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Abstract
Polar regions are relatively isolated from human activity and thus could offer insight into 
anthropogenic and ecological drivers of the spread of antibiotic resistance. Plasmids are 
of	particular	interest	in	this	context	given	the	central	role	that	they	are	thought	to	play	
in	the	dissemination	of	antibiotic	resistance	genes	(ARGs).	However,	plasmidomes	are	
challenging to profile in environmental samples. The objective of this study was to com-
pare	various	aspects	of	the	plasmidome	associated	with	glacial	ice	and	adjacent	aquatic	
environments	across	the	high	Arctic	archipelago	of	Svalbard,	representing	a	gradient	of	
anthropogenic inputs and specific treated and untreated wastewater outflows to the 
sea.	We	accessed	plasmidomes	by	applying	enrichment	cultures,	plasmid	isolation	and	
shotgun	Illumina	sequencing	of	environmental	samples.	We	examined	the	abundance	
and	diversity	of	ARGs	and	other	stress-	response	genes	that	might	be	co/cross-	selected	
or	 co-	transported	 in	 these	 environments,	 including	 biocide	 resistance	 genes	 (BRGs),	
metal	resistance	genes	(MRGs),	virulence	genes	(VGs)	and	integrons.	We	found	striking	
differences	between	glacial	ice	and	aquatic	environments	in	terms	of	the	ARGs	carried	
by	plasmids.	We	found	a	strong	correlation	between	MRGs	and	ARGs	in	plasmids	in	the	
wastewaters	and	fjords.	Alternatively,	 in	glacial	 ice,	VGs	and	BRGs	genes	were	domi-
nant,	suggesting	that	glacial	 ice	may	be	a	repository	of	pathogenic	strains.	Moreover,	
ARGs	were	not	found	within	the	cassettes	of	integrons	carried	by	the	plasmids,	which	
is	suggestive	of	unique	adaptive	features	of	the	microbial	communities	to	their	extreme	
environment. This study provides insight into the role of plasmids in facilitating bac-
terial	adaptation	to	Arctic	ecosystems	as	well	as	in	shaping	corresponding	resistomes.	
Increasing	human	activity,	warming	of	Arctic	 regions	and	associated	 increases	 in	 the	
meltwater	run-	off	from	glaciers	could	contribute	to	the	release	and	spread	of	plasmid-	
related	genes	from	Svalbard	to	the	broader	pool	of	ARGs	in	the	Arctic	Ocean.
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1  |  INTRODUC TION

The	 emergence	 and	 spread	 of	 antimicrobial	 resistance	 (AMR)	
is	 among	 the	 greatest	 threats	 to	 global	 health	 (World	 Health	
Organization	[WHO],	2021).	Widespread	use	and	misuse	of	anti-
microbials in humans, farm animals and crop production increases 
the selection pressure for the survival of resistant strains and can 
contribute	to	the	mobilization	of	antibiotic	resistance	genes	(ARGs)	
via	horizontal	gene	transfer	 (HGT).	Other	antimicrobials,	such	as	
heavy metals, are also commonly found in the environment and 
can	 impose	 similar	 ecological	 pressures	 (Levy	&	Marshall,	2004; 
Wales	&	Davies,	2015).	Whilst	most	 efforts	 to	 stem	 the	 spread	
of	AMR	have	 focused	on	 the	 human	health	 and	 agriculture	 sec-
tors, it is now clear that important environmental dimensions are 
also at play. Both biological (e.g., application of human/animal 
fecal material) and chemical (heavy metal contamination) inputs 
to affected environments, including water and soil, can contribute 
to	 the	 transmission	 and	 spread	 of	AMR	 (Perry	&	Wright,	2013). 
Additionally,	 climate	 change—in	 particular	 increasing	 tempera-
tures—could	 increase	microbial	 growth	 rates	 and	 expand	 niches	
available	 for	 pathogen	 survival,	 whilst	 increased	 frequency	 and	
intensity of storms, and flooding, as well as increased global 
human traffic, could contribute to the increased dispersal of var-
ious	 resistant	 bacteria	 and	 their	 ARGs	 to	 foreign	 environments	
(Frost	et	al.,	2019;	Global	Leaders	Group	[GLG]	on	Antimicrobial	
Resistance	[AMR],	2021).

The	diversity	and	abundance	of	ARGs	in	both	anthropogenically	
influenced as well as pristine environments suggests that reser-
voirs	of	ARGs	are	diverse	and	widespread	(Berendonk	et	al.,	2015; 
Li et al., 2022;	 Makowska	 et	 al.,	 2020;	 Makowska-	Zawierucha	
et al., 2022). Pristine environments are especially pertinent for as-
sessing the natural (i.e., not anthropogenic) state of resistance before 
the modern mass production and release of antibiotics, antimicro-
bials	and	other	pollutants	 (Allen	et	al.,	2009; Pruden et al., 2006). 
However,	 even	 remote	 environments,	 such	 as	 Arctic	 glaciers	 and	
fjords, are now also being found to be polluted by heavy metals 
and	organic	compounds	(Łokas	et	al.,	2016;	Makowska-	Zawierucha	
et al., 2022). Recent studies have, for instance, indicated the occur-
rence of various pollutants originating from both local (such as in-
dustry,	tourism	and	scientific	activity)	and	distant	sources	(Gorecki	
et al., 2021;	McCann	 et	 al.,	2019).	 The	Arctic	 environment	 there-
fore provides the opportunity to observe the combined effects of 
increasing	human	activity	and	climate	change	on	AMR	spread.	The	
intersections of naturally occurring phenomenon (including distinct 
seasonality and the escalation of biological activity during summer) 
and anthropogenic factors (such as climate change and the intensi-
fying	tourism	industry	in	the	Arctic)	make	the	study	of	AMR	spread	
in	the	Arctic	particularly	vital.

Global	 warming	 is	 inducing	 widespread	 glacial	 melting	 and	
retreat, which has the potential to release ancient (from old ice 
layers) or modern (from the snow overlaying glaciers) genetic di-
versity	to	the	environment	(Mao	et	al.,	2023;	Segawa	et	al.,	2013). 
At	 the	 same	 time,	 wastewater	 discharge	 and	 other	 human	 inputs	

also release microbes and other pollutants such as biocides and 
metals	 to	 Arctic	 fjords	 and	 other	 downstream	 environments,	 in	
turn	 increasing	 the	 gene	pool	 of	 the	marine	 resistome	 (Larsson	&	
Flach,	2022;	Makowska-	Zawierucha	et	al.,	2022; Pouch et al., 2023; 
Sajjad	et	al.,	2020).	Meanwhile,	the	so-	called	Atlantification	of	the	
Arctic	(the	ingress	of	warm	ocean	water	currents	into	Arctic	waters	
including oceans and fjords) will likely transport biotic and abiotic 
elements including pollutants from low latitude and boreal regions 
to	pristine	high-	latitude	ecosystems	(Csapó	et	al.,	2021;	Wichmann	
et al., 2019). Ocean currents could correspondingly facilitate the 
global transport of antibiotic resistance (Yang et al., 2021), as has 
been	reported	with	microplastic	particles—which	provide	a	vehicle	
for	dispersal	of	drug-	resistant	bacteria	carried	by	ocean	currents	to	
the	deep	sea	(Stenger	et	al.,	2021).

Horizontal	 gene	 transfer	 encompasses	 three	main	 processes	
by	which	bacteria	can	share	their	genes	and	acquire	novel	traits,	
specifically:	 transformation	 (the	 uptake	 of	 free	DNA),	 transduc-
tion (gene transfer mediated by bacteriophages) and conjugation 
(gene transfer by means of plasmids or integrative conjugative el-
ements)	(Frost	et	al.,	2005;	Rodríguez-	Beltrán	et	al.,	2021).	Mobile	
genetic	 elements	 (MGEs),	 DNA	 elements	 that	 can	 move	 within	
genomes or between bacterial cells; such as plasmids, bacterio-
phages, integrative conjugative elements, transposons, insertion 
sequence	 (IS)	elements,	 gene	cassettes	and	genomic	 islands,	 are	
key	drivers	of	HGT	(Figure 1)	(Frost	et	al.,	2005;	Rodríguez-	Beltrán	
et al., 2021). Plasmids are of particular interest because of the role 
that	they	play	in	disseminating	ARGs	between	and	across	species,	
including	pathogens	(Levy	&	Marshall,	2004;	Martínez	et	al.,	2015; 
Stalder	et	al.,	2019). Plasmids are autonomously replicating circu-
lar	or	linear	DNA	molecules	that	can	stably	coexist	with	chromo-
somes	and	that	commonly	carry	ARGs	and	other	genes	encoding	
resistance to selective agents, such as heavy metals and disin-
fectants	 (Gillings,	2013;	 Gorecki	 et	 al.,	2021;	 Rodríguez-	Beltrán	
et al., 2021).	 Antibiotic	 resistance	 genes	 and	 metal	 resistance	
genes	 (MRGs)	often	 co-	occur	on	MGEs	 (Li	 et	 al.,	2017;	Wales	&	
Davies, 2015).	 Plasmid	 mobilization	 is	 also	 of	 particular	 signifi-
cance in general bacterial evolution, especially in terms of adapta-
tion to changing environmental conditions, such as those induced 
by	climate	change	(Dziewit	et	al.,	2015;	Gorecki	et	al.,	2021). The 
presence of contaminants in the environment including antibiot-
ics,	 quaternary	 ammonium	 compounds,	 and	 other	 biocides	 and	
metals	 (e.g.,	 zinc	 and	 copper)	 can	 create	 co-	selective	 pressures,	
whereby a single agent can select for resistance to multiple agents 
and	 other	 antimicrobials	 because	 of	 the	 physical	 co-	location	 of	
the	genes	conferring	resistance	(Wales	&	Davies,	2015). There are 
many	reports	indicating	the	transfer	of	plasmid-	encoded	genes	for	
resistance	 to	 clinically	 important	 antibiotics	 such	 as	 quinolones,	
carbapenems and colistin, in Escherichia coli and Klebsiella pneu-
moniae, other Enterobacteriaceae and Pseudomonas aeruginosa iso-
lated from raw meat, farm animals (Liu et al., 2016),	inpatients	(Ma	
et al., 2022;	Martínez-	Martínez	et	al.,	1998;	Quan	et	al.,	2023) and 
aquatic	environments,	raising	serious	concerns	about	its	possible	
cross-	environment	dissemination	(Zhu	et	al.,	2020).
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Integrons, which are often located on plasmids, also play an im-
portant	 role	 in	 the	 spread	 of	 multidrug	 resistance	 (Mazel,	 2006). 
Integrons	are	DNA	fragments	equipped	with	gene	cassettes	that	are	
capable	of	capturing	a	multitude	of	ARGs	and	other	genes	conferring	
resistance to antimicrobials, including disinfectants and heavy met-
als (Figure 1)	 (Gillings,	2014;	Mazel,	2006).	 In	Arctic	environments,	
integrons have been implicated in the capture of genes encoding pro-
teins	thought	to	facilitate	adaptation	of	bacteria	to	extreme	environ-
ments	(Makowska	et	al.,	2020;	Makowska-	Zawierucha	et	al.,	2022). 
However,	data	on	the	abundance	of	genes	located	in	the	structure	
of	integrons	in	plasmidomes	from	Arctic	environments	are	missing.

The	widespread	application	of	metagenomic	sequencing	has	of-
fered transformative new insights into the nature of environmen-
tal	resistomes	(Kirstahler	et	al.,	2021; Norman et al., 2014;	Stalder	
et al., 2019); however, typical approaches tend to neglect the plas-
midome	(Gillings,	2013;	Martínez	et	al.,	2017).

The	 aim	 of	 this	 study	 was	 to	 explore	 antibiotic	 resistance	
spread	 across	 human-	affected	 and	 pristine	 environments	 in	 the	
high	 Arctic	 by	 comparing	 various	 aspects	 of	 the	 plasmidome	
across a gradient of pristine to anthropogenically affected en-
vironments	 in	 Spitsbergen—the	 largest	 island	 in	 Arctic	 Svalbard	
archipelago	(European	Arctic).	The	release	of	ca.	30 km3 of fresh-
water	from	glaciers	and	snow	annually	(Hagen	et	al.,	2003), as well 
as	the	presence	of	polar	stations	and	settlements,	makes	Svalbard	

a fitting study area for the investigation of links between climate 
induced shifts, microbial resistance and anthropogenic activity 
in	 the	Arctic.	We	analyzed	plasmidomes	across	distinct	environ-
ments comprising: (i) surface glacial ice cores representing an en-
vironment with presumably minimal biological activity, relatively 
less affected by anthropogenic activities and likely hosting mod-
ern	and	ancient	genetic	material;	(ii)	rivers,	fjords	and	aquatic	sed-
iments impacted by various levels of anthropogenic input; and (iii) 
treated and untreated wastewater outflows from settlements in 
Svalbard,	 representing	specific	human	 inputs.	We	apply	metage-
nomic	sequencing	of	the	plasmidome	fraction,	which	was	accessed	
by	 first	employing	an	enrichment	step	on	generalized	heterotro-
phic	 bacterial	 media	 and	 applying	 a	 plasmid-	specific	 extraction	
protocol.	We	 compared	 relative	 occurrences	 of	 stress-	response	
genes	 in	plasmidomes	 across	 the	environments,	 including	ARGs,	
biocide	resistance	genes	(BRGs),	MRGs	and	virulence	genes	(VGs).	
Specifically,	we	assessed	the	role	of	plasmids	in	the	dissemination	
of	AMR	in	Arctic	environments	over	a	range	of	anthropogenic	im-
pact.	This	study	provides	insight	into	natural	baselines	of	AMR	and	
how anthropogenic activities influence the contribution of plas-
mids	 and	 associated	 integrons	 to	Arctic	 resistomes.	 Further,	we	
found evidence that melting glaciers contribute plasmids carry-
ing	a	diverse	array	of	ARGs,	BRGs	and	VGs	to	neighboring	aquatic	
environments.

F I G U R E  1 Hierarchical	structure	
of mobile genetic elements involved in 
horizontal	gene	transfer.	The	circular	
gene cassettes are inserted at the attI site 
into the integron structure. The intI gene 
encodes integrase. The promoter for intI 
gene is Pint	and	for	cassette-	associated	
genes the promotor is Pc.	An	integron	may	
be inserted into a transposon structure, 
which in turn may be located in a plasmid. 
Figure	created	in	BioRe nder. com.	IS,	
insertion	sequence;	ORF,	open	reading	
frame.
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2  |  MATERIAL S AND METHODS

2.1  |  Study sites and sampling

Samples	 were	 collected	 during	 three	 summer	 seasons	 (2020,	
2021,	2022)	 from	Spitsbergen,	 the	 largest	 island	of	 the	Svalbard	
Archipelago	 (Figure 2). In total, 20 samples were collected 
(Table S1). To simultaneously investigate the impact of the melting 
cryosphere and human activities on the resistome, sampling was 
conducted in contrasting systems along two gradients of anthro-
pogenic influence: (i) the Longyearbyen city gradient (from gla-
ciers,	through	the	city	with	approximately	2400	inhabitants,	to	the	
fjord): a transect of glacial ice, river water and sediments, wastewa-
ter, and fjord waters and sediments, and (ii) the wastewater treat-
ment	plant	(WWTP)	outfall	gradient	in	Ny-	Ålesund,	a	permanent	
research	 settlement	with	a	maximum	summertime	population	of	
approximately	150	people	in	the	northwest	of	the	Svalbard	archi-
pelago. The Longyearbyen transect offers a gradient through the 
most	 populated,	 industrialized	 and	 touristed	 capital	 of	 Svalbard,	
spanning valley glaciers (Larsbreen and Longyearbreen) that feed 
the Longyearelva River, which crosses the city and flows into 

the	 fjord	of	Adventfjorden.	Untreated	wastewater	 from	 the	 city	
is	 released	 to	 Adventfjorden	 approximately	 2-	km	 offshore	 from	
Longyearbyen,	 via	 a	 sewerage	 effluent	 approximately	 50–60 m	
below	the	water	surface.	For	the	Longyearbyen	transect,	sampling	
was carried out at (i) glaciers impacted by humans (Longyearbreen 
Glacier	 and	 Larsbreen	 Glacier	 located	 near	 Longyearbyen	 city,	
both visited by tourists, scientists and students from a local uni-
versity) where ice cores were collected (in total eight ice cores), (ii) 
the Longyearelva river catchment (emanating from Longyearbreen 
and powered by streams from Larsbreen) where freshwater and 
sediments	were	collected	(7 L	of	water,	1 kg	of	sediments),	(iii)	the	
seashore,	where	marine	water	and	sediments	were	collected	(7 L	
of	water,	1 kg	of	sediments),	and	 (iv)	Longyearbyen's	wastewater	
outflow	(5 L	of	bottom	water),	then	(v)	crossing	the	Adventfjorden	
(5 L	 of	 bottom	water)	 until	 reaching	 the	 Isfjorden	 system	 (5 L	 of	
bottom	water)—the	 largest	 fjord	 on	western	 Spitsbergen	 (at	 the	
border	between	Adventfjorden	and	Isfjorden).

The	water	from	the	bottom	of	Adventfjorden	(water	collected	
directly above the bottom of the fjord) was collected from a rubber 
boat	by	using	a	5-	L-	volume	water	sampler	deployed	to	the	bottom	
of	the	fjord	using	rope	(60 m	water	depth).	Ice	cores	were	collected	

F I G U R E  2 Map	of	Svalbard	indicating	sampling	sites.	Base	map	image	provided	by	TopoSvalbard	(Norwegian	Polar	Institute).
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by	using	a	Kovacs	coring	drill	(Mark	II,	Ø = 7.5 cm).	Each	core	was	
40 cm	 in	 length.	 In	 the	 laboratory,	 the	 upper	 5–10 cm	of	 the	 ice	
core	 (so-	called	weathering	crust)	was	cut	and	discarded	to	avoid	
windblown contamination and focusing on biological material 
stored	 in	glacial	 ice.	Although	 ice	 is	considered	 largely	 imperme-
able, water on the surface of glaciers could percolate slowly inside 
the	glacier	through	veins,	incisions	and	channels.	The	flux	of	water	
into the below surface layers depends on the type of ice and me-
teorological	conditions	 including	rain	 (Fountain	&	Walder,	1998). 
For	example,	the	Longyearbreen	Glacier	is	a	cold-	type	glacier	with	
supraglacial (on ice) and englacial (in ice) channels, and incisions 
in	the	ice	(Gulley	et	al.,	2009;	Sevestre	et	al.,	2015), which could 
promote accumulation of pollutants in microconduits of glacial ice. 
The presence of water veins, the wetness of the ice, and finally 
the type of glacier could promote seeping of surface meltwater 
in specific areas of the glacier (Brown et al., 2017;	 Fountain	 &	
Walder,	1998), then stored contaminants already deposited on the 
ice	surface.	Therefore,	we	decided	to	drill	cores	 in	near-	city	and	
remote glaciers.

For	the	WWTP	gradient	in	Ny-	Ålesund,	we	collected	samples	
from	the	WWTP	outfall,	Kongsfjord,	north-	west	Svalbard	(a	small	
permanent settlement of international scientific and research sta-
tions)	in	order	to	compare	the	effects	of	WWTP	and	no-	treatment	
plant	 on	 the	marine	 resistome.	 (i)	 Raw	 sewage	 (2 L),	 (ii)	 effluent	
(2 L),	and	(iii)	surface	water	from	Kongsfjord	(2 L),	which	is	the	efflu-
ent	receiver,	were	collected.	As	a	reference	sample	without	direct	
anthropogenic impact, the marine terminating Nordenskiöldbreen 
Glacier	 was	 sampled	 (two	 ice	 cores).	 Nordenskiöldbreen	 is	 the	
least visited and the largest glacier among those investigated in 
this study.

The characteristics of the collected material and the location are 
presented in Table S1.

2.2  |  Accessing and extracting plasmid DNA

Due to challenges isolating plasmids from environmental sam-
ples, we employed an enrichment step prior to plasmid isolation. 
Water	 samples	 were	 filtered	 through	 0.45-	μm	 and	 then	 0.2-	μm 
cellulose	nitrate	 filters	 (Sartorius	Stedim):	Adventfjorden	seashore	
(2 L),	 Longyearelva	 (2 L),	 wastewater	 outflow	 in	 Longyearbyen	
(1 L),	 Adventfjorden	 I,	 II	 and	 Isfjorden,	 raw	 sewage,	 effluent	 and	
Kongsfjord	as	well	as	from	Larsbreen,	Longyearbreen	(each	0.8 L,	ice	
cores	after	thawing	at	3°C)	and	Nordenskiöldbreen	(3.3 L,	ice	core	
after thawing at 3°C). The filters were washed with sterile water and 
after	centrifugation	the	pellet	was	inoculated	onto	200 mL	of	R2A	
medium	 for	 samples	 from	 glaciers	 and	Brain	Heart	 Infusion	 (BHI)	
Broth	 for	 remaining	 samples	 and	 enriched	 for	 48 h	 at	 22°C	 on	 a	
shaker	at	110 rpm	according	to	the	protocol	of	Gorecki	et	al.	(2021).

After	 enrichment,	 plasmid	 DNA	 (pDNA)	 extraction	 was	 per-
formed	 using	 a	 GeneJET	 Plasmid	 Midiprep	 Kit	 (ThermoFisher	
Scientific™).	 pDNA	 from	 sediment	 samples	 (Longyearelva,	
Adventfjorden	seashore)	was	isolated	from	5 g	(wet	weight)	of	each	

sample.	Sediment	samples	were	suspended	in	50 mL	of	sterile	water,	
vortexed	for	30 min	with	sterile	glass	beads	on	a	rotor	at	120 rpm,	
then	the	suspension	was	centrifuged	for	2 min	and	5 mL	was	 inoc-
ulated	 into	 200 mL	 of	 BHI	 Broth	 for	 enrichment,	 and	 pDNA	 was	
extracted	 from	 the	pellet	 as	described	above.	To	 remove	possible	
traces	of	genomic	DNA,	the	precipitate	was	treated	with	plasmid-	
safe	 ATP-	dependent	 DNase	 (Biosearch™	 Technologies)	 according	
to	the	manufacturer's	instructions.	The	pDNA	was	quantified	using	
a	Qubit	 3	 Fluorometer	 (ThermoFisher	 Scientific)	 according	 to	 the	
manufacturer's	instructions.

2.3  |  Illumina high- throughput sequencing and 
sequence data analysis

Plasmidome	 sequencing	 libraries	 were	 prepared	 from	 1 μg of 
input	DNA	fragmented	to	200 bp	using	a	Covaris	E210	sonicator	
(Covaris,	USA).	DNA	libraries	were	prepared	using	a	NEBNext	Ultra	
II	DNA	Library	Prep	Kit	for	Illumina	(New	England	Biolabs,	USA).	
DNA	libraries	were	sequenced	by	Genomed	SA	company	(Warsaw,	
Poland)	on	an	Illumina	NovaSeq	6000	system,	using	a	paired-	end	
read	length	of	2 × 150 bp	with	the	Illumina	NovaSeq	6000	reagent	
kits	(Illumina,	USA).	The	number	of	raw	reads	reached	around	50 G	
base-	pairs	 per	 library.	 Adapter	 sequences,	 primers	 and	 poly-	A	
tails	were	removed	using	the	Cutadapt	version	4.0	(Martin,	2011). 
Error correction based on kmer method were conducted using 
Lighter	 version	 1.1.2	 (Song	 et	 al.,	2014). Reads were assembled 
using	 metaplasmidSPAdes	 version	 3.15.5	 (Antipov	 et	 al.,	 2019) 
with default settings. Prodigal version 2.6.3 was used to pre-
dict	 protein-	coding	 genes	 among	 assembled	 contigs.	 The	 NCBI	
Antimicrobial	 Resistance	 Gene	 Finder	 (AMRFinderPlus)	 version	
3.11.11	(Feldgarden	et	al.,	2021) and the accompanying database 
were	used	to	find	stress-	response	genes	and	VGs.	Integrons	were	
detected	using	Integron	Finder	version	1.5.1	(Néron	et	al.,	2022). 
Gene	cassettes	located	in	the	integrons	were	annotated	using	the	
INTEGRALL	 database	 (Moura	 et	 al.,	2009). If the gene cassette 
structure (integron integrase nearby attC site/s) was not assem-
bled,	genes	were	considered	as	non-	localized	in	integrons.

Heatmap	 visualization	was	 conducted	 in	 R	 version	 4.3.1	 using	
ggplot2	version	3.4.2	(Wickham,	2009) and reshape2 version 1.4.4 
(Wickham,	2007) packages and further graphically edited in Corel 
Draw 2021.

2.4  |  Statistical analysis

The formula used to calculate the abundance of genes (Xiong 
et al., 2018) was as follows:

where Nmapped reads is the number of reads relative to the target gene 
ORF,	Lreads	 is	the	sequence	length	of	reads,	Ltarget gene represents the 

Abundance (coverage × ∕Gb) =
∑n

1

Nmapped reads × Lreads ∕Ltarget gene

S
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ORF	length	for	the	target	gene,	and	S	is	the	sequencing	data	size	(Gb).	
The	Mann–Whitney	test	was	employed	to	assess	statistical	significance	
in	the	differences	in	the	medians	of	ARG	abundances	across	various	
environmental	samples	(Hu	et	al.,	2013).	All	statistical	analyses	were	
conducted using Python 3.6, with the implementation of the numpy 
and	pandas	libraries.	Furthermore,	Spearman's	correlation	was	utilized	
to	examine	the	relationship	between	stress-	response	and	VGs.	In	order	
to detect shared genes in the plasmidome from environments with dif-
ferent anthropogenic pressures, Venn diagrams were created using 
the R programming language with the help of the following libraries: 
tidyverse, hrbrthemes, tm and proustr. Principal component analysis 
(PCA),	in	conjunction	with	vector	projection,	allowed	us	to	distinguish	
the	locations	and	types	of	plasmid-	encoded	genes	(ARGs,	BRGs,	VGs,	
MRGs,	and	integrons)	dominant	in	these	locations	and	characterize	the	
relationships	among	them.	PCA	reduces	data	dimensionality	by	rep-
resenting variables with linear combinations of variables known as PC 
modes or loadings. These loadings are both orthogonal to one another 
and	capture	the	maximum	possible	variance	from	the	original	dataset.	
In	addition	to	PCA,	vector	projection	was	applied	to	explore	the	rela-
tionship between the selected variables. Vector projection allows for 
the	examination	of	how	the	VGs,	MRGs,	and	integrons	align	with	the	
PCA	space	defined	by	the	ARGs	and	BRGs.	Each	PC	mode	in	PCA	rep-
resents a linear combination of variables, whilst the vector projection 
reveals	how	the	additional	variables	(VGs,	MRGs,	and	integrons)	align	
with	this	reduced-	dimensional	space.

2.5  |  Direct DNA extraction and quantitative PCR 
for relative abundance calculations

Metagenomic	DNA	isolations	were	performed	from	replicates	of	the	
above	samples	(same	volume	of	water	samples	and	1 g	of	sediment	
samples)	using	the	DNeasy	PowerSoil	Pro	Kits	(Qiagen),	according	to	
manufacturer's	 instructions.	Quality	of	the	obtained	DNA	samples	
was assessed fluorometrically and by electrophoresis.

Gene	 quantities	were	 normalized	 to	 the	 16S	 rRNA	 gene	 copy	
numbers	 measured	 in	 whole	 community	 DNA	 using	 Droplet	 dig-
ital	 PCR	 (ddPCR)	 with	 primer	 sequences	 previously	 described	 by	
Maeda	et	al.	(2003)	and	relative	abundance	values	were	expressed	
as	 percentages	 and	 calculated	 as	 follows:	 [(abundance/16S	 rRNA	
gene	 copy	 number) × 4 × 100%]	with	 four	 being	 the	 average	 num-
ber	of	copies	of	the	gene	encoding	16S	rRNA	per	bacterial	cell,	ac-
cording	to	the	ribosomal	RNA	database	(Stalder	et	al.,	2012). Each 
ddPCR was prepared in three technical replications. Reactions were 
conducted	 in	a	QX200	Droplet	Digital	PCR	System	 (Bio-	Rad)	with	
QX200	ddPCR	EvaGreen	Supermix	(Bio-	Rad).

3  |  RESULTS

3.1  |  Stress- response genes

A	 total	 of	 67	 ARGs	 were	 identified	 in	 the	 plasmidome	 across	 all	
samples,	with	most	conferring	multidrug	resistance	(efflux	pump)	or	
resistance to β-	lactams,	aminoglycosides,	macrolides,	tetracyclines,	
fosfomycin,	glycopeptides,	quinolones,	streptothricin,	sulfonamides,	
lincosamides, streptogramins, or trimethoprim (Figure 3; Table S4). 
This analysis revealed the presence of three resistance mechanisms: 
antibiotic	inactivation,	antibiotic	efflux	and	antibiotic	target	altera-
tion/protection (Table S3).	 Furthermore,	 four	ARGs	 in	 the	 plasmi-
dome were shared across the greatest number of samples, that is, 
satA, bla1, bla2, and blaIII (Figure S1).

We	 found	 that	 both	 the	diversity	 of	ARGs	 and	 the	number	of	
classes	 of	 antibiotics	 to	 which	 the	 ARGs	 encoded	 resistance	 in-
creased with increasing anthropogenic inputs (Figure 4a,b).	For	the	
Longyearbyen city gradient, in the glacial environment, resistance to 
β-	lactams	and	streptothricin	was	found	to	be	dominant	(Figure 4a,b). 
In the wastewater outflow in Longyearbyen, resistance to tetra-
cyclines and macrolides was found to be dominant, whilst in the 
Adventfjorden	receiving	wastewater,	ARGs	encoding	 resistance	 to	
β-	lactams	 and	 aminoglycosides	 and	 tetracyclines	 were	 dominant	
(Figure 4b).	 In	 the	WWTP	 outfall	 gradient,	 in	 effluent	 discharged	
into	the	fjord,	ARGs	encoding	resistance	to	β-	lactams	were	found,	
as	well	 as	ARGs	encoding	 resistance	 to	macrolides,	 streptothricin,	
sulfonamides, and tetracyclines. In the water receiving the effluent, 
resistance to macrolides and aminoglycosides was found to be dom-
inant (Figure 4b).

A	total	of	41	MRGs	were	identified	in	the	plasmidome,	confer-
ring resistance to 10 metals, with the dominant resistance cate-
gories being mercury, copper, silver, arsenic, and nickel (Figure 3; 
Table S4).	Moreover,	merA conferring resistance to mercury was 
shared in the largest number of samples (Figure S1). Our data in-
dicate that water from the river as well as raw sewage environ-
ments	contained	the	greatest	diversity	of	MRGs	(Figure 5a,b). No 
MRGs	was	detected	in	wastewater	outflow	or	Nordenskiöldbreen	
ice	core.	In	addition,	a	total	of	three	BRGs	that	encode	resistance	
to	quaternary	ammonium	compounds	(qacH, qacEdelta1) and smdB 
encoding	a	multidrug	efflux	pump	ABC	were	identified	in	the	plas-
midome (Figure 3).	Furthermore,	qacH was shared among the larg-
est number of environments.

The	relative	abundance	of	stress-	response	genes	varied	among	
sampling	sites.	The	relative	abundance	of	ARGs	ranged	from	0.1%	
for lso(A)	 gene	 in	 water	 of	 Longyearelva,	 blaTEM-	116 in water of 
Adventfjorden	 seashore,	bla1, msrC, ermD, aac(6′)- I in raw sewage 

F I G U R E  3 Occurrence	of	stress-	response	and	virulence	genes	(VGs)	found	in	Arctic	plasmidomes:	Longyearbyen	city	gradient—Larsbreen	
ice	core	(pLarsIC),	Longyearbreen	ice	core	(pLyrIC),	water	of	Longyearelva	(pLw),	sediment	of	Longyearelva	(pLs),	water	of	Adventfjorden	
seashore	(pAFw),	sediment	of	Adventfjorden	seashore	(pAFs),	wastewater	outflow	in	Longyearbyen	(pWLyr),	bottom	water	of	Adventfjorden	
I	(pAFI),	bottom	water	of	Adventfjorden	II	(pAFII),	bottom	water	of	Isfjorden	(pIF);	WWTP	outfall	gradient—raw	sewage	from	WWTP	in	Ny-	
Ålesund	(pWNA1),	effluent	from	WWTP	in	Ny-	Ålesund	(pWNA2),	surface	water	of	Kongsfjorden	(pWNA3)	and	Nordenskiöldbreen	ice	core	
(pNordIC).	ARG,	antibiotic	resistance	gene;	BRG,	biocide	resistance	gene;	MRG,	metal	resistance	gene;	WWTP,	wastewater	treatment	plant.
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from	WWTP	and	ermB	 in	 effluent	 from	WWTP	 in	Ny-	Ålesund	 to	
42%	 for	 the	qnrB19	 gene	 in	 bottom	water	 of	Adventfjorden	 after	
the discharge of wastewater (Figure 6; Table S2). The relative 

abundance	of	MRGs	ranged	from	0.1%	for	copA and copB	 to	4.3%	
for cadR in water of Longyearelva and tcrB	in	effluent	from	WWTP	
in	Ny-	Ålesund.	In	contrast,	the	relative	abundance	of	BRGs	ranged	
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F I G U R E  4 (a)	Abundance	and	(b)	percentage	of	ARGs	classes	detected	in	the	plasmidome	from	environments	with	different	
anthropogenic	pressures:	glacial	environment,	municipal	sewage	and	marine	environment,	WWTP	and	receiving	water.	ARG,	antibiotic	
resistance	gene;	WWTP,	wastewater	treatment	plant.
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F I G U R E  5 (a)	Abundance	and	(b)	percentage	of	MRG	classes	detected	across	the	plasmidome	from	environments	with	different	
anthropogenic	pressures:	glacial	environment,	marine	environment,	WWTP,	and	receiving	water.	MRG,	metal	resistance	gene;	WWTP,	
wastewater treatment plant.
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F I G U R E  6 Relative	abundance	of	the	most	common	genes	(above	5%)	detected	in	the	plasmidome	from	the	Arctic:	Longyearbyen	
city	gradient—Larsbreen	ice	core	(LarsIC),	Longyearbreen	ice	core	(LyrIC),	water	of	Longyearelva	(Lw),	sediment	of	Longyearelva	(Ls),	
water	of	Adventfjorden	seashore	(AFw),	sediment	of	Adventfjorden	seashore	(AFs),	wastewater	outflow	in	Longyearbyen	(WLyr),	bottom	
water	of	Adventfjorden	I	(AFI),	bottom	water	of	Adventfjorden	II	(AFII),	bottom	water	of	Isfjorden	(IF);	WWTP	outfall	gradient—raw	
sewage	from	WWTP	in	Ny-	Ålesund	(WNA1),	effluent	from	WWTP	in	Ny-	Ålesund	(WNA2),	surface	water	of	Kongsfjorden	(WNA3)	and	
Nordenskiöldbreen ice core (NordIC). Ranges indicate statistical significance (**p ≤ .01,	*p ≤ .05).	ARG,	antibiotic	resistance	gene;	BRG,	
biocide	resistance	gene;	MRG,	metal	resistance	gene;	VG,	virulence	gene;	WWTP,	wastewater	treatment	plant.
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from	1.3%	for	qacEdelta1 in wastewater outflow in Longyearbyen to 
36.5%	for	qacH	in	Longyearbreen	Glacier.	There	was	a	significant	in-
crease	of	plasmid-	carried	stress-	response	genes	relative	abundance	
in	bottom	water	of	Adventfjorden	after	the	discharge	of	wastewater	
(AFI,	AFII)	compared	to	water	and	sediment	of	Adventfjorden	sea-
shore	(AFw,	AFs)	(p < .05).	In	addition,	Figure 6 shows significant dif-
ferences	in	stress-	response	genes	between	Nordenskiöldbreen	and	
Longyearbreen glaciers (p < .001)	 with	 lower	 number	 of	 detected	
genes on Nordenskiöldbreen, which is more remote and less visited 
by tourists.

3.2  |  Virulence genes in the plasmidomes

A	 total	 of	 26	 VGs	were	 identified	 across	 the	 plasmidomes.	 The	
production	of	exotoxins,	including	enterotoxins	important	for	bac-
terial pathogenesis, was the dominant virulence mechanism en-
countered in the data (Figure 3; Table S3).	Furthermore,	18	VGs	
encoding	exotoxins	that	damage	the	host	cell	membrane	by	form-
ing	pores	or	hydrolyzing	cell	membrane	lipids	were	shared	in	the	
largest number of samples (Figure S1).	No	VGs	were	found	in	the	
plasmidome	isolated	from	the	Adventfjorden	sediment,	 Isfjorden	
bottom	water	and	water	receiving	effluent	from	the	WWTP	in	Ny-	
Ålesund	(Figure 3).

The	 relative	abundance	of	VGs	varied	between	sampling	sites;	
ranging	from	0.1%	for	cerA, cytK2, inhA2 and sph in raw sewage from 
WWTP	 in	Ny-	Ålesund	 to	 16.8%	 for	 alo	 in	 Longyearbreen	Glacier	
(Figure 6; Table S2). There was a significant increase in the rela-
tive	abundance	of	VGs	in	bottom	water	of	Adventfjorden	receiving	
wastewater	 discharge	 (AFII)	 compared	 to	water	 of	 Adventfjorden	
seashore (p < .05).	 In	addition,	significant	differences	 in	VGs	abun-
dance were found between Nordenskiöldbreen and Longyearbreen 
glaciers (p < .001),	with	the	 lower	abundance	on	the	reference	gla-
cier, Nordenskiöldbreen.

3.3  |  Integrons associated with the plasmids

Integrons	were	identified	in	the	plasmid	extracts	at	all	sites,	except	
for the glacial ice core samples. The relative abundance of integrons 
varied	between	sampling	sites	and	ranged	from	0.03%	in	raw	sew-
age	from	WWTP	in	Ny-	Ålesund,	to	40.3%	in	wastewater	outflow	in	
Longyearbyen (Figure 6; Table S5).	Among	all	 identified	 integrons,	
ARG	cassettes	were	found	in	only	one	 integron	in	the	wastewater	
outflow	 in	Adventfjorden	 (Table S6). In the variable region of this 
integron, gene cassette array dfrA17- ant(3′)- IIa confers resistance 
to trimethoprim and streptomycin. The remaining gene cassettes 
largely determine metabolic and adaptive functions (Table S6). The 
variable region of integrons also included other genes responsible 
for	 the	 production	 of	 membrane	 transporters	 and	 forming	 efflux	
pumps,	 IS110	family	 IS	 transposase	protein,	 transposases	 involved	
in the transposition mechanism, and even genes for bacterial abor-
tive	infection	(Abi)	systems	encoding	phage	resistance	proteins	that	

limit	viral	replication.	In	addition,	62.2%	of	all	gene	cassettes	were	
hypothetical proteins with an unknown function.

3.4  |  Relationship between stress- response genes, 
virulence genes and integrons in an environment with 
distinct anthropogenic inputs

We	 found	 that	 the	 abundance	 and	 frequency	 with	 which	 VGs	
were detected was the highest within the Longyearbyen city tran-
sect and decreased as anthropogenic inputs increased through 
the	 Longyearelva	 River	 and	Adventfjorden	 seashore	 (Figure 7a,b). 
Correspondingly,	 VGs	 were	 found	 to	 be	 higher	 in	 the	 effluent	
from	WWTP	in	Ny-	Ålesund	and	in	the	Adventfjorden	water	down-
stream of the wastewater outflow discharge than in the raw sewage 
(Figure 7a,b).	The	frequency	of	detections	of	ARGs	increased	in	river	
water	as	well	as	in	the	effluent	from	WWTP	in	Ny-	Ålesund	and	the	
fjord	water	receiving	effluent	in	both	Longyearbyen	and	Ny-	Ålesund	
(Figure 7b),	whilst	 the	detection	of	 integrons	 in	Kongsfjorden	was	
most	 frequent	 in	 the	water	 receiving	effluent	 from	WWTP	 in	Ny-	
Ålesund	(Figure 7b).	The	highest	frequency	of	detections	of	MRGs	
was	found	in	raw	sewage	from	WWTP	in	Ny-	Ålesund.	In	contrast,	
BRGs	dominated	in	the	wastewater	outflow	in	Longyearbyen.

The	relative	abundance	of	ARGs	strongly	correlated	with	MRGs,	
but	not	with	integrons,	whilst	VGs	correlated	with	BRGs	(Figure 8). 
The correlations among individual genes that were found in more 
than one sampling site is shown in Figure 9, which broadly shows 
that	ARGs	encoding	resistance	to	β-	lactams	and	VGs	encoding	he-
molysins	BL	(Hbl),	non-	hemolytic	enterotoxins	 (Nhe),	hemolysins	 II	
(HlyII)	and	 InhA	metalloproteases	co-	occur,	whilst	macrolide	 resis-
tance	genes	and	MRGs	conferring	resistance	to	mercury	do	not	cor-
relate	with	the	above	VGs.

Principal component analysis along vector projection revealed 
that	 Larsbreen	 and	 Longyearbreen	 glaciers	were	 characterized	 by	
plasmidomes	 that	 were	 dominant	 in	 BRGs,	 which	 were	 also	 cor-
related	with	VGs	(Figure 10).	In	samples	from	WWTP	in	Ny-	Ålesund	
(WNA1,	WNA2)	and	surface	water	of	Kongsfjorden	(WNA3)	as	well	
as	in	water	of	Longyearelva	(Lw),	water	of	Adventfjorden	seashore	
(AFw),	bottom	water	of	Adventfjorden	downstream	the	discharge	of	
wastewater	(AFI),	dominated	by	ARGs,	which	are	correlated	with	the	
presence	of	MRGs	 (Figure 10). Integrons dominate in the samples 
from environments with different levels of anthropogenic input.

4  |  DISCUSSION

Numerous	studies	indicate	the	widespread	distribution	of	ARGs	in	
soils	(Torres-	Cortés	et	al.,	2011),	surface	waters	(Martínez,	2008; 
Pruden et al., 2012),	WWTPs	(Mao	et	al.,	2015) and even remote, 
cold	 and	 rapidly	 changing	polar	 regions	 (Makowska	 et	 al.,	2020; 
Makowska-	Zawierucha	 et	 al.,	 2022).	 Whilst	 cultivation-	
independent metagenomics of environmental samples provides 
information on the environmental resistome, it is difficult to 
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elucidate	the	specific	role	of	MGEs.	Here,	we	explored	a	plasmi-
dome	from	various	Arctic	samples	with	varying	 levels	of	anthro-
pogenic input, by applying enrichment culturing plasmid isolation 
and	 high-	throughput	 sequencing.	 Mapping	 the	 occurrence	 of	
plasmid-	encoded	genes	in	Arctic	ecosystems	can	provide	vital	in-
formation toward understanding sources, sinks, and pathways for 
ARG	spread	and	correspondingly	informing	appropriate	efforts	to-
ward	mitigating	the	spread	of	antibiotic	resistance	(WHO,	2021). 

Although	 the	 Arctic	 is	 generally	 considered	 to	 be	 a	 receiver	 of	
pollutants from lower latitudes, we demonstrate here that gla-
ciers themselves are a repository of various genes associated with 
AMR	and	virulence	which	are	delivered	to	the	marine	ecosystems.	
Considering	that	exported	genetic	material	could	be	incorporated	
into adjacent and distant environments through ocean currents 
(Pittino et al., 2023; Yang et al., 2021), this study further implicates 
glaciers may be an important contributor to the marine resistome. 
Although	this	phenomenon	 is	not	presently	 recognized,	 the	Gulf	
Stream	and	East	Greenland	Current	could	disseminate	of	waters	
carrying	microbial	resistance	genes	to	Arctic	regions	and	from	the	
Arctic	to	lower	latitudes.	The	emergence	and	rapid	spread	of	ARGs	
poses a serious threat to public health, which, further aided by 
climate	change,	may	increase	the	pool	of	ARGs	available	to	patho-
gens	 (Martínez,	2008;	McCann	 et	 al.,	2019).	We	 found	 12	main	
types	of	ARGs	in	the	plasmidome—mainly	comprised	of	β-	lactam,	
multidrug, aminoglycoside, macrolide and tetracycline resistance 
genes.	Similar	 results	have	been	reported	 in	previous	studies	on	
metagenomes	from	Kongsfjorden	soil	cores	(McCann	et	al.,	2019), 
likely	these	mechanisms	are	plasmid	encoded.	Here,	we	found	that	
the	most	common	ARGs	were	the	bla1 and bla2 genes, which were 
detected on plasmids across a variety of sampled environments 
regardless of the degree of anthropogenic input. Importantly, the 
bla2	 gene	 is	 a	metallo-	β-	lactamase	 that	 catalyzes	 the	 hydrolysis	
of a wide range of β-	lactam	drugs,	including	carbapenems,	which	
are considered the antibiotics of last resort in the treatment of the 
most	serious	infections	caused	by	Gram-	negative	bacteria	(Naquin	
et al., 2017).	Mogrovejo	 et	 al.	 (2020)	 found	 a	 high	 frequency	of	
resistance to β-	lactam	 and	 carbapenems	 in	 strains	 grown	 from	

F I G U R E  7 (a)	Abundance	and	(b)	frequency	of	detections	of	ARGs,	BRGs,	MRGs,	VGs,	and	integrons	in	the	structure	of	plasmids	from	
environments	with	different	anthropogenic	pressures:	glacial	environment,	municipal	sewage	and	marine	environment,	WWTP	and	receiving	
water.	ARG,	antibiotic	resistance	gene;	BRG,	biocide	resistance	gene;	MRG,	metal	resistance	gene;	VG,	virulence	gene;	WWTP,	wastewater	
treatment plant.
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F I G U R E  8 Correlation	between	relative	abundance	of	ARGs,	
BRGs,	MRGs,	VGs,	and	integrons	recovered	across	all	plasmidomes	
isolated	across	environmental	gradients	in	Svalbard.	ARG,	antibiotic	
resistance	gene;	BRG,	biocide	resistance	gene;	MRG,	metal	
resistance	gene;	VG,	virulence	gene.
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Greenland	and	the	Svalbard	Archipelago.	The	relative	abundance	
and	variability	of	the	ARGs	significantly	increased	along	the	gradi-
ents from glaciers to wastewater outflow in the fjord, suggesting 
that human activity strongly influences the gene pool carried by 
the	plasmidome,	which	in	turn	shapes	the	Arctic	environmental	re-
sistome,	corroborating	other	studies	(McCann	et	al.,	2019;	Sajjad	
et al., 2020).	Consequently,	we	suggest	that	the	delivery	of	ARGs	
from glaciers and wastewater to marine ecosystems both act to 
increase	the	global	reservoir	of	ARGs.

Among	 the	10	 identified	 subtypes	of	MRGs,	 genes	of	 the	mer 
operon,	which	are	involved	in	regulation,	mercury	(Hg)	binding,	and	
organomercury degradation, were found to be dominant in the gla-
cial	 environments.	Mercury—one	 of	 the	most	 toxic	 heavy	metals,	

causing changes in the structure of proteins leading to loss of func-
tion	 (Boyd	&	 Barkay,	2012)—and	 its	methylated	 forms	 are	 known	
to have accumulated in various environments, including polar and 
high	 mountain	 regions	 (Dietz	 et	 al.,	 2009; Douglas et al., 2012; 
Sun	et	 al.,	2017).	High	 concentrations	 of	 heavy	metals	 have	been	
detected on glaciers compared to glacier adjacent sites, due to at-
mospheric	 fallout	 (Łokas	 et	 al.,	 2016). Previous studies reporting 
metal resistance in cultured polar microorganisms include those 
isolated from cryoconite holes on glaciers (Pittino et al., 2023) and 
snow	from	the	high	Arctic,	where	31%	of	the	culturable	bacteria	are	
Hg-	resistant,	 compared	 to	 less	 than	 2%	 in	 nearby	 freshwater	 and	
brine	samples	(Møller	et	al.,	2014). Indeed Larose et al. (2013) found 
that	 the	 concentration	 of	Hg	 in	 snow	 correlates	with	 the	 number	

F I G U R E  9 Correlation	between	individual	ARGs,	BRGs,	MRGs,	VGs	that	were	detected	in	more	than	one	sampling	site	across	
environmental	gradients	in	Svalbard.	ARG,	antibiotic	resistance	gene;	BRG,	biocide	resistance	gene;	MRG,	metal	resistance	gene;	VG,	
virulence gene.
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of	copies	of	 the	Hg	resistance	gene	among	bacterial	communities.	
Furthermore,	it	was	found	that	the	merA gene is most often located 
on	plasmids	(Møller	et	al.,	2014).

The	 anthropogenic	 contribution	 to	Hg	occurrence	 in	 the	 en-
vironment	 has	 been	 found	 to	 be	 dominant	 (over	 92%),	 which	
suggests	 that	 the	 Arctic	 cannot	 be	 considered	 a	 region	 that	 is	
shielded	 from	 the	 impact	 of	 human	 activity	 (Dietz	 et	 al.,	 2009; 
Łokas	 et	 al.,	2016). The mechanism of action of the merA gene, 
which	 encodes	mercuric	 reductase,	 is	 to	 catalyze	 the	 reduction	
of	Hg2+	 to	 volatile	metallic	mercury	Hg0	 (Boyd	&	Barkay,	2012). 
Previous	studies	have	found	that	 the	percentage	of	Hg-	resistant	
strains	 in	 Arctic	 coastal	 waters	 can	 explain	 most	 of	 the	 Hg0 in 
this	 aquatic	 environment	 (Poulain	 et	 al.,	 2007).	 Moreover,	 the	
presence of genes encoding resistance to copper, silver, arsenic, 
and	nickel	can	be	explained	by	high	concentrations	of	the	respec-
tive	metals	 in	the	Arctic	environments	 (Hauptmann	et	al.,	2017). 
Our results suggest that the pressure caused by the presence of 

metals	in	Arctic	environments	contributes	not	only	to	the	mainte-
nance of metal resistance but also to the emergence and spread of 
ARGs	that	co-	occur	on	the	same	MGEs	(Baker-	Austin	et	al.,	2006; 
Perez	 et	 al.,	 2020).	 Moreover,	 the	 strong	 relationship	 between	
the	occurrence	of	MRGs	and	ARGs	suggests	that	MRGs	may	be	a	
marker	of	broader	AMR	in	various	environments,	 including	polar	
ecosystems.

Virulence genes allow infection of hosts by pathogenic bacteria. 
Virulence	genes	can	be	located	on	the	chromosome	or	MGEs	(e.g.,	
plasmids or transposons) and encode activities such as adhesion, in-
vasion,	attachment,	iron	acquisition,	motility,	and	toxin	activity	(Wu	
et al., 2008). Currently, there is little information on the occurrence 
of	VGs	in	the	Arctic.	Previous	studies	revealed	the	presence	of	VGs	
in	Arctic	permafrost	that	also	co-	occurred	with	ARGs	on	MGEs	(Kim	
et al., 2022).	Our	results	indicate	that	the	production	of	exotoxins,	
including	 enterotoxins,	 is	 the	 dominant	 virulence	 mechanism	 in	
human-	affected	Arctic	environments.

F I G U R E  1 0 Principal	component	analysis	plot	of	relative	abundance	of	ARGs,	MRGs,	BRGs,	and	VGs	found	across	plasmidomes	along	
environmental	gradients	in	Svalbard:	Longyearbyen	city	gradient—Larsbreen	ice	core	(LarsIC),	Longyearbreen	ice	core	(LyrIC),	water	of	
Longyearelva	(Lw),	sediment	of	Longyearelva	(Ls),	water	of	Adventfjorden	seashore	(AFw),	sediment	of	Adventfjorden	seashore	(AFs),	
wastewater	outflow	in	Longyearbyen	(WLyr),	bottom	water	of	Adventfjorden	I	(AFI),	bottom	water	of	Adventfjorden	II	(AFII),	bottom	water	
of	Isfjorden	(IF);	WWTP	outfall	gradient—raw	sewage	from	WWTP	in	Ny-	Ålesund	(WNA1),	effluent	from	WWTP	in	Ny-	Ålesund	(WNA2),	
surface	water	of	Kongsfjorden	(WNA3)	and	Nordenskiöldbreen	ice	core	(NordIC).	ARG,	antibiotic	resistance	gene;	BRG,	biocide	resistance	
gene;	MRG,	metal	resistance	gene;	VG,	virulence	gene;	WWTP,	wastewater	treatment	plant.
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We	 found	 that	 the	 frequency	 of	 detections	 of	 VGs	 decreases	
along the gradient from the glacial environment, through the 
Longyearelva	 River,	 which	 flows	 into	 the	 Adventfjorden,	 whilst	
the	relative	abundance	of	VGs	significantly	increases	with	the	level	
of	anthropogenic	 input,	 as	exemplified	by	 the	discharge	of	waste-
water	 into	 Adventfjorden	 and	 in	WWTP	 effluent.	 The	 significant	
differences	 between	 VGs	 in	 glacial	 and	 non-	glacial	 environments	
may	 point	 toward	 the	 physical	 features	 of	 Arctic	 environments	
such as depositional processes (e.g., accumulation versus dilution 
between	 glaciers	 and	 fjords	 respectively)	 shaping	 VGs	 diversity	
and abundance. Our study indicates a potential role of glaciers in 
releasing	 VGs:	 we	 demonstrated	 a	 high	 abundance	 of	 virulence	
factors	 in	environments	characterized	by	 low	anthropogenic	 input	
(e.g.,	glaciers),	which	has	been	documented	by	earlier	reports	(Kim	
et al., 2022), corroborating evidence for a strong pressure of viruses 
on heterotrophic bacteria on glaciers (Bellas et al., 2020). Viruses 
present in the glacial environment may affect the pathogenicity of 
bacterial	communities	through	the	transfer	of	virus-	encoded	VGs	(Bi	
et al., 2023).	 Furthermore,	bacteria	 released	 from	melting	glaciers	
may	harbor	VGs	homologues	 and	 are	 unlikely	 to	 be	opportunistic	
human	pathogens	(Søborg	et	al.,	2016). These genes may be main-
tained	for	benefit,	or	for	co-	occurrence	with	other	genes	conferring	
benefits for bacterial survival outside the host environment (Brown 
et al., 2012).

Glacial	 run-	off	 and	 iceberg	 calving	may	 deliver	 VGs	 to	 bacte-
rial communities in downstream environments, which may poten-
tially enhance virulence traits for opportunistic pathogenic bacteria 
(Sajjad	et	al.,	2020;	Søborg	et	al.,	2016).

Integrons are carriers of gene cassettes encoding various 
functions and are most often located in transposons and on plas-
mids	 (Gillings,	 2014).	 However,	 in	 many	 human-	affected	 environ-
ments, integrons are involved in the spread of multidrug resistance 
(Gillings,	 2013, 2014).	 Makowska	 et	 al.	 (2020)	 and	 Makowska-	
Zawierucha	et	 al.	 (2022) have shown the presence of strains with 
class	1	integrons	isolated	from	both	glacial	environments	in	Svalbard	
(in cryoconite on the surface of glaciers and glacial ice) and seawater 
of fjords, including wastewater outflow. Previous research showed 
that in the variable regions of integrons in culturable bacteria, the 
occurrence of genes determining different functions, including an-
tibiotic resistance, virulence and physiology was noted, highlighting 
the crucial role of these genes in adaptation of bacteria to stress 
(osmotic,	 light,	 temperature)	 in	 Arctic	 environments	 (Makowska-	
Zawierucha	et	al.,	2022).

In	 a	 previous	metagenomic	 study,	McCann	 et	 al.	 (2019) found 
intI1	 in	high	Arctic	 soil	ecosystems,	 indicating	 the	development	of	
antibiotic	resistance	in	remote	terrestrial	ecosystems.	Whilst	other	
studies	have	investigated	ARGs	and	ARB	in	snow	and	ice	of	Svalbard	
and	other	cold	regions,	no	data	on	integrons	were	provided	(Segawa	
et al., 2013). In our study, we found that the integrons located in the 
Arctic	plasmidome	contain	mainly	adaptive	genes	and	genes	for	hy-
pothetical proteins with unknown functions. Resistance genes have 
only been identified in wastewater, which points toward a relation-
ship	between	ARGs	and	anthropogenic	 input.	Our	 results	 indicate	

that	ARGs,	BRGs,	MRGs,	and	VGs	are	in	the	plasmid,	but	outside	of	
the integron structure. The presence of integrons with no typical 
ARGs	inserted	into	the	variable	region	may	indicate	that	ARG	cas-
settes	are	excised	from	the	structure	in	the	absence	of	antibiotic	se-
lective	pressure,	whilst	representing	elements,	which	could	acquire	
and	create	new	gene	combinations	(Stokes	et	al.,	2006). The absence 
of	ARGs	 in	 the	structure	of	 integrons	 in	 the	plasmidome	may	also	
indicate	unique	features	of	the	microbial	community	in	this	extreme	
environment.

Our	 findings	 show	 that	 plasmid-	encoded	 antibiotic	 resistance	
is	widespread	in	the	Arctic	environment,	where	selection	pressure	
for	antibiotics	is	presumed	to	be	low.	Plasmid-	encoded	antibiotic	re-
sistance may be derived from both anthropogenic sources as well 
as the release of ancient variants of genes from the ablating cryo-
sphere.	 Moreover,	 the	 presence	 of	 MRGs	 on	 plasmids	 combined	
with the prevalence of metals in the environment could potentially 
facilitate	the	spread	of	resistance	by	HGT.	A	strong	correlation	be-
tween	MRGs	and	ARGs	confirms	their	co-	occurrence	and	can	create	
the	 opportunity	 for	 co-	selective	 pressure.	 Moreover,	 we	 showed	
differences	 in	 the	 relative	 abundance	 of	 ARGs,	 BRGs,	MRGs	 and	
VGs	in	environments	with	varying	human	impacts.	In	the	glacial	en-
vironment,	VGs	and	BRGs	predominate,	which	suggests	that	glacial	
ice may be a repository of pathogenic strains with associated genes 
on the plasmids and may accumulate contaminants currently consid-
ered	biotic	pollutants,	which	mix	with	water	 from	melting	glaciers	
and	may	disseminate	into	the	environment	(Makowska-	Zawierucha	
et al., 2022).

5  |  CONCLUSIONS

We	examined	the	cultivable	plasmidome	across	a	diverse	range	of	
Arctic	 environments	 and	 found	 significant	 differences	 in	 stress-	
response	gene	and	VG	diversity	and	abundance	across	gradients	in	
anthropogenic	 activity.	Both	 stress-	response	genes	and	VGs	were	
found to related with plasmids in samples from glacial environ-
ments,	 rivers,	municipal	 sewage	 and	 the	marine	 environment.	We	
found	that	ARGs	and	MRGs	are	dominant	in	aquatic	environments	
whilst	VGs	and	BRGs	are	dominant	in	glacial	ice,	suggesting	that	the	
resistance and virulence in bacteria may be shaped by differences 
in the physical environment, accumulation of pollutants or nutrient 
availability.	We	 found	 that	whilst	 the	 level	of	 antibiotic	 and	metal	
resistance	varies	between	ecosystems	in	Arctic,	all	sources	(glaciers,	
wastewater)	 from	 terrestrial	 ecosystems	may	 increase	 the	 aquatic	
resistome gene pool by delivery to downstream environments and 
mixing	in	fjords	and	ocean	basins.	Considering	the	increasing	melt-
water	export	from	Svalbard	glaciers	(total	mass	balance	−8 ± 6 Gt a−1), 
glacier	 surface	 runoff	 reaches	 25 ± 5 km3 a−1,	 and	 freshwater	 flux	
from	calving	accounts	for	4 ± 1 km3 a−1	(Hagen	et	al.,	2003;	Schuler	
et al., 2020),	meltwater	containing	both	ARGs	and	VGs	may	affect	
function and processes of downstream ecosystems. The widespread 
occurrence of genes determining physiological functions and genes 
for hypothetical proteins with unknown functions in the variable 
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regions of integrons, highlights a central role for these genes in adap-
tation	to	Arctic	environments	but	also	presents	a	risk	of	developing	
new	resistance	phenotypes.	We	did	not	find	typical	ARGs	within	the	
integron cassettes, suggesting that integrons may not play as impor-
tant	 a	 role	 in	 the	 spread	of	ARGs	 in	Arctic	 as	previously	 thought.	
Nevertheless, as genetic material from different sources including 
anthropogenic	inputs	mixes	downstream	and	in	fjords,	it	may	be	in-
corporated	into	the	wider	aquatic	environment.
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