., 2022), as GMPLS IP/optical networks (Halabi
et al., 2011; Harhira and Pierre, 2008), and in satellite networks (Guo
et al., 2013). Information-centric networking (ICN) over WDM net-
works have also been proposed by AL-Naday et al. (2017). Multilayer
networks can also be found in Industrial IoT (Wu et al., 2021). They
also arise when using protocol conversions between private and public
addressing spaces (Tseng et al., 2013).

3. Algebraic models

As mentioned in the previous section, there are three styles of
routing algebra: semiring as described by Carré (1971), Mohri (2002),
Dynerowicz and Griffin (2013), Sobrinho algebra as proposed by So-
brinho (2003, 2005), Griffin and Sobrinho (2005a) and an algebra of
functions as proposed by Daggitt and Griffin (2018), Daggitt et al.
(2018). A quadrant model was proposed by Gurney and Griffin (2007)
to summarize the different existing styles and their relationships. In this
section, we define the different styles of routing algebra with examples
of traditional routing problems. The basic algebraic axioms used in this
paper are defined in the Table 1. All acronyms for algebraic structures
used in this paper are listed in Table 5 of the Appendix

3.1. Semiring

A set 𝑆 of attributes represents a flexible measure for arbitrary
routing metrics. Each link and path in a network is linked to an

2 An algebra of functions is a generalization of an algebra of monoid
ndomorphisms, see Minoux and Gondran (2008) for more information.
3

Table 1
Algebraic properties.

Property Definition

Selectivity (⊕) 𝑎 ⊕ 𝑏 ∈ {𝑎, 𝑏}
Idempotence (⊕) 𝑎 ⊕ 𝑎 = 𝑎
Commutativity (⊕) 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎
Associativity (⊕) 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏)⊕ 𝑐

Left-Distributivity (⊕,⊗) 𝑎 ⊗ (𝑏 ⊕ 𝑐) = (𝑎 ⊗ 𝑏)⊕ (𝑎 ⊗ 𝑐)
Right-Distributivity (⊕,⊗) (𝑏 ⊕ 𝑐)⊗ 𝑎 = (𝑏 ⊗ 𝑎)⊕ (𝑐 ⊗ 𝑎)

Identity (⊕, 0) 𝑎 ⊕ 0 = 0⊕ 𝑎 = 𝑎
Annihilator (⊕, 1) 𝑎 ⊕ 1 = 1⊕ 𝑎 = 1

attribute, determined by a binary extension operation denoted as ⊗. This
operation is assumed to be both associative and commutative, featuring
an identity attribute 1.

Let 𝑎𝑖,𝑗 represent the attribute of link (𝑣𝑖, 𝑣𝑗 ). For a given path 𝑝 =
0, 𝑣1, 𝑣2,… , 𝑣𝑘−1, 𝑣𝑘, the attribute 𝑎(𝑝) is the result of combining the
ttributes of its links using the binary extension operation:

(𝑝) = 𝑎0,1 ⊗ 𝑎1,2 ⊗⋯⊗ 𝑎𝑘−1,𝑘 (1)

he attribute of a trivial path, containing just one node, is 1. An optimal
attribute of a path from node 𝑣𝑖 to node 𝑣𝑗 , denoted by 𝑎(𝑝)∗ is the most
preferred attribute among all path attributes from node 𝑣𝑖 to node 𝑣𝑗 .
It is obtained through a commutative binary selection operation, denoted
by ⊕. If 𝑝1, 𝑝2,… 𝑝𝓁 represent all paths from 𝑣𝑗 to 𝑣𝑗 , the optimal
attribute of the optimal path 𝑝 from 𝑣𝑖 to 𝑣𝑗 is calculated as follows:

(𝑝)∗ = 𝑎(𝑝1)⊕ 𝑎(𝑝2)⊕⋯⊕ 𝑎(𝑝𝓁) (2)

he null attribute 0 is considered the least preferred of all attributes and
signifies the absence of a valid path. Using an idempotent operation ⊕,
we can define a partial order relation ⪯⊕ on the attributes of 𝑆, which
is reflexive, antisymmetric, and transitive. For all 𝑎, 𝑏, 𝑐 ∈ 𝑆, reflexivity
means that 𝑎 ⪯⊕ 𝑎, antisymmetry means that 𝑎 ⪯⊕ 𝑏 and 𝑏 ⪯⊕ 𝑎 implies
= 𝑏, and transitivity means that 𝑎 ⪯⊕ 𝑏 and 𝑏 ⪯⊕ 𝑐 implies 𝑎 ⪯⊕ 𝑐.
e express this as:

𝑎 ⪯⊕ 𝑏) ≡ (𝑎 = 𝑎 ⊕ 𝑏) (3)

𝑎 ≺⊕ 𝑏) ≡ (𝑎 = 𝑎 ⊕ 𝑏) and (𝑎 ≠ 𝑏) (4)

ote that when the operation ⊕ is selective, this relation becomes a
otal order with 𝑎 ⪯⊕ 𝑏 or 𝑏 ⪯⊕ 𝑎 for all 𝑎, 𝑏 ∈ 𝑆.

According to this context, the generalized routing problem will be
captured in structure, called semiring (𝑆𝑀) of the form (𝑆,⊕,⊗, 0, 1).
or standard shortest path routing, the semiring 𝑆𝑀𝑠𝑝 takes the form
R∞
+ , 𝑚𝑖𝑛,+,∞, 0) with the order relation ≤ defined on the set R∞

+ . Note
hat R∞

+ is the set of natural numbers R+ ∪ {∞}.
Now, the optimal solution of the generalized routing problem is

ormalized using the semiring structure. Let M𝑛(𝑆) be the set of 𝑛 × 𝑛
matrices over 𝑆. The sum and the product of two matrices 𝐗 and 𝐘 are
defined as:

(𝐗⊕ 𝐘)𝑖,𝑗 = 𝐗𝑖,𝑗 ⊕ 𝐘𝑖,𝑗 (5)

(𝐗⊗ 𝐘)𝑖,𝑗 =
𝑛

⨁

𝑘=1
𝐗𝑖,𝑘 ⊗ 𝐘𝑘,𝑗 (6)

iven a network of 𝑛 nodes with attributed edges, we represent the
opology by an 𝑛 × 𝑛 adjacency matrix 𝐀 ∈ M𝑛(𝑆) where 𝐀𝑖,𝑗 ∈ 𝑆

is the attribute 𝑎𝑖,𝑗 of the link from node 𝑣𝑖 to node 𝑣𝑗 . Missing links
are represented by the null attribute 0. The recursive definition of the
power of the matrix 𝐀 is given by:

𝐀0 = 𝐀(0) = 𝐈 (7)

𝐀𝑘 = 𝐀⊗ 𝐀𝑘−1 (8)

𝐀(𝑘) = 𝐀𝑘 ⊕ 𝐀(𝑘−1) (9)
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Here, 𝐈 is the identity matrix, where 𝐈𝑖,𝑗 is the trivial attribute 1 if the
nodes 𝑣𝑖 and 𝑣𝑗 are the same, and the null attribute 0 otherwise.

The global optimal solution for the generalized routing problem
onsists in finding (if it exists) the 𝐀∗ matrix,

𝐀∗ =
⨁

𝑝∈
𝑎(𝑝) (10)

Where 𝑖,𝑗 is the set of all possible paths from node 𝑣𝑖 to node 𝑣𝑗 . In
he case of the shortest paths problem non-negative weights, the global
ptimal solution 𝐀∗ converges to the matrix 𝐀(𝑛−1).

.2. Algebra of functions

A potential extension of the semiring concept is the algebra of func-
ions (𝐴𝐹 ), wherein the traditional semiring operation ⊗ is generalized

to a set of functions acting on the attribute set 𝑆. Unlike the rigid struc-
ture of 𝑎⊗𝑏, this allows for more versatile transformations of attributes,
opening up the possibility for a broader range of computations. Instead
of confining attribute computations to 𝑎 ⊗ 𝑏, we can now consider a
more diverse set of transformations or even incorporate any function
defined on 𝑆. The functions are assumed to be distributive over the ⊕
operation, adhering to the property 𝑓 (𝑎 ⊕ 𝑏) = 𝑓 (𝑎)⊕ 𝑓 (𝑏).

For every semiring (𝑆,⊕,⊗, 0, 1), there is a corresponding algebra of
unctions (𝑆,⊕, 𝐹 , 0, 1), where 𝐹⊗ is the set {𝑓𝑎(𝑏) = 𝑎 ⊗ 𝑏 ∣ 𝑎 ∈ 𝑆} for

an arbitrary operation ⊗. The operation ⊕ is assumed to be selective.
The null attribute 0 is required to be a fixed point for all function
with 𝑓 (0) = 0. The trivial attribute 1 is required to be an annihilator
of the operation ⊕. For standard shortest path routing, the algebra of
functions shortest paths 𝐴𝐹𝑠𝑝 takes the form (R∞

+ , 𝑚𝑖𝑛, 𝐹+,∞, 0).
In order to formalize the optimal solution of the generalized routing

problem using an algebra of functions, we represent the topology by
an 𝑛 × 𝑛 adjacency matrix 𝐀 where 𝐀𝑖,𝑗 ∈ 𝐹 is the function 𝑓𝑖,𝑗 of
the link from node 𝑣𝑖 to node 𝑣𝑗 . Missing links are represented by the
constant function 𝑓 (𝑎) = 0. We define the global computation by a

atrix 𝐗 ∈ M𝑛(𝑆) where 𝐗𝑖,𝑗 is the optimal attribute from node 𝑣𝑖 to
ode 𝑣𝑗 . We now define the application of 𝐀 on 𝐗 with:

(𝐗)𝑖,𝑗 =
𝑛

⨁

𝑘=1
𝐀𝑖,𝑘(𝐗𝑘,𝑗 ) (11)

The 𝑘−application of matrix 𝐀 on 𝐗 is recursively given by:

𝐗0 = 𝐈 (12)

𝐗𝑘 = 𝐀(𝐗𝑘−1) (13)

3.3. Sobrinho algebra

An algebra of functions (𝑆,⊕, 𝐹 , 0, 1) equipped with an order rela-
ion ⪯⊕ over the attribute set 𝑆 is termed an ordered algebra of functions
nd takes the form (𝑆,⪯⊕, 𝐹 , 0, 1). This style of algebra include a special
ase called Sobrinho’s algebra (𝑆𝐴) as defined in Griffin and Sobrinho

(2005a,b) and represented as (𝑆,⪯⊕, 𝐿,⊗). Here, 𝑆 denotes a set of
attributes referred to as signatures, ⪯⊕ is total order over signatures, 𝐿
stands for a set of labels, and ⊗ is a binary operation that associates for a
pair (signature, label) a signature. As an ordered algebra of functions,
Sobrinho’s algebra is expressed as (𝑆,⪯⊕, 𝐹𝐿), where 𝐹𝐿 = {𝑓𝓁(𝑎) =
𝓁 ⊗ 𝑎 ∣ 𝓁 ∈ 𝐿 and 𝑎 ∈ 𝑆}. Hence, we can consider the pair (𝐿,⊗) as a
mechanism for indexing the set of functions 𝐹𝐿.

In this paper we adopte the original notation (Sobrinho, 2005) that
slightly deviates from the one presented above. Following the original
format (𝑊 ,⪯, 𝐿, 𝑆, 0, ⊗, 𝜔), the set of signatures 𝑆 is accompanied by
an associated set of totally ordered weights 𝑊 with ⪯ and a weight
function 𝜔 maps 𝑆 into 𝑊 . The signature 0 assumes a special role
within 𝑆 and is linked to invalid paths. For every signature 𝑎 ∈ 𝑆−{0},
it holds 𝜔(𝑎) ⪯ 𝜔(0). Notably, the extension of an invalid path remains
n invalid path, as for all 𝑙 ∈ 𝐿, 𝑙 ⊗ 0 = 0. With this formulation,
4

Table 2
Network model notations.

Notation Description

 Multilayer network
 The set of all communication protocols

 A directed graph
 The set of all nodes
 The set of all links

 The set of protocol stacks
𝐻 A set of protocol stacks in 

 The set of all elementary adaptation functions
𝑖𝑑 The set of all passive adaptation functions
𝐹 A set of adaptation functions in 

̂ The set of all adaptation functions closed under composition
𝐹 A set of adaptation functions in ̂

⊙ The composition operation of adaptation functions
⋄ The concatenation operation of protocol stacks

the shortest paths routing can be modeled by the Sobrinho’s algebra,
𝑆𝐴𝑠𝑝 = (R∞

+ ,≤,R+,R∞
+ ,∞,+, 𝑖𝑑R∞

+
).

In order to formalize the optimal solution of the generalized routing
problem using an algebra of functions, we represent the topology by
an 𝑛 × 𝑛 adjacency matrix 𝐀 where 𝐀𝑖,𝑗 ∈ 𝐿 is the label 𝓁𝑖,𝑗 of the link
from node 𝑣𝑖 to node 𝑣𝑗 . Missing links are represented by the special
signature 0.

For a given global computation matrix 𝐗 ∈ M𝑛(𝑆) where 𝐗𝑖,𝑗 is the
ptimal signature from node 𝑣𝑖 to node 𝑣𝑗 . We define the product of 𝐀
nd 𝐗 recursively as follows:

𝐗0 = 𝐈 (14)
𝑘 = 𝐗𝑘−1 ⊗ 𝐀 (15)

. Multilayer network model

We use the same network model and definitions as those presented
n Lamali et al. (2018, 2019) along with some additional definitions.
able 2 summarizes the main notations of the paper.

.1. Multilayer network

efinition 1. A multilayer network is modeled by 4-tuple  =
,, ,𝜔) where:

•  = ( , ) is a directed graph modeling the network topology. The
set of nodes  models the routers of the network. The set of links
 models the physical links between the routers. The number of
nodes is denoted by || = 𝑛 and the number of links is denoted
by || = 𝑚.

•  = {𝑥, 𝑦, 𝑧,…} is the set of protocols available in the network,
but not necessarily at each router. The number of protocols is
denoted by || = 𝜆. The set of protocols that a node 𝑣 can receive
is denoted by 𝐼𝑛(𝑣), and the set of protocols that 𝑣 can send is
denoted by 𝑂𝑢𝑡(𝑣).

•  is the set of elementary adaptation functions available in the
network. For each node 𝑣 ∈  ,  (𝑣) is the set of adaptation
functions available on node 𝑣. There are three types of adaptation
functions:

– Conversion: the header of a packet of protocol 𝑥 is trans-
formed into the header of another protocol 𝑦. It is denoted
by (𝑥 → 𝑦). If the received and emitted packets are of the
same protocol, i.e., a classical transmission, it is denoted by
(𝑥 → 𝑥). Thus, we consider a classical transmission as a
special type of conversion;
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Table 3
Algebraic structures for the valid shortest paths problem.

Algebra Style Over Adaptation Functions Over Protocol Stacks

Semiring (𝑆𝑅𝑣𝑠𝑝)
(


(

̂ × R∞
+
)

, ∪
𝑚𝑖𝑛

, (⊙ × +), ∅, (𝑖𝑑 × 0)
) (


(

2 × R∞
+
)

, ∪
𝑚𝑖𝑛

, (⋄ × +), ∅, ({(𝜖, 𝜖)} × 0)
)

Algebra of Functions (𝐴𝐹𝑣𝑠𝑝)

(


(

̂ × R∞
+
)

, ∪
𝑚𝑖𝑛

,(𝐹⊙ × 𝐹+), ∅, (̂ × 0)
) (


(

 × R∞
+
)

, ∪
𝑚𝑖𝑛

,( × 𝐹+), ∅, ( × 0)
)

−
(


(

2 × R∞
+
)

, ∪
𝑚𝑖𝑛

,(𝐹⋄ × 𝐹+), ∅, (2 × 0)
)

(


(

̂×R∞
+

)

,⊆𝑚𝑖𝑛 ,
(

×R+

)

,
(

̂×R∞
+

)

,∅,(⊙×+),id(𝐅̂×R∞+ )

) (


(

×R∞
+

)

,⊆𝑚𝑖𝑛 ,
(

×R+

)

,
(

×R∞
+

)

,∅,(⊗×+),id(×R∞+ )

)

Sobrinho’s Algebra (𝑆𝐴𝑣𝑠𝑝)
(

(R∞
+ ), ⊆,( ),(̂ ), ∅, ⊙, 𝜔

) (

(R∞
+ ), ⊆,( ),(), ∅, ⊗, 𝜔

)

−
(


(

2×R∞
+

)

,⊆𝑚𝑖𝑛 ,
(

2×R+

)

,
(

2×R∞
+

)

,∅,(⋄×+),id
(2×R∞+ )

)

−
(

(R∞
+ ), ⊆,(2),(2), ∅, ⋄, 𝜔

)

Fig. 2. Example of an invalid path and a valid path with a circuit.
– Encapsulation: the whole packet of protocol 𝑥 is encapsu-
lated in the data field of a packet of protocol 𝑦. It is denoted
by (𝑥 → 𝑥𝑦). Note that a packet can be encapsulated
in another one of the same protocol, such as for IP-in-IP
(i.e., RFC 1853 and RFC 2003). In this case, the function
is simply denoted by (𝑥 → 𝑥𝑥);

– Decapsulation: a packet of protocol 𝑥 is extracted from the
data field of a packet of protocol 𝑦, this is the reverse
operation of (𝑥 → 𝑥𝑦), and thus it is denoted by (𝑥𝑦 →

𝑥). Note that this operation can be performed only if the
received packet of protocol 𝑦 effectively contains a packet
of protocol 𝑥 in its data field.

• 𝜔 ∶  ×  ×  → R+ is a weight function modeling any additive
metric. The value of 𝜔(𝑣𝑖, 𝑓 , 𝑣𝑗 ) is the weight of performing the
adaptation function 𝑓 on 𝑣𝑖 and then transmitting the packet on
the link (𝑣𝑖, 𝑣𝑗 ). Its sum over a path is the cost that we want to
minimize. It is very generic as it can model the number of hops
(by putting 𝜔(𝑣𝑖, 𝑓 , 𝑣𝑗 ) = 1 for all the possible triples), or the
number of encapsulations (by putting 𝜔(𝑣𝑖, 𝑓 , 𝑣𝑗 ) = 1 when 𝑓 is
an encapsulation and 𝜔(𝑣𝑖, 𝑓 , 𝑣𝑗 ) = 0 otherwise), etc.

4.2. Protocol stack

A sequence of adaptation functions induces a protocol stack. For
example, the sequence:

(𝑥 → 𝑦)(𝑦 → 𝑦𝑥)(𝑥 → 𝑥)(𝑥 → 𝑥𝑥)(𝑥 → 𝑥𝑦)

induces the stack 𝑦𝑥𝑥𝑦 (top on the right). The protocol at the top of the
stack ℎ is denoted by 𝑇 𝑜𝑝(ℎ).

Let 𝑓 be an adaptation function and ℎ a protocol stack. We denote
by 𝑓 (ℎ) the application of the adaptation function 𝑓 to the stack ℎ.
For example, if 𝑓 is the decapsulation (𝑥𝑦 → 𝑥) and ℎ = 𝑦𝑥𝑦, then
𝑓 (ℎ) = 𝑦𝑥. The outer protocol 𝑦 is removed and the inner one (protocol
𝑥) is extracted, without any change to the underlying protocols that are
5

still nested (here the bottom 𝑦).
Applying an adaptation function to a protocol stack is not always
possible. For example, it is impossible to apply 𝑓 = (𝑦𝑥 → 𝑦) to stack
ℎ = 𝑥 since there is no nested (packet of) protocol 𝑦 in ℎ. In such
cases, we denote the resulting stack by 𝑓 (ℎ) = 𝜙, where 𝜙 is called the
forbidden stack. For any adaptation function 𝑓 , we have 𝑓 (𝜙) = 𝜙. This
means that there is an impossibility to apply an adaptation function at
some point of a path and thus there is no way to continue through this
path.

Definition 2. Let 𝑓𝑖𝑓𝑖+1 … 𝑓𝑗−1𝑓𝑗 a sequence of adaptation functions
and ℎ𝑖 an initial protocol stack. We define recursively the induced
protocol stack ℎ𝑘 by,

ℎ𝑘 = 𝑓𝑘−1(ℎ𝑘−1), 𝑖 + 1 ≤ 𝑘 ≤ 𝑗 + 1 (16)

4.3. Valid path

A multilayer path is represented by a directed path in the underlined
graph  by taking into account the adaptation function involved at
each node in the path. Thus, a path from a node 𝑣𝑖 to a node 𝑣𝑗 in
 is a mixed sequence of nodes and adaptation functions with starting
and ending protocol stacks ℎ𝑖𝑣𝑖𝑓𝑖𝑣𝑖+1𝑓𝑖+1 … 𝑣𝑗−1𝑓𝑗−1ℎ𝑗𝑣𝑗 where each 𝑣𝑘,
𝑖 ≤ 𝑘 ≤ 𝑗 is a node, and each 𝑓𝑘 is an adaptation function. The starting
stack is ℎ𝑖 and the ending stack is ℎ𝑗 .

Definition 3. A path 𝑝 = ℎ𝑖𝑣𝑖𝑓𝑖𝑣𝑖+1𝑓𝑖+1 … 𝑣𝑗−1𝑓𝑗−1ℎ𝑗𝑣𝑗 from 𝑣𝑖 to 𝑣𝑗 is
valid if and only if:

• The sequence 𝑣𝑖𝑣𝑖+1 … 𝑣𝑗−1𝑣𝑗 is a classical path in  and each
𝑓𝑘 ∈  (𝑣𝑘);

• ℎ𝑖 ≠ 𝜙 and 𝑇 𝑜𝑝(ℎ𝑖) ∈ 𝐼𝑛(𝑣𝑖);
• ℎ𝑗 ≠ 𝜙 and 𝑇 𝑜𝑝(ℎ𝑗 ) ∈ 𝐼𝑛(𝑣𝑗 );
• ℎ𝑗 = 𝑓𝑗−1

(

… 𝑓𝑖+1
(

𝑓𝑖(ℎ𝑖)
)

)

.

In Fig. 2(a), the depicted path from 𝑣0 to 𝑣6 with the starting
protocol stack 𝑦𝑥 is:

𝑣 (𝑥 → 𝑦)𝑣 (𝑦 → 𝑦)𝑣 (𝑦 → 𝑦)𝑣 (𝑥𝑦 → 𝑥)𝑣
0 1 4 5 6



Journal of Network and Computer Applications 230 (2024) 103929N. Mouhoub et al.
It cannot be valid because, the node 𝑣5 receives the protocol stack 𝑦𝑦
and it cannot decapsulate the protocol 𝑥 from 𝑦, i.e., it cannot perform
the function 𝑥𝑦 → 𝑥 on the stack 𝑦𝑦. In contrast, Fig. 2(b) depicts a
valid path 𝑣0 to 𝑣6 with the starting stack 𝑥 and the arrival stack 𝑦𝑥:

𝑣0(𝑥 → 𝑦)𝑣1(𝑦 → 𝑦)𝑣2(𝑦 → 𝑦𝑥)𝑣3(𝑥 → 𝑥𝑦)

𝑣1(𝑦 → 𝑦)𝑣4(𝑦 → 𝑦)𝑣5(𝑥𝑦 → 𝑥)𝑣6
The used links in the path are in bold and the corresponding protocol
stacks are below the links in Fig. 2.

The weight of a valid path3 from node 𝑣𝑖 to node 𝑣𝑗 with stacks ℎ𝑖
and ℎ𝑗 , 𝑝 = ℎ𝑖𝑣𝑖𝑓𝑖𝑣𝑖+1𝑓𝑖+1 … 𝑣𝑗−1𝑓𝑗−1ℎ𝑗𝑣𝑗 is the sum of the weights of
its links and its adaptation functions. It is denoted by:

𝜔(𝑝) =
𝑗−1
∑

𝑘=𝑖
𝜔(𝑣𝑘, 𝑓𝑖, 𝑣𝑘+1) (17)

5. Routing algebras with tunnels

In this section, we first define the adaptation function composition
operation, protocol stack concatenation, and the product of union-
min operations. Next, we define three algebraic structures (semiring,
Sobrinho’s algebra, and algebra of functions) for the valid path problem
𝑣𝑝. Then, we study the semi-direct product of the valid paths structures
𝑣𝑝 with the shortest paths structures 𝑠𝑝 in order to model the valid
shortest paths 𝑣𝑠𝑝. Table 3 summarizes all valid shortest paths structures
proposed in this paper.

5.1. Adaptation function composition

In the network model we explained that the successive application
of adaptation functions on a stack of starting protocols induces a stack
of arrival. This application can be represented by a composition of
functions. More formally, let  = {𝜙, 𝑥, 𝑦,… , 𝑥𝑥, 𝑦𝑦, 𝑥𝑦, 𝑦𝑥,…} be the
set of all possible protocol stacks. Note that this set can be finite for a
given multilayer network in which the number of protocols in any stack
does not exceed 𝜆𝑛2 (the proof of this bound is given in Lamali et al.
(2019)). We can define an elementary adaptation function as a function
𝑓 from 𝐻𝑎 → 𝐻𝑏 where 𝐻𝑎 (resp. 𝐻𝑏) is a set of protocol stacks in 
representing the domain (resp. co-domain) of 𝑓 . For example, if the
function is the decapsulation 𝑥𝑦 → 𝑥, then 𝑓 ∶ 𝐻𝑥𝑦 → 𝐻𝑥 where 𝐻𝑥𝑦
(resp. 𝐻𝑥) is the set of all protocol stacks starting with the sub protocol
stack 𝑥𝑦 (resp. the protocol 𝑥). We define the application of a sequence
of adaptation functions 𝑓𝑖𝑓𝑖+1 … 𝑓𝑗−1𝑓𝑗 on a given protocol stack ℎ by
a composition of these adaptation functions.

Definition 4. Let 𝑓 ∶ 𝐻𝑎 → 𝐻𝑏 and 𝑓 ′ ∶ 𝐻 ′
𝑎 → 𝐻 ′

𝑏 be two
elementary adaptation functions in  . We define the composition by
the new function 𝑓 ′′ = 𝑓 ′ ⊙ 𝑓 as follows:

𝑓 ′′ =
{

𝐻 ′′
𝑎 → 𝐻 ′′

𝑏 if (𝐻 ′′
𝑎 ≠ ∅) ∧ (𝐻 ′′

𝑏 ≠ ∅)
{𝜙} → {𝜙} otherwise (18)

Where:

𝐻 ′′
𝑎 =

{

ℎ ∈ 𝐻𝑎 ∣ 𝑓 (ℎ) ∈ 𝐻 ′
𝑎
}

(19)

𝐻 ′′
𝑏 =

{

𝑓 ′(ℎ) ∣ ℎ ∈ (𝐻𝑏 ∩𝐻 ′
𝑎)
}

(20)

Note that this composition ⊙ is associative and not commutative.
The function {𝜙} → {𝜙} is denoted by the forbidden function 𝜙 → 𝜙. It
is clear that the set of elementary adaptation functions  is not closed
under composition. For example, if the composition is (𝑥 → 𝑥𝑦)⊙ (𝑦 →
𝑦𝑥) then the composed function is (𝑦 → 𝑦𝑥𝑦). This new function is not
in the set  . For this, we define a new set ̂ of all adaptation functions
closed under composition. Each composition of elementary adaptation
functions can be represented by a new composed adaptation function.

3 The weight of an invalid path is not defined and can be set to ∞ value.
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f

The impossibility of composition is represented by the forbidden function
𝜙 → 𝜙.

Let ̂ = {𝜙 → 𝜙, 𝑥 → 𝑥, 𝑥 → 𝑦, 𝑥 → 𝑥𝑥𝑥, 𝑥𝑦𝑥 → 𝑥,…} be the
set of all adaptation functions closed under composition. We say that
two functions 𝑓 ′ and 𝑓 of ̂ are equal if and only if they have the
same domain and co-domain. For example, the two functions (𝑥 → 𝑥𝑥)
and (𝑦 → 𝑥) ⊙ (𝑥 → 𝑥𝑦) are equal and they can apply on protocol
stacks starting with 𝑥 and give a protocol stacks starting with 𝑥𝑥. In
the following text, we denote by 𝑖𝑑 the set of all passive functions,
i.e., classical transmissions {𝑥 → 𝑥, 𝑦 → 𝑦,…} called identity adaptation
functions.

Using this new operation of adaptation functions composition, a
valid path 𝑝 = ℎ𝑖𝑣𝑖𝑓𝑖𝑣𝑖+1𝑓𝑖+1 … 𝑣𝑗−1𝑓𝑗−1ℎ𝑗𝑣𝑗 from 𝑣𝑖 to 𝑣𝑗 can be
represented by the valid composition of the elementary adaptation
functions 𝑓𝑗−1⊙⋯⊙𝑓𝑖−1⊙𝑓𝑖. This latter composition is defined by the
function ℎ𝑖 → ℎ𝑗 of the set ̂ . In Fig. 2(b), the composed function of
the represented valid path is 𝑥 → 𝑥𝑦. The composed function of invalid
path is the function 𝜙 → 𝜙

5.2. Protocol stack concatenation

In Mouhoub et al. (2022b), the authors proposed a generalized
Floyd–Warshall algorithm for automatic tunneling. This algorithm is
based on the concatenation operation of protocol stacks’ pairs.

Definition 5. Let 𝑝 = ℎ0𝑣0𝑓0 …ℎ𝑘𝑣𝑘 and 𝑝′ = ℎ′0𝑣
′
0𝑓

′
0 … ℎ′𝑘𝑣

′
𝑘 be two

valid paths. We define the concatenation of 𝑝 and 𝑝′ by the new path
𝑝′′ = ℎ′′0 𝑣0𝑓0 … 𝑣𝑘𝑓𝑘𝑣′0𝑓

′
0 …ℎ′′𝑘 𝑣

′
𝑘 where:

(ℎ′′0 , ℎ
′′
𝑘 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(ℎ0, ℎ′𝑘) if ℎ𝑘 = ℎ′0
(ℎ.ℎ0, ℎ′𝑘) if ℎ′0 − ℎ𝑘 = ℎ
(ℎ0, ℎ.ℎ′𝑘) if ℎ𝑘 − ℎ′0 = ℎ
(𝜙, 𝜙) otherwise

(21)

Note that ℎ.ℎ′ is the simple concatenation of the stack ℎ and ℎ′. For
example, if ℎ = 𝑥𝑦 and ℎ′ = 𝑥 then ℎ.ℎ′ = 𝑥𝑦𝑥.

Now we can define the binary operation ⋄ that concatenates pairs
of protocol stacks according to the previous conditions,

(ℎ𝑖, ℎ𝑗 ) ⋄ (ℎ′𝑖 , ℎ
′
𝑗 ) = (ℎ′′𝑖 , ℎ

′′
𝑗 ) (22)

Note that we can generalize this operation on sets of pairs of protocol
stacks in order to compute the pair-wise sets.

5.3. Union-min operation

In order to enumerate the set of all valid shortest paths between
each pair of nodes in a multilayer network, we introduce a semi-direct
product over a set of weighted attributes,4 in which the concatenation
operation is a direct product and the choice operation is based on a
new binary operation that combines the union and the min operations.

Let 𝑆 = {𝑎, 𝑏, 𝑐…} be a finite set of attributes. We define the
weighted set of 𝑆 as the set product 𝑇 = 𝑆 ×R∞

+ . We denote (𝑇 ), the
power set in which each subset contains a unique pair for each element.
We define the union-min operation over subsets of weighted attributes
as follows:

Definition 6. Let 𝑇𝑖 and 𝑇𝑗 be two subsets of (𝑇 ). We define the
union-min operation of 𝑇𝑖 and 𝑇𝑗 as follows:

𝑇𝑖 ∪
𝑚𝑖𝑛

𝑇𝑗 =
{

(𝑎, 𝜔𝑎)
|

|

|

(𝑎, 𝜔𝑎) ∈ 𝑇𝑖 ∧ ∀ (𝑏, 𝜔𝑏) ∈ 𝑇𝑗 ,

(𝑎 = 𝑏) ⇒ 𝜔𝑎 = 𝜔𝑎 𝑚𝑖𝑛𝜔𝑏

} (23)

4 These attributes can be protocol stacks or compositions of adaptation
unctions. It depends on the nature of the algebraic structure.
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This new operation, i.e., union-min, introduces the idea of enumer-
ating different weighted paths from a source to a destination. And in
the case of equality of paths (with the same attributes), it keeps the
path with the smallest weight. It is easy to check that the union-min
operation is idempotent, associative and commutative, but not selective
(it can return a new subset different from the two initial subsets).
The identity element of this operation is the empty subset and the
annihilator element is the subset of unique attributes with weight 0.

efinition 7. Let 𝑇𝑖 and 𝑇𝑗 be two subsets of (𝑇 ). We define the order
elation as follows:

𝑖 ⊆𝑚𝑖𝑛 𝑇𝑗 ≡ ∀ (𝑎, 𝜔𝑎) ∈ 𝑇𝑖 ⇒ ∃ (𝑏, 𝜔𝑏) ∈ 𝑇𝑗 ,

(𝑎 = 𝑏) ∧ (𝜔𝑎 ≤ 𝜔𝑏)
(24)

It is clear that this order is a partial order, i.e., there exists some
ncomparable subsets. For example, the two subsets

{

(𝑎, 1), (𝑏, 5)
}

and
(𝑎, 4), (𝑏, 2)

}

are incomparable.
In the next sections, we will use this operation to define our semi-

irect product for semirings and algebras of functions. In the case of
obrinho’s algebra, the union-min operation is captured by the order
elation.

.4. Semiring with tunnels

.4.1. Semiring over adaptation functions
Recall that a valid multilayer path is represented by a valid compo-

ition of adaptation functions. In order to compute the set of all valid
aths, i.e., valid compositions, we extend the definition of adaptation
unction composition on sets of compositions.

Let be ̂ the set of all adaptation functions closed under composi-
ion, and (̂ ) its power set. If 𝐹1 and 𝐹2 are two subsets of (̂ ), then
e define the set of pair-wise compositions,

̂1 ⊙ 𝐹2 =
{

𝑓1 ⊙ 𝑓2 | 𝑓1 ∈ 𝐹1 and 𝑓2 ∈ 𝐹2
}

(25)

ote that in the case of invalid composition, the resulting forbidden
unction will be removed from the result set. The composition with an
mpty set is always an empty set. Based on this operation, we define our
emiring valid paths 𝑆𝑅𝑣𝑝 that enumerates all valid paths as follows,

𝑅𝑣𝑝 =
(

(̂ ),∪, ⊙, ∅,𝑖𝑑

)

(26)

here, ∅ is the empty set composition and 𝑖𝑑 is the set of identity
daptation functions {𝑥 → 𝑥, 𝑦 → 𝑦,…}. It is easy to check that
he composition ⊙ is associative and non-commutative with the ∅
s annihilator. We check the identity set compositions 𝑖𝑑 and the

distributivity of ⊙ over ∪,

Identity of ⊙

Proposition 1. The set 𝑖𝑑 is the identity element of the composition ⊙.

Proof. Let 𝐹 = {𝑓𝑖, 𝑓𝑖+1,… , 𝑓𝑗−1, 𝑓𝑗} be a set of composed functions in
(̂ ). We want to show that,

𝐹 ⊙ 𝑖𝑑 = 𝑖𝑑 ⊙ 𝐹 = 𝐹 ∀𝐹 ∈ (̂ ) (27)

Let 𝑓𝑘, 𝑖 ≤ 𝑘 ≤ 𝑗, 𝑓𝑘 ∶ 𝐻𝑎 → 𝐻𝑏 be a function in 𝐹 . There are two
possible situations:

1. 𝐻𝑎 is a set of protocol stacks starting with 𝑥. In this case,
𝑓𝑘 ⊙ (𝑥 → 𝑥) = 𝑓𝑘 and for all 𝑓 ∈ 𝑖𝑑 − {(𝑥 → 𝑥)} we have
𝑓𝑘 ⊙ 𝑓 = (𝜙 → 𝜙).

2. 𝐻𝑏 is a set of protocol stacks starting with 𝑥. In this case,
(𝑥 → 𝑥) ⊙ 𝑓𝑘 = 𝑓𝑘 and for all 𝑓 ∈ 𝑖𝑑 − {(𝑥 → 𝑥)} we have
𝑓 ⊙ 𝑓𝑘 = (𝜙 → 𝜙).

Note that, by the definition of ⊙, the forbidden functions are removed
from the result set. □
7

Distributivity of ⊙ over ∪

Proposition 2. The composition ⊙ is distributive on the union ∪.

Proof. Let 𝐹1, 𝐹2, 𝐹3 be three sets of composed functions in (̂ ). By
the definition of ⊙ over sets of composed functions, which compute the
set of pair-wise compositions, we can see that,

𝐹1 ⊙ (𝐹2 ∪ 𝐹3) = (𝐹1 ⊙ 𝐹2) ∪ (𝐹1 ⊙ 𝐹3) (28)

And,

(𝐹2 ∪ 𝐹3)⊙ 𝐹1 = (𝐹2 ⊙ 𝐹1) ∪ (𝐹3 ⊙ 𝐹1) □ (29)

Now, we can define the valid shortest paths semiring 𝑆𝑅𝑣𝑠𝑝 by the
following semi-direct product of 𝑆𝑅𝑣𝑝 and 𝑆𝑅𝑠𝑝,

𝑆𝑅𝑣𝑠𝑝 =
(


(

̂ × R∞
+
)

, ∪
𝑚𝑖𝑛

, (⊙ × +), ∅, (𝑖𝑑 × 0)
)

(30)

It is well known that the direct product of semigroups preserves
the associativity property, the identity attributes and the annihilators,
as indicated in Harden (1949). In most situations where algebraic
structures violate some axioms of semirings, they do not generally
satisfy the distributivity of ⊗ over ⊕. We check this property in order
to ensure that our structure defines a semiring.

Distributivity of (⊙ × +) over ∪
𝑚𝑖𝑛

Proposition 3. The direct product (⊙×+) is distributive on the union-min
product ∪

𝑚𝑖𝑛
.

Proof. We want to show that for all 𝐹1, 𝐹2, 𝐹3 sets of weighted
composed functions in (̂ × R∞

+ ) we have 𝑙ℎ𝑠 = 𝑟ℎ𝑠 where,

𝑙ℎ𝑠 = 𝐹1 (⊙ × +) (𝐹2 ∪
𝑚𝑖𝑛

𝐹3) (31)

𝑟ℎ𝑠 = (𝐹1 (⊙ × +)𝐹2) ∪
𝑚𝑖𝑛

(𝐹1 (⊙ × +)𝐹3) (32)

Based on the definition of the union-min operation, we distinguish
between the two following cases:

Case 1: The two sets 𝐹2 and 𝐹3 are strictly different and do not have
any common composed function,

𝐹2 ∪
𝑚𝑖𝑛

𝐹3 = 𝐹2 ∪ 𝐹3

In this case, we can see that,

𝑙ℎ𝑠 = 𝑟ℎ𝑠 = (𝐹1 (⊙ × +)𝐹2) ∪ (𝐹1 (⊙ × +)𝐹3) (33)

Case 2: The two sets have some common composed functions,

𝐹2 ∪
𝑚𝑖𝑛

𝐹3 = 𝐹 ∗
2 ∪ 𝐹 ∗

3 (34)

Where: 𝐹2 = 𝐹 ∗
2 ∪𝐹 and 𝐹3 = 𝐹 ∗

3 ∪𝐹 ′ and 𝐹 (resp. 𝐹 ′) is the non empty
set of the common non optimal composed functions of 𝐹2 (resp. 𝐹3). In
this situation, we have,

𝐹1(⊙ × +)𝐹2 = (𝐹1(⊙ × +)𝐹 ∗
2 ) ∪ (𝐹1(⊙ × +)𝐹 ) (35)

𝐹1(⊙ × +)𝐹3 = (𝐹1(⊙ × +)𝐹 ∗
3 ) ∪ (𝐹1(⊙ × +)𝐹 ′) (36)

And,

(𝐹1(⊙ × +)𝐹 ∗
2 ) ∪

𝑚𝑖𝑛
(𝐹1(⊙ × +)𝐹 ′) = (𝐹1(⊙ × +)𝐹 ∗

2 ) (37)

(𝐹1(⊙ × +)𝐹 ∗
3 ) ∪

𝑚𝑖𝑛
(𝐹1(⊙ × +)𝐹 ) = (𝐹1(⊙ × +)𝐹 ∗

3 ) (38)

As we can see, the two sets 𝐹 ∗
2 and 𝐹 ∗

3 are different. So we can apply
the case 1,

𝑙ℎ𝑠 = 𝑟ℎ𝑠 = (𝐹1 (⊙ × +)𝐹 ∗
2 ) ∪ (𝐹1 (⊙ × +)𝐹 ∗

3 ) (39)
We can check the right distributivity in the same way. □
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Fig. 3. Simple example network for valid shortest paths.

Using this semiring, we can define the adjacency matrix 𝐀 of all
alid paths where 𝐀𝑖,𝑗 is the set of valid paths from node 𝑖 to node 𝑗
epresented by the corresponding compositions of adaptation functions
nd their weights involved in each path. Missing paths are simply
epresented by the empty set of compositions.

In order to explain how it works, we take the same network of Fig. 1
y adding weights on links. We also add the function (𝑥 → 𝑥) to model
hat node 𝑣0 can emit packets of protocol 𝑥. The function (𝑦 → 𝑦)
ill be replaced by the conversion (𝑦 → 𝑥) in order to create two
qual compositions between nodes 𝑣0 and 𝑣5. These modification are

presented in Fig. 3.
We now define the adjacency matrix 𝐀 of the network presented in

Fig. 3,

𝐀 =

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∅
{

(𝑓0, 2)
} {

(𝑓0, 2)
} {

(𝑓0, 1)
}

∅ ∅ 𝑣0

∅ ∅
{

(𝑓1, 2)
}

∅ ∅ 𝑣1

∅
{

(𝑓2, 3)
}

∅ ∅ 𝑣2

∅
{

(𝑓3, 1)
}

∅ 𝑣3

∅
{

(𝑓4, 2), (𝑓 ′
4, 2)

}

𝑣4

∅ 𝑣5

In this example, we are interested in computing the set of valid shortest
paths, i.e., the valid shortest compositions from node 𝑣0 to node 𝑣5. Note
that the intermediate paths will be obtained directly by calculating the
𝐀∗ matrix. For this, we use the formula defined in Section 3 to compute
the 𝐀∗ matrix. The final result of the latter is shown in Fig. 4.

5.4.2. Semiring over protocol stacks
Another way to define a semiring on the set of protocol stacks is

based on the concatenation operation of pairs of protocol stacks defined
in Section 5.2. However, this new operation does not have a identity
attribute. One possible solution to this problem is to add an empty stack
(𝜖) to the set of stacks . In this context, the empty path represented by
the pair of empty stacks (𝜖, 𝜖) serves as the identity attribute for stack
concatenation, defined as follows,

(ℎ𝑖, ℎ𝑗 ) ⋄ (𝜖, 𝜖) = (𝜖, 𝜖) ⋄ (ℎ𝑖, ℎ𝑗 ) = (ℎ𝑖, ℎ𝑗 ) (40)

Based on this, we can define a semiring 𝑆𝑀𝑣𝑝 on the set of stacks,

𝑆𝑀𝑣𝑝 =
(

(2),∪, ⋄, ∅, {(𝜖, 𝜖)}
)

(41)

ow, we can define the semiring 𝑆𝑀𝑣𝑠𝑝 on the set of stacks as the
roduct of two semirings, 𝑆𝑀𝑣𝑝 and 𝑆𝑀𝑠𝑝,

𝑀𝑣𝑠𝑝 =
(


(

2 × R∞
+
)

, ∪
𝑚𝑖𝑛

, (⋄ × +), ∅, ({(𝜖, 𝜖)} × 0)
)

(42)

ote that the properties of this structure can be verified in the same
anner as the previous semiring on the set of compositions.

.5. Algebra of functions with tunnels

.5.1. Algebra of functions over adaptation functions
In order to define an algebra of functions in which the valid shortest
8

aths are represented by the valid shortest compositions of adaptation
unctions, we can directly use the semiring 𝑆𝑅𝑣𝑝 and get the following
lgebra,

𝐹𝑣𝑝 =
(


(

̂
)

,∪,(𝐹⊙), ∅, ̂
)

(43)

Now, we define the valid shortest paths algebra 𝐴𝐹𝑣𝑠𝑝 by the semi-direct
product of 𝐴𝐹𝑣𝑝 and 𝐴𝐹𝑠𝑝 as follows,

𝐴𝐹𝑣𝑠𝑝 =
(


(

̂ × R∞
+
)

, ∪
𝑚𝑖𝑛

,(𝐹⊙ × 𝐹+), ∅, (̂ × 0)
)

(44)

Where: 𝐹⊙ × 𝐹+ is the set of functions that apply on weighted compo-
sitions defined by the product set,
{

(

𝑓𝑎, 𝑓𝜔𝑎

)

(𝑏, 𝜔𝑏) = (𝑎 ⊙ 𝑏, 𝜔𝑎 + 𝜔𝑏) ∣ 𝑏 ∈ ̂ , 𝜔𝑏 ∈ R∞
+

}

(45)

Note that applying a function (𝑓𝑎, 𝑓𝜔𝑎
) on the empty set of weighted

compositions is the empty set of weighted compositions. This defines a
fixed point for all functions in the power set. The set of all compositions
with weight 0 defines the annihilator set for the union-min operation.

5.5.2. Algebra of functions over protocol stacks
We define here an algebra over protocol stacks. This algebra can

generalize the idea of the Bellman-Ford algorithm with the automatic
tunneling proposed in Lamali et al. (2019) in the stack-vector protocol.
Recall that our elementary adaptation functions are defined from  →

, so we can define an algebra of functions on the set of all protocol
stacks . For this, we define the application of a set of adaptation
functions on a set of protocol stacks.

Let 𝐹 = {𝑓1,… , 𝑓𝓁} be a set of adaptation functions in ( ) and
𝐻 = {ℎ1,… , ℎ𝑘} a set of protocol stacks in (). We define the
application of 𝐹 on 𝐻 ,

𝐹 (𝐻) =
{

𝑓𝑖(ℎ𝑗 ) ∣ 𝑓𝑖 ∈ 𝐹 and ℎ𝑗 ∈ 𝐻
}

(46)

In particular, if the set 𝐻 or 𝐹 is the empty set, then 𝐹 (𝐻) is also the
empty set. We define the 𝐴𝐹𝑣𝑝 algebra,

𝐴𝐹𝑣𝑝 =
(

(),∪,( ), ∅,
)

(47)

Using the semi-direct product with the 𝐴𝐹𝑠𝑝 we obtain,

𝐴𝐹𝑣𝑠𝑝 =
(


(

 × R∞
+
)

, ∪
𝑚𝑖𝑛

,( × 𝐹+), ∅, ( × 0)
)

(48)

Where  × 𝐹+ is the set of functions that apply on weighted protocol
stacks defined by the product set,
{

(

𝑓, 𝑓𝜔
)

(ℎ, 𝜔ℎ) = (𝑓 (ℎ), 𝜔 + 𝜔ℎ) ∣ ℎ ∈ , 𝜔ℎ ∈ R∞
+

}

(49)

Note that applying a function (𝑓, 𝑓𝜔) on the empty set of weighted
protocol stacks is the empty set of weighted protocol stacks. This
defines a fixed point for all functions in the power set. The set of
all protocol stacks with weight ∞ defines the annihilator set for the
union-min operation.

Using this algebra, we can define the adjacency matrix 𝐀 of adap-
tation functions, where 𝐀𝑖,𝑗 is the set of adaptation functions of the
node 𝑖 with the set of corresponding weight functions. Missing links
are represented by the empty set of pair-wise functions. We can define
the routing state by the matrix 𝐗 where 𝐗𝑖,𝑗 is the set of all possible
shortest protocol stacks that allow to route from node 𝑖 to 𝑗.

In Section 5.2, we have defined a binary concatenation operation of
pairs of protocol stacks in order to model the transitive closure oper-
ation to compute valid paths by transitive closure. Using the previous
definition, we define the following algebra,

𝐴𝐹𝑣𝑝 =
(


(

2),∪,(𝐹⋄), ∅,2
)

(50)

Using the semi-direct product with the 𝐴𝐹𝑠𝑝 we obtain,

𝐴𝐹 =
(


(

2 × R∞)

, ∪ ,(𝐹 × 𝐹 ), ∅, (2 × 0)
)

(51)
𝑣𝑠𝑝 + 𝑚𝑖𝑛 ⋄ +
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Fig. 4. 𝐀∗ matrix with all valid shortest paths of the network presented in Fig. 3.
here: 𝐹⋄ × 𝐹+ is the set of functions that apply on weighted pairs of
protocol stacks defined by the product set,
{

(

𝑓ℎ, 𝑓𝜔
)

(ℎ, 𝜔) = (ℎ ⋄ ℎ′, 𝜔 + 𝜔′
ℎ), ∣ ℎ

′ ∈ 2, 𝜔′
ℎ ∈ R∞

+

}

(52)

ote that applying a function (𝑓ℎ, 𝑓𝜔) on the empty set of weighted
airs of protocol stacks yields the empty set. This defines a fixed point
or all functions in the power set. The set of all pairs of protocol stacks
ith weight 0 defines the annihilator set for the union-min operation.

The most common violation among all of our algebras of functions
s that they lack selectivity, which is related to the nature of the
nion-min operation.

.6. Sobrinho’s algebra with tunnels

.6.1. Sobrinho’s algebra over adaptation functions
We define the following Sobrinho’s algebra for the valid paths

roblem,

𝐴𝑣𝑝 =
(

(̂ ), ⊆,( ),(̂ ), ∅, ⊙, id
(̂ )

)

(53)

he signatures are the sets of valid compositions of adaptation functions
nd the labels are defined as sets of adaptation functions. The extension
peration is the composition of sets of compositions. The special signa-
ure is the empty set of compositions and the weight function is the
dentity function of the power set of compositions. The order relation
s given by the partial order ⊆ defined over subsets of compositions.
ote that the two sets {𝑥 → 𝑥} and {𝑥 → 𝑦} are incomparable. Using

his algebra we can define the valid shortest paths algebra 𝑆𝐴𝑣𝑠𝑝 as the
irected product of 𝑆𝐴𝑣𝑝 and 𝑆𝐴𝑠𝑝,

𝐴𝑣𝑠𝑝 =
(


(

̂ × R∞
+
)

, ⊆𝑚𝑖𝑛,
(

 × R+
)

,


(

̂ × R∞
+
)

, ∅, (⊙ × +), id
(̂×R∞+ )

) (54)

he set of signatures is the power set of all weighted composition
unctions and the set of labels is the power set of all weighted adap-
ation functions. Note that the order relation is defined on sets of
eighted compositions. This order relation is the same as the partial
rder defined in Section 5.3 for the union-min operation.

Another idea is to define directly a Sobrinho’s algebra with a specific
eight function 𝜔 that maps a set of compositions to a set of weights.
e define this algebra as follows,

𝐴𝑣𝑠𝑝 =
(

(R∞
+ ), ⊆,( ),(̂ ), ∅, ⊙, 𝜔

)

(55)

here: 𝜔 ∶ (̂ ) → (R∞
+ ) is the weight function.

.6.2. Sobrinho’s algebra over protocol stacks
Recall that the application of adaptation functions on a set of

rotocol stacks gives a new set of protocol stacks. This application can
e used to define a Sobrinho’s algebra over sets of protocol stacks with
specific operation to model the application of adaptation functions on
rotocol stacks. We define this algebra as follows,

𝐴𝑣𝑝 =
(

(), ⊆,( ),(), ∅, ⊗, id
()

)

(56)

he operation ⊗ ∶ () × ( ) → () is the binary operation that
odels the application of a set of adaptation functions on a set of
rotocol stacks. The weight function 𝜔 is the identity function of the
9

Table 4
Algebras in the quadrants model.

weight weight summarization
computation algebraic ordered

algebraic Semiring −

functional Algebra of Functions Sobrinho’s Algebra

power set of all protocol stacks. Using this algebra, we define the valid
shortest paths algebra by the following direct product,

𝑆𝐴𝑣𝑠𝑝 =
(


(

 × R∞
+
)

, ⊆𝑚𝑖𝑛,
(

 × R+
)

,


(

 × R∞
+
)

, ∅, (⊗ × +), id
(×R∞+ )

) (57)

The set of signatures is the power set of all weighted protocol stacks and
the set of labels is the power set of all weighted adaptation functions.
Note that the order relation is defined by a partial order on the sets of
weighted protocol stacks.

Another possibility is to define directly a Sobrinho’s algebra with a
specific weight function that maps a set of protocol stacks to a set of
weights. We define this algebra as follows,

𝑆𝐴𝑣𝑠𝑝 =
(

(R∞
+ ), ⊆,( ),(), ∅, ⊗, 𝜔

)

(58)

Where: 𝜔 ∶ () → (R∞
+ ) is the weight function.

In Section 5.2, we have defined a binary concatenation operation
of pairs of protocol stacks in order to model the transitive closure
operation to compute valid paths by transitive closure. Using this
operation, we can define a Sobrinho’s algebra over the sets of all pairs
of protocol stacks. This algebra is defined as follows,

𝑆𝐴𝑣𝑝 =
(

(2), ⊆,(2),(2), ∅, ⋄, id
(2)

)

(59)

Now we define the valid shortest paths Sobrinho’s algebra on the pairs
of protocol stacks by the following direct product,

𝑆𝐴𝑣𝑠𝑝 =
(


(

2 × R∞
+
)

, ⊆𝑚𝑖𝑛,
(

2 × R+
)

,


(

2 × R∞
+
)

, ∅, (⋄ × +), id
(2×R∞+ )

) (60)

The set of signatures and the set of labels are the power set of all
weighted pairs of protocol stacks and the order relation is defined by a
partial order on the sets of weighted pairs of protocol stacks.

Another idea is to define directly a Sobrinho’s algebra with a specific
weight function that maps a set of pairs of protocol stacks to a set of
weights. We define this algebra as follows,

𝑆𝐴𝑣𝑠𝑝 =
(

(R∞
+ ), ⊆,(2),(2), ∅, ⋄, 𝜔

)

(61)

Where: 𝜔 ∶ (2) → (R∞
+ ) is the weight function.

The most common violation among all of our Sobrinho’s algebras is
that the order relation is not total, as it is defined over subsets of the
power set.

5.7. Properties of the algebras

The three algebras defined in this paper fit in the quadrants model
of Gurney and Griffin (2007) as shown in Table 4. The first property

to note is that the functional approach is more generic and powerful



Journal of Network and Computer Applications 230 (2024) 103929N. Mouhoub et al.

a
p
a
S
a

o
t
t
t
t
n
h
o

f
a
a
f
t
f
c
b
a
f
i

p
s
o
(
p
c
c
S
o
w
E

w
s
t
w

o
a

(
a
t
o
e
i
p
d

6

a
c

6

v
e

p
o

D
⪯

𝑎

s
(
t
s
w
p

P

than the algebraic approach. It provides the possibility to use various
functions (which are not necessarily applied in the same way) instead
of being limited to a single common operation for the path computa-
tion (i.e., such as ⊗). It is always possible to transform an algebraic
pproach into a functional one, but the reverse is not true. The second
roperty concerns the selectivity. Algebras of functions and Sobrinho’s
lgebras require selectivity, whereas semirings do not. In the case of
obrinho’s algebras, this implies totally ordered paths. For our three
lgebras, it is only possible to have a partial order relation (i.e., ⊆𝑚𝑖𝑛).

These three algebras represent three different approaches which
ffer a variety of options available to the researcher, depending on
he specific algebraic or functional usage as well as the nature of
he operation itself. For example, the algebraic + operation can be
ransformed in a functional one with the set of functions 𝐹+ as shown in
he previous definitions. However, applying a conversion on a stack is
ot the same operation as applying an encapsulation on this same stack,
ence the use of the functional approach to represent the application
peration of adaptation functions on stacks.

If one needs an algebra based on the application of adaptation
unctions on protocol stacks, then the functional approach is more
ppropriate (e.g., as is the case for the structures defined in Eqs. (48)
nd (57)). Otherwise, the algebraic approach will suffice (as is the case
or the structures defined in Eqs. (30) and (42)). It can be noticed that
he algebras of functions defined by Eqs. (44) and (51) is transformed
rom the semirings defined by Eqs. (30) and (42), and it uses function
omposition and stack concatenation. Therefore, there is a difference
etween an algebra of functions whose set of functions is obtained from
single algebraic operation, and an algebra of functions whose set of

unctions is a mix of adaptation functions which are applied on stacks
n various ways.

Recall that a multilayer path is represented either by pair (com-
osition of functions, weights) or by pair (concatenation of protocol
tacks, weights). In this case, the algebra must contain a path extension
peration composed of two operations. One for composing functions
or concatenating stacks) and one for adding weights. However, if the
ath weights are not calculated in the same way (i.e., based on several
onstraints and constants which can intervene depending on the use
ase), then a simple addition will not be enough. In this situation,
obrinho’s algebras are better suited because they offer the possibility
f defining a specific weight function and not just a simple addition of
eights along the path (e.g., as is the case for the structures defined in
q. (55), 58 and 61).

Several examples leveraging Sobrinho’s algebras include the cases
here (i) we want to put constraints on the depth of tunnels with a

pecific weight, (ii) we want to favor flat paths rather than moving
hrough tunnels with a weight factor, and (iii) we want to put specific
eights for specific functions.

It should be reminded that in this paper, we studied the problem
f valid shortest paths where the weight is defined as a simple and
dditive metric.

The transitive closure routing algorithm defined in Mouhoub et al.
2022a,b) derives from a transitive closure algebra which is algebraic
nd uses stack composition to compute the paths (as is the case for
he structure defined in Eq. (42)) without having to rely on the use
f adaptation functions. The stack vector algorithm defined in Lamali
t al. (2019), however, derives from a stack vector algebra which
s functional and uses the application of adaptation functions on the
rotocol stacks to compute the paths (as is the case for the structures
efined in Eqs. (48) and (57)).

. Convergence properties

In this section, we show some convergence properties on the routing
lgebras proposed in the previous section. Then, we prove the iterative

∗

10

onvergence of the 𝐀 matrix using a fixed point.
.1. Monotonicity and isotonicity

In general, the convergence of routing protocols, 𝑒.𝑔., distance-
ector and path-vector protocols, is based on the two important prop-
rties of the corresponding routing algebras.

The first property, i.e., monotonicity, guarantees that the routing
rotocol converges in any network, but not necessarily to a global
ptimal solution, as shown in Sobrinho (2005).

efinition 8. Let ⊗ be the extension operation and the order relation
⊕. The operation ⊗ is monotonic if and only if,

⪯⊕ 𝑎 ⊗ 𝑏 ∀ 𝑎, 𝑏 ∈ 𝑆 (62)

We can see that all the proposed algebras in this paper do not
atisfy this property. The composition of two sets can yield a new set
possibly the empty set) which is incomparable to the first sets. And
he application of a set of adaptation functions on a set of protocol
tacks can give a new set of protocol stacks (possibly the empty set)
hich is incomparable to the first set. For this, we prove the following
roposition,

roposition 4. The direct product operator (⊙ × +) over the power set

(

̂ × R∞
+
)

is not monotonic.

Proof. We prove the proposition by using the following counterexam-
ple of composition,
{

(𝑥 → 𝑥𝑦𝑥, 3), (𝑦 → 𝑥, 2)
}

(⊙ × +)
{

(𝑥 → 𝑥𝑦, 1)
}

=
{

(𝑥 → 𝑥𝑥, 3)
}

(63)

We can see that the two sets {(𝑥 → 𝑥𝑦𝑥, 3), (𝑦 → 𝑥, 2)} and {(𝑥 →

𝑥𝑥, 3)} are not comparable by using the partial order relation of the
union-min operation defined in Section 5.3. □

We can use the same proof in the case of algebra of functions. For
example,

𝐹
(

{

(𝑥, 1), (𝑦, 2)
}

)

=
{

(𝑧, 3)
}

(64)

Where: 𝐹 = {(𝑥 → 𝑧, 𝜔 ↦ 𝜔 + 2)} ∈ ( × 𝐹+) is a set of a pair of
adaptation function and a weight function. We can observe that this
two sets of stacks are incomparable.

The second property, i.e., isotonicity, guarantees that the routing
protocol converges to a global optimal solution, as proved by Sobrinho
(2005).

Definition 9. Let ⊗ be the extension operation and the order relation
⪯⊕. The operation ⊗ is isotonic if and only if,

𝑎 ⪯⊕ 𝑏 ⟹ 𝑎 ⊗ 𝑐 ⪯⊕ 𝑏 ⊗ 𝑐 ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑆 (65)

In order to show that our algebras are isotonic, we prove the
following proposition for semirings with composition. The same proof
can be adapted to the algebras over protocol stacks.

Proposition 5. The direct product operator (⊙ × +) over the power set

(

̂ × R∞
+
)

is isotonic.

Proof. We prove the proposition by contradiction. Suppose there exists
three sets of weighted composed functions 𝐹1, 𝐹2 and 𝐹3 such that the
following property is true,
(

𝐹1 ⊆𝑚𝑖𝑛 𝐹2

)

∧
(

𝐹1(⊙ × +)𝐹3 ⊈𝑚𝑖𝑛 𝐹2(⊙ × +)𝐹3

)

(66)

By the definition of the order relation of the union-min operation,

𝐹 ⊆ 𝐹 ≡ ∃𝐹 , (𝐹 = 𝐹 ∗ ∪ 𝐹 ) ∧ (𝐹 ∪ 𝐹 ∗ = 𝐹 ) (67)
1 𝑚𝑖𝑛 2 2 1 1 𝑚𝑖𝑛 1 1
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Now, we compute the composition of 𝐹2 and 𝐹3,

𝐹2(⊙ × +)𝐹3 =
(

𝐹 ∗
1 ∪ 𝐹

)

(⊙ × +)𝐹3 =
(

𝐹 ∗
1 (⊙ × +)𝐹3

)

∪
(

𝐹 (⊙ × +)𝐹3
) (68)

So, we can see that,
(

𝐹1(⊙ × +)𝐹3
)

⊆𝑚𝑖𝑛
(

𝐹 ∗
1 (⊙ × +)𝐹3

)

∪
(

𝐹 (⊙ × +)𝐹3
)

(69)

Hence, the sets 𝐹1, 𝐹2 and 𝐹3 cannot exist. □

6.2. Iterative convergence

It is known that in classical networks without absorbing circuits
(i.e., with only positive weights) called free networks, the global op-
timal solution 𝐀∗ converges to the matrix 𝐀(𝑛−1) where 𝑛 − 1 is the
maximum length of an elementary path, as proven by Carré (1971).
This means that circuits only increase the weight of paths and therefore
will be ignored by the computation. In our case, it is not the same
situation, and as we saw in the multilayer model, circuits are allowed
and sometimes necessary for some paths i.e., constructing the necessary
protocol stack for the path to be valid. For this reason, we firstly
define the multilayer circuit and the multilayer elementary path in
the multilayer network model in order to generalize the convergence
theorem cited above.

Definition 10. A multilayer path 𝑝 = ℎ𝑖𝑣𝑖𝑓𝑖 … 𝑣𝑗−1𝑓𝑗−1ℎ𝑗𝑣𝑗 is a
multilayer circuit if and only if:

• The node 𝑣𝑖 is the same node 𝑣𝑗 , i.e., 𝑣𝑖 = 𝑣𝑗
• The two stacks ℎ𝑖 and ℎ𝑗 received by 𝑣𝑖 (or 𝑣𝑗) are the same, i.e.,
ℎ𝑖 = ℎ𝑗

Using the above definition, we now define the multilayer elemen-
tary paths.

Definition 11. A multilayer elementary path is a multilayer path in
which its circuits (if they exist) are non-multilayer circuits (i.e., such
circuits start and end with a different protocol stack).

Definition 12. A free multilayer network is a network in which all of
its circuits are non-multilayer circuits.

Lamali et al. (2018) proved some bounds on the valid shortest paths
problem in a multilayer network modeled by a Push-Down Automaton
(PDA). In this paper, we focus on the following proposition whose proof
is given in Lamali et al. (2018). It is a proof similar to the one showing
bounds on the length of the shortest word generated by a Context-Free
Grammar (CFG) in Chomsky normal form as shown in Hopcroft and
Ullman (1979):

Proposition 6. For any multilayer network  , the valid shortest path (if
any) between two nodes contains at most 𝑂(2𝑡) links, where 𝑡 = (𝜆+1)𝜆2𝑛2.

Using this proposition, we prove the following theorem,

Theorem 1. In a free multilayer network  we have:

𝐀∗ = 𝐀(𝑘) = 𝐈⊕ 𝐀⊕ 𝐀2 ⊕⋯⊕ 𝐀𝑘 (70)

Where 𝑘 is the maximum length of the multilayer elementary paths in  ,
and it is equal to 2(𝜆+1)𝜆2𝑛2 − 1.

Proof. Let  be a free multilayer network with elementary paths of
length at most 𝑘, 𝑘 ≤ 2(𝜆+1)𝜆2𝑛2 − 1. Let us suppose there is a integer
𝓁 > 0, where 𝑘 + 𝓁 is a fixed point for 𝐀∗,

𝐀∗ = 𝐀(𝑘+𝓁) = 𝐈⊕ 𝐀⊕⋯⊕ 𝐀𝑘 ⊕ 𝐀𝑘+1 ⊕⋯⊕ 𝐀𝑘+𝓁 (71)

Let 𝐀(𝑘+𝓁)
𝑖,𝑗 be the set of valid weighted composed functions from node

𝑖 to node 𝑗 of size at most 𝑘 + 𝓁, i.e., with at most 𝑘 + 𝓁 adaptation
11
functions. Let us suppose there exists a valid path represented by a
weighted composed function (𝑓, 𝜔) ∈ 𝐀𝑝

𝑖,𝑗 of 𝑝 adaptation functions such
that 𝑘 + 1 ≤ 𝑝 ≤ 𝑘 + 𝓁.

We say that (𝑓, 𝜔) is optimal iff the following hypothesis is true:
Hypothesis: Let us assume there is no weighted composed function

(𝑓 ′, 𝜔′) ∈ 𝐀𝑞
𝑖,𝑗 with 1 ≤ 𝑞 ≤ 𝑘 such that 𝑓 ′ = 𝑓 and 𝜔′ > 𝜔. However,

according to Proposition 3, if there is a valid shortest path with at least
𝑘+1 adaptation functions then there is another valid shortest path with
at most 𝑘 adaptation functions. More precisely, there exists a weighted
composed function (𝑓 ′, 𝜔′) ∈ 𝐀𝑞

𝑖,𝑗 , such that 𝑓 ′ = 𝑓 and 𝜔′ ≤ 𝜔. And by
the definition of the operation ⊕ (union-min), the composed function
𝑓 is ignored.
{

(𝑓, 𝜔),…
}

∪
𝑚𝑖𝑛

{

(𝑓 ′, 𝜔′),…
}

=
{

(𝑓 ′, 𝜔′),…
}

(72)

Therefore, the valid path represented by 𝑓 is not elementary and it
contains a multilayer circuit. Therefore, the multilayer network  is
not free. The above hypotheses does not hold, thus (𝑓, 𝜔) cannot be
optimal. Therefore, the maximum length 𝑘 of elementary multilayer
paths (𝑘 ≤ 2(𝜆+1)𝜆2𝑛2 − 1) in a free multilayer network  is a fixed
point for the global optimal solution 𝐀∗. □

This proof is made in the case of the semiring with composition,
however, the same proof can be adapted to the algebra of functions in
which we replace the matrix product 𝐗𝑘 by the 𝑘 applications of a set
of functions 𝐀 on an initial matrix 𝐗 of protocol stacks.

6.3. Optimal solution size

Recall that in a multilayer network, there can be several valid
shortest paths between a source and a destination with different com-
positions of adaptation functions which can induce different protocol
stacks. In this situation, the number of valid shortest paths between
each pair of nodes (𝑣𝑖, 𝑣𝑗 ) depends on the number of possible protocol
stacks in the network. In the following, we define this value in order
to calculate the size of the global optimal solution 𝐀∗ of the shortest
valid paths problem.

Let 𝜆 be the number of protocols and ℎ𝑚𝑎𝑥 be the maximum height
of the protocol stack reached in a multilayer network. The number of
possible protocol stacks is 𝜆ℎ𝑚𝑎𝑥 . This means that, for a pair of nodes
(𝑣𝑖, 𝑣𝑗 ), the number of valid shortest paths with each possible protocol
stack can be given by,

|𝐀∗
𝑖,𝑗 | = 𝜆 + 𝜆2 + 𝜆3 +⋯ + 𝜆ℎ𝑚𝑎𝑥 = (1 − 𝜆ℎ𝑚𝑎𝑥+1

1 − 𝜆
− 1) (73)

Therefore, in the worst case, the number of valid shortest paths for
all pairs is given by,

|𝐀∗
| = 𝑛2( 1 − 𝜆ℎ𝑚𝑎𝑥+1

1 − 𝜆
− 1) (74)

This size can induce an exponential number of operations (compo-
sition of functions or concatenation of protocol stacks) in a multilayer
routing algorithm. This bound is narrow, i.e., it is possible to find a
network where the shortest possible path reaches a stack height of
𝜆𝑛2 protocols as proven by Lamali et al. (2019). Thus, the maximum
length of a valid shortest path can be exponential as mentioned in the
previous section. Finally, these theoretical limitations are not due to
the multilayer routing algorithm but are inherent to the nature of the
problem. In the next section, we show the value limits of each bound
in practice.

7. Experimentation

We have performed simulations in order to validate the theoretical
bounds given in the previous section. We have used the Stack-Vector
(SV) algorithm and the Transitive-Closure (TC) algorithm. We did not
allow multilayer circuits in the computation of the optimal solution.
Additional results concerning these two multilayer routing algorithms
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Fig. 5. Maximum path length for the optimal solution computed by the SV and TC
lgorithms vs network size.

re available for SV in Lamali et al. (2019) and TC in Mouhoub et al.
2022a).

The simulations were performed on a workstation running an hy-
erthreaded 8-core Intel i9-11900 processor able to reach 5.2 GHz with
28 GB of RAM. The implementation has been written in ISO C++14
ith the help of the Igraph 0.8.0 library (Csárdi and Nepusz, 2005)

or generating random multilayer network topologies. All the network
opologies used for the experimentation are graphs randomly generated
y a preferential attachment mechanism defined by Barabási and Albert
1999), where each newly added node is attached to 3 existing nodes.
or a given number 𝜆 of protocols, there are 3𝜆2 possible adaptation
unctions. Each adaptation function is made available on a node with
fixed probability 𝑝 = 0.05. The input parameters of each simulation

re: the number of nodes 𝑛 in the network and the number of protocols
= 2. The output metrics are: the maximum path length, the maximum
rotocol stack height, the optimal solution size, and the algorithm
fficiency. All the result values presented in the following figures are
veraged over the result values of 100 runs.

.1. Maximum path length

Fig. 5 shows the maximum path length obtained by the optimal
olution computed by the SV and TC algorithms according to the
etwork size. We can see that in all settings, the length of the computed
aths never exceeds the maximum length of elementary multilayer
aths shown above. This means that without multilayer circuits, the
omputation of the valid shortest path solution 𝐀∗ converges after at
ost the maximum length of elementary multilayer paths as shown

n Section 6. The results are the same for both the SV and the TC
lgorithms because they both compute the optimal solution.

As we have shown in the previous section, the maximum upper
ound on the length of multilayer elementary paths depends on a
ormula including an exponent equal to ℎ𝑚𝑎𝑥+1 (this height is bounded
n networks without multilayer circuits). Fig. 6 shows the maximum
ath length obtained by the optimal solution computed by the SV and
C algorithms according to the maximum stack height in a network of
00 nodes. We can see that the length of the computed paths never
xceeds the maximum length of elementary multilayer paths shown in
ection 6.

.2. Maximum stack height

Fig. 7 shows the maximum stack height obtained by the optimal so-
ution computed by the SV and TC algorithms according to the network
ize. The results are the same for both the SV and the TC algorithms
ecause they both compute the optimal solution. These results show
hat the maximum stack height heavily impacts the maximum path
ength, and more precisely the convergence time and the size of the
alid shortest path solution 𝐀∗.
12
Fig. 6. Maximum path length for the optimal solution computed by the SV and TC
algorithms vs maximum stack height (for a 100-node network).

Fig. 7. Maximum stack height for the optimal solution computed by the SV and TC
algorithms vs network size.

Fig. 8. Matrix size of the optimal solution computed by the SV and TC algorithms
according to the network size.

7.3. Maximum routing tables size

Fig. 8 shows the size of the optimal solution (routing tables) com-
puted by the SV and TC algorithms according to the network size. We
can see that in all settings, the size of the computed solution never
exceeds the maximum number of valid shortest paths, i.e., the 𝐀∗ matrix
size shown above. These results shown that the problem is complex
and the optimal solution size can be large, especially if the maximum
stack height is set to a high value. However, an optimal solution is still
reachable in a multilayer network, by setting a small maximum stack
height which ensures a limited amount of nested tunnels.
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h

Fig. 9. Matrix size of the optimal solution computed by the SV and TC algorithms
according to the maximum stack height in a network of 100 nodes.

Fig. 10. The convergence time of the SV and TC algorithms according to the network
size.

As we have shown in Section 6, the maximum size of the optimal
solution 𝐀∗ depends on an exponent equal to the maximum allowed
eight of the protocol stack (ℎ𝑚𝑎𝑥) plus one. Fig. 9 shows the size of

the optimal solution (which translates into routing table size) computed
by the SV and TC algorithms according to the maximum stack height
in a network of 100 nodes. We can see that the size of the computed
solution never exceeds the maximum number of valid shortest paths,
i.e., the 𝐀∗ matrix size shown above.

7.4. Time efficiency of the algorithms

Fig. 10 shows the total time required by both the SV and the TC
algorithms to compute the routing tables according to the network size.
We call it the convergence time of the algorithm. We can see that the TC
algorithm is more efficient than the SV algorithm, and can be up to 63%
faster when executed on 100-node networks. These results show that
even though these two algorithms are capable of finding the optimal
solution for routing in multilayer networks (as proven by the algebras
defined in the previous subsections), they can still exhibit disparate
performances due to their different time complexities.

8. Real-world applications

Real-world cases where automatic routing in large scale multipro-
tocol networks could be leveraged include large IoT mesh and sensor
networks where several protocols might be available and where net-
work virtualisation is needed for multi-tenant scenarios. This can also
be the case for 5G+ cellular networks which implement network slicing.
Automatic tunneling could be very useful in mobile ad hoc networks
13
with high dynamics and in cellular networks with high end device
mobility, as manually setting them up could be unmanageable.

Algorithms for multilayer network routing protocols such as Lamali
et al. (2019), Mouhoub et al. (2022a), would typically occur when
several virtual networks such as VPNs and/or protocols (such v4/v6)
are layered one upon another. They could be used for intra-domain
routing inside large telco networks. Automatic tunneling configuration
depends on the available architecture. In a standard architecture, based
on routers running fully distributed protocols, each router must run a
specific daemon able to emit tunnel construction requests and able to
receive and process such construction requests. In an SDN architecture,
the controller is in charge of centrally computing dynamic tunnels as
it knows the full network topology. Once defined, tunnel rules may be
pushed in the related SDN switches for setting up the tunnels. Current
algorithms are based on a proactive routing approach. This means
that routing tables are filled and shall be updated (in case of network
dynamics) before packets may travel from source to destination.

Multilayer inter-domain routing would require telecom operators to
make multipartite agreements in order to share some parts of their
multilayer routing information (links, tunnel endpoints) in order to
improve the global routing efficiency of these algorithms. Operators not
willing to share their adaptive function information could drastically
reduce the number of valid paths available and could lead to a situation
where no paths are available for some source–destination pairs.

9. Conclusion and future work

Routing algebras are powerful abstractions for studying the conver-
gence properties of a routing protocol. They have been developed and
used for a long time on classic routing protocols (e.g., Distance-Vector
and Path-Vector). However, many networks today are heterogeneous
and multilayered, allowing routing with automatic tunneling. In order
to bridge this gap, we studied the application of routing algebras to
heterogeneous and multilayer networks. For this, we defined three
routing algebras for path computation with tunnels: a semiring, an
algebra of functions and a so-called Sobrinho’s algebra. We showed that
the proposed routing algebras are isotonic and non-monotonic with a
partial order. We also proposed a fixed point for these algebras and we
proved the iterative convergence to the optimal solution of the valid
shortest paths (𝑣𝑠𝑝) problem.

For future work, we plan to study the asynchronous convergence
of the stack-vector protocol by applying, if possible, the asynchronous
convergence theorem of Daggitt et al. (2018) and implementing it with
the Agda routing library (Daggitt et al., 2022). We also aim to use
the lexicographic product defined by Gurney and Griffin (2007) and
refined by Dynerowicz and Griffin (2013) to study various QoS metrics
for Equal-Cost Multi-Path routing (ECMP), in the case of routing with
automatic tunneling.
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Appendix A. Acronyms

Table 5 describes the meaning of various acronyms used throughout
this paper.

Table 5
Acronyms for the Structures.

Acronym Meaning

𝑆𝑅 Semiring structure
𝑆𝑅𝑠𝑝 Shortest path semiring
𝑆𝑅𝑣𝑝 Valid path semiring
𝑆𝑅𝑣𝑠𝑝 Valid shortest path semiring

𝐴𝐹 Algebra of functions structure
𝐴𝐹𝑠𝑝 Shortest path algebra of functions
𝐴𝐹𝑣𝑝 Valid path algebra of functions
𝐴𝐹𝑣𝑠𝑝 Valid shortest path algebra of functions

𝑆𝐴 Sobrinho’s algebra structure
𝑆𝐴𝑠𝑝 Shortest path Sobrinho’s algebra
𝑆𝐴𝑣𝑝 Valid path Sobrinho’s algebra
𝑆𝐴𝑣𝑠𝑝 Valid shortest path Sobrinho’s algebra
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