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Abstract—Load balancing and auto scaling are at the core
of scalable, contemporary systems, addressing dynamic resource
allocation and service rate adjustments in response to workload
changes. This paper introduces a novel model and algorithms
for tuning load balancers coupled with auto scalers, considering
bursty traffic arriving at finite queues. We begin by presenting the
problem as a weakly coupled Markov Decision Processes (MDP),
solvable via a linear program (LP). However, as the number of
control variables of such LP grows combinatorially, we introduce
a more tractable relaxed LP formulation, and extend it to tackle
the problem of online parameter learning and policy optimization
using a two-timescale algorithm based on the LP Lagrangian.
Our numerical experiments shed insight into properties of the
optimal policy. In particular, we identify a phase transition in the
probability of job acceptance as a function of the job dropping
costs. The experiments also indicate the efficacy of the proposed
online learning method, that learns parameters together with the
optimal policy, in converging to the optimal solution of the relaxed
LP. In summary, the contributions of this work encompass an
analytical model and its LP-based solution approach, together
with an online learning algorithm, offering insights into the
effective management of distributed systems.

Index Terms—Resource Allocation, Queuing Systems, Linear
Programming, Markov Decision Process, Online Learning.

I. INTRODUCTION

The management of distributed systems has grown in-
creasingly complex with the widespread adoption of cloud
computing and microservice architectures. These architectures
rely on two fundamental pillars: load balancing, which dy-
namically distributes traffic among servers, and auto scaling,
which adjusts service rates in response to workload changes.
Load balancers and auto scalers are pervasive in numerous
modern systems, ranging from routers to databases and web
systems [1]–[3].

Despite the extensive literature on load balancing and auto
scaling methods, most studies tend to treat these elements
separately [4]–[7] or focus on formal results for asymp-
totic regimes [8]. However, as systems evolve over time
due to workload changes, such as in e-commerce platforms
experiencing surges in user traffic during peak seasons or
promotional events, the need for rapid resource provisioning
and efficient utilization to prevent service disruptions becomes
paramount. This paper addresses the concurrent optimization
of load balancing and auto scaling in such scenarios.

In this paper, we introduce a novel model and algorithm
addressing the general problem of load balancing and auto
scaling in a system of finite parallel queues with unknown
parameters and bursty traffic. We present the problem as
a finite horizon weakly coupled Markov Decision Process
(MDP), where decisions on load balancing and auto scaling are
taken at each arrival of a bulk of jobs. These decisions involve
determining which queues will receive new jobs and at what
rate each queue will serve them. The weakly coupled MDP
solution is achieved through a linear program (LP) (see Section
III-B). However, it faces challenges due to the combinatorial
growth of optimization variables. This motivates a relaxation
of the problem by replacing instantaneous constraints by con-
straints on expectations. As a result, a simpler LP formulation
is obtained (see Section III-C).

Solving the proposed LP requires knowledge of system
dynamics, which may not always be available upfront. To
address this, we propose a sample-based online learning
algorithm to find the optimal policy for load balancing and
auto scaling. This approach involves using a two-timescale
algorithm to solve the LP by considering its Lagrangian (see
Section III-D). Numerical experiments (see Section IV) across
various scenarios demonstrate the convergence of the proposed
method to the optimal LP solution, indicating its effectiveness
in addressing the challenges of load balancing and auto scaling
in dynamic systems with bursty traffic.

Pior art. Given the widespread adoption of load balancing
and auto scaling, a few frameworks considered a stochastic
model for their joint analysis (see [9]–[12]). Our work also
considers load balancing and auto scaling decisions. However,
by tackling the problem as a weakly coupled MDP, we can
embrace general dispatching and auto scaling rules, beyond
the ones considered in the previous works. In this work, we
leverage [13], [14] showing its applicability in optimizing
resource allocation and service rates in distributed systems.
In addition, we extend those previous works by proposing a
method to learn LP-based policies, accounting for the case
when parameters are unknown.

Contributions. In summary, our main contributions are:
Analytical model: We formulate the load balancing and

service rate control problem as a Weakly Coupled MDP (WC-
MDP). The objective is to minimize costs arising from delays
(proportional to queue lengths), energy consumption (propor-
tional to service rate), and job dropouts due to full queues.ISBN 978-3-903176-63-8 ©2024 IFIP
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These factors are integrated into an LP along with workload
and resource constraints (Sections II, III-A, and III-B). Note
that, by treating the joint load balancing and auto scaling
problem as a weakly coupled MDP, we can adopt more
general dispatching and auto scaling rules beyond traditional
strategies.

Online learning algorithm: We utilize recent advance-
ments in LP-based policies to address a relaxed version of the
above mentioned LP problem (Section III-C). Recognizing that
system parameters may not be initially observable, we devise
an online learning algorithm to approximate the LP-based
policy. Specifically, we leverage the Lagrangian of the LP in
this process. Our algorithm employs a two-timescale stochas-
tic approximation, where Lagrange multipliers are computed
based on the current estimate of control variables, and then
control variables are recalculated given the Lagrange multipli-
ers (Section III-D). Notably, this approach enables decision-
making at each iteration of the algorithm, aligning with an
online operational paradigm.

Numerical experiments: We illustrate properties of optimal
policies, such as a phase transition in job acceptance prob-
ability, indicating a shift from predominant rejection to full
acceptance as rejection costs increase (Section IV). We also
discuss convergence properties of the proposed algorithms.

Outline. The remainder of this paper is organized as fol-
lows. In the upcoming section, we present background and
related work. Then, Section II introduces the proposed model,
Section III contains our problem formulation and solution,
Section IV reports our results and Section V concludes.

II. MODEL

Next, we detail the considered queuing system and its
corresponding dynamics. We also introduce basic notation.

The system is composed of N queues designated for the
processing of jobs, each equipped with a finite buffer of
capacity K. The controller has two controls for each of the N
queues: (1) load balancing involves deciding whether to send
a job to the tail of the queue; (2) service rate management
determines the service rate of the queue, which in turn impacts
the likelihood of processing a job in a given time slot, i.e., the
probability of a service completion at a given slot is a function
of whether the high or low service rates were chosen.

The job arrival process consists of arrivals of batches of
αN jobs, where 0 < α < 1. The arrival time of the i-th batch
of new jobs is denoted as Ti ∈ N+. The inter-arrival time,
Ti − Ti−1, follows a geometric distribution with parameter p,
given by P(Ti − Ti−1 = τ) = (1− p)τ−1p, ∀τ ≥ 1.

The dynamics of each queue is characterized at embedded
points, corresponding to batch arrivals. Let Sn(Ti) denote the
number of jobs in the n-th queue at the beginning of slot Ti.
We denote by An(Ti) an indicator variable, equal to 1 if a
job is admitted to the n-th queue at Ti and 0 otherwise. Let
Dn(Ti) be the number of jobs processed between Ti and Ti+1.

Arrivals at time slot Ti precede departures spanning from Ti

to Ti+1. Following the transition at time Ti, if An(Ti) = 1, an
extra job is admitted to the n-th queue, and can be processed

between Ti and Ti+1 with the other jobs already in the queue.
Therefore,

Sn(Ti+1) = Sn(Ti) +An(Ti)−Dn(Ti). (1)

Then, Dn(Ti) ≤ Sn(Ti) + An(Ti) and Sn(Ti) = K ⇒
An(Ti) = 0. The number of rejected jobs across all queues is
given by

R(Ti) = αN −
N∑

n=1

An(Ti). (2)

We denote by Bn(Ti) an indicator variable representing
the service rate of the n-th queue, with the values 0 and
1 indicating that the server operates at a low rate and at
a high rate, respectively. It is assumed that the service rate
remains constant between two arrivals. We let q(b) denote
the probability of a service completion, at a given slot, when
the controller sets the service rate indicator to b. The service
completion probabilities corresponding to the low and high
service rates are given by q(0) = b and q(1) = b.

The transition probabilities between states of a queue are
defined by P . To derive those probabilities, we let s be the
current state, a be the current job allocation action, and s′ be
the next state.

Next, we consider the interval comprised of τ time slots,
wherein the system switches from state s to state s′. We
account for two possible scenarios, varying on how jobs are
serviced across those slots:

Concurrent job service per slot, per queue (CJS): Each
pending job at each queue can be served concurrently with
other jobs. In this case, more than one job can be served per
queue per time slot. This corresponds to a setup wherein a
cluster of servers, or a single server with multiple cores, is
available for each queue.

Single job service per slot, per queue (SJS): Only one job
can be processed per queue at a given time slot. In particular,
at each time slot, we assume that head-of-line (HOL) jobs
across queues are candidates to be served. This corresponds
to a setup wherein a single core is available to serve each
queue per time slot.

Let P(Bm,p = ℓ) denote the probability mass function
of the binomial distribution, indicating the probability of ℓ
successes in m independent Bernoulli trials. Then, P(Bm,p =
ℓ) =

(
m
ℓ

)
pℓ(1 − p)m−ℓ where

(
m
ℓ

)
= m!/((m − ℓ)!ℓ!) for

0 ≤ ℓ ≤ m, and 0 otherwise. We use the above notation to
describe the distribution of the number of jobs processed in
a given time period. The transition probabilities for CJS and
SJS are presented in the following lemma:

Lemma 1. Let s, s′ ∈ {0, 1, ...,K}, a ∈ {0, 1} and b ∈ {0, 1}.
Then, the transition probabilities P(Sn(Ti+1) = s′ | Sn(Ti) =
s,An(Ti) = a,Bn(Ti) = b), denoted by Ps,s′,a,b are given by:

Ps,s′,a,b =

∞∑
τ=1

(1− p)τ−1pPs,s′,a,b,τ (3)



where

Ps,s′,a,b,τ := P(Sn(Ti+1) = s′ | Sn(Ti) = s,An(Ti) = a,

Bn(Ti) = b, Ti+1 − Ti = τ).
(4)

Under CJS,

Ps,s′,a,b,τ = P
(
Bs+a,1−(1−q(b))τ = s+ a− s′

)
. (5)

Under SJS,

Ps,s′,a,b,τ =

{
P
(
Bτ,q(b) ≥ s+ a

)
, if s′ = 0

P
(
Bτ,q(b) = s+ a− s′

)
, if s′ > 0.

(6)

Proof. Let s, a, b denote the state of the queue, job allocation
action and service rate action at time Ti. Let s′ denote the
state of the queue at time Ti+1. We denote P(Sn(Ti+1) = s′ |
Sn(Ti) = s,An(Ti) = a,Bn(Ti) = b) with some abuse of
notation as P (s′|s, a, b). Let ∆Ti = Ti+1 − Ti. Then,

P(s′ | s, a, b) =
∞∑
τ=1

P(s′,∆Ti = τ | s, a, b) =

=

∞∑
τ=1

P(∆Ti = τ)Ps,s′,a,b,τ

where the conditional probability Ps,s′,a,b,τ is defined in (4).
SJS. We now derive Ps,s′,a,b,τ for SJS. Across τ time

slots, we aim at characterizing the occurrence of s + a − s′

successes, if s′ > 0, and at least s + a successes, if s′ = 0,
with the success probability at each time slot being given
by q(b). Indeed, given an interarrival time between jobs of
τ , the number of jobs processed in this time period, at the
considered queue, is s + a − s′, where s + a − s′ ≤ τ . The
service rate b entails a probability of successful job completion
per slot given by q(b). Hence, if s′ > 0, the probability of
processing s + a − s′ jobs during τ time slots is given by
the binomial distribution P

(
Bτ,q(b) = s+ a− s′

)
. Note that

this probability is strictly positive if 0 ≤ s+ a− s′ ≤ τ , and
equals 0 otherwise. The case s′ = 0 is similar, noting that
even if more than s+ a potential successes occur, only s+ a
jobs can be served.

CJS. We now derive the Ps,s′,a,b,τ for CJS. Recall that
under CJS multiple jobs can be processed per queue at a given
time slot. With s+ a− s′ jobs served during an interval of τ
time slots, a binomial distribution with s + a − s′ successes
among s + a trials is used to characterize the probability of
transitioning from s to s′, where each potential service is com-
pleted with probability q(Bn(t)) per slot. Indeed, at each time
slot, each of the pending jobs is processed with probability
q(b). Therefore, the probability that a job is served during a
period of τ time slots is 1− (1− q(b))τ . The probability that
s+a−s′ jobs are served is P

(
Bs+a,1−(1−q(b))τ = s+ a− s′

)
.

Note that this probability is strictly positive if s′ ≤ s+ a, and
equals 0 otherwise.

In Lemma 1 we are considering the system dynamics from
the perspective of one queue. In particular, the dimensions of
the transition matrix P are given by the maximum values of

(s, s′, a, b), which are (K+1,K+1, 2, 2). The combinatorial
growth in the state space cardinality occurs when examining
a system comprised of multiple queues, as detailed next.

III. PROBLEM FORMULATION AND SOLUTION

In this section, we begin by introducing our cost functions
and constraints (Section III-A) and then formulate our problem
as a weakly coupled MDP (Section III-B). The solution of a
weakly coupled MDP is known to be an NP-hard problem
when constraints are set on sample paths [14]. Therefore,
we relax the problem to consider constraints on expectations,
amenable to be solved with a manageable LP (Section III-C).
The latter, in turn, is asymptotically optimal, in the sense
that as the number of queues grows to infinity its solution
converges to that of the original problem [13]. We proceed
to expand the LP problem into its Lagrangian form and
introduce a two-timescale stochastic approximation algorithm
to tackle the problem in cases where transition probabilities
are unknown, and the optimal policy must be learned in an
online fashion (Section III-D).

A. Optimization problem

We introduce the cost functions and constraints to formulate
the optimization problem.

The cost functions comprise two components:
1) The storage and processing costs, comprising the

storage cost Cs(Sn(t)) which, due to Little law, is pro-
portional to delays, and the processing cost Cp(Bn(t)),
which is proportional energy consumption. Both costs
are assumed to be convex and increasing;

2) The job rejection cost, given by γR(t) (see (2)),
where γ is a positive factor capturing the weight of
job rejections when compared against other costs. Note
that as αN is a constant, minimizing job rejection costs
γR(t) is equivalent to minimizing −γ

∑
k An(t).

The constraints also comprise two components:
1) For the storage cost, the allocation of jobs to queues

must not exceed the batch size of αN jobs, where α ∈
(0, 1);

2) For the energy cost, the total number of queues oper-
ating at a high processing rate b must not exceed βN ,
where β ∈ (0, 1).

Collectively, these elements define the optimization prob-
lem, as detailed in the subsequent subsection.

B. Problem formulation

Before we state the optimization problem, we introduce
some key notations. Let Y

(N)
s,a,b(t) be the fraction of queues

in state s and subject to actions a, b at time t. We
consider a finite time horizon T , so that 0 ≤ t ≤
T − 1. Let Y be a vector of random variables, Y (N) =
(Y (N)(1), . . . , Y (N)(t), . . . , Y (N)(T )), where each Y (N)(t) is
a random vector comprised of elements Y

(N)
s,a,b(t).

Let M (N)(t) = (M
(N)
s (t))s∈S be a vector whose s-th entry

corresponds to the fraction of queues containing s jobs at time



t. Note that M (N)
s (t) =

∑
a,b Y

(N)
s,a,b(t). We denote by m0

s the
initial system state, m0

s = M
(N)
s (0). It corresponds to the

fraction of queues in state s at time t = 0 for all s ∈ S.
Unless otherwise noted, we assume that queues begin in an
empty state, i.e., m0

0 = 1.
1) Optimization problem: Let Π be a decision rule (or

policy) that depends on both time and the state of the system.
Then, Πt : m 7→ y and Πt(M

(N)(t)) 7→ Y (N)(t). The
variables Y (N)(t) are then set as Y (N)(t) = Πt(M

(N)(t)).
The optimization problem can now be formulated as follows:

PROBLEM WITH INEQUALITY CONSTRAINTS ON SAMPLE
PATHS:

min
π

E
T−1∑
t=0

∑
s,a,b

(Cs(s)+Cp(b))Y
(N)
s,a,b(t) + γ

∑
s,b

Y
(N)
s,0,b(t)


s.t. Queues evolve according to a Markov process,

P(s(t+1)|s(t),a(t), b(t))=
N∏

n=1

Psn(t),sn(t+1),an(t),bn(t),

(7a)∑
s,b

Y
(N)
s,1,b(t) ≤ α,

∑
s,a

Y
(N)
s,a,1(t) ≤ β, (7b)∑

a,b

Y
(N)
s,a,b(0) = m0

s, Y
(N)
K,1,b = 0, (7c)

Y
(N)
s,a,b(t) ≥ 0,∀t ∈ {0, . . . , T − 1},∀s ∈ {0, . . . ,K},
∀a ∈ {0, 1},∀b ∈ {0, 1} (7d)

The objective function captures costs introduced in the pre-
vious section. State dynamics in (7a) follow the transitions
derived in Lemma 1. Inequality constraints (7b) capture con-
straints on the workload and energy. Boundary conditions,
i.e., initial conditions and droppings due to full buffers, are
captured by (7c), and non-negativity constraints by (7d). It is
possible to write the above problem as an LP. However, the
number of optimization variables grow combinatorially with
buffer size and number of queues.

2) Complexity: It is possible to write the above problem
as a very large LP. Let set Y(m) contain all vectors ŷ that
satisfy (7b), and such that the fraction of queues in state s is
given by ms, with m = (m0,m1, . . . ,mK).

The variables in our LP are probabilities pt,ŷ for all ad-
missible ŷ, ŷ ∈ Y(m), where pt,ŷ = P(Y (t) = ŷ). We also
let qt,m = P(M(t) = m), and P (m|ŷ) = P(M(t + 1) =
m|Y (t) = ŷ). Then, equation (7a) is captured in the LP
through the following constraint qt+1,m =

∑
ŷ pt,ŷP (m|ŷ).

The Markovian evolution is given by P (m|ŷ), which denotes
the probability of the system transitioning from state-action
pair ŷ to state m. Inequalities (7b) are captured in the LP
by qt,m =

∑
ŷ∈Y(m) pt,ŷ , indicating that ŷ must be feasible

for pt,ŷ to contribute to qt,m, and relating the probabilities
of state-action vectors ŷ ∈ Y(m) to the probability of state
vector m.

The issue with the above formulation arises as the number
of possible values for ŷ quickly becomes very large. In fact, the
primary challenge in solving the optimization problem above
lies in its state space cardinality. Note that the random vector
Y (t) can be instantiated in up to

(
4(K+1)−1+N

N

)
possible

ways, each corresponding to a decision variable pt,ŷ to be
determined. The binomial term corresponds to the number
of ways of dividing the N queues into 4(K + 1) buckets,
each bucket corresponding to one of the possible instantiations
of (s, a, b). Despite the large number of variables pt,ŷ to
be determined, the variables are all continuous, in the range
between 0 and 1. Hence, the problem is in the realm of LPs.

As the constraints (7b) couple the states of all queues,
they preclude the possibility of dividing the problem into N
problems of linear size each, rendering its solution unwieldy.
In what follows, we resort to a relaxation of the constraints,
which allows us to formulate the relaxed problem as a man-
ageable LP.

C. Relaxed problem becomes a manageable linear program

Next, we consider a relaxed version of the problem in-
troduced in the previous section. As discussed above, the
key difficulty in solving the posed problem arises from con-
straints (7b) which couple all the queues together. To overcome
the challenge, we relax the constraints. The common approach
is to relax the constraints by posing a problem where they only
need to be met in expectation. Let

ys,a,b(t) = E[Y (N)
s,a,b(t)]. (8)

Let πH(t) and πA(t) be the probability of using the high
service rate and the probability of accepting a job, respectively,

πH(t) =

K∑
s=0

1∑
a=0

ys,a,1(t), πA(t) =

K−1∑
s=0

1∑
b=0

ys,1,b(t). (9)

The relaxed problem to derive the optimal policy is an LP:
PROBLEM WITH INEQUALITY CONSTRAINTS ON EXPECTA-
TIONS:

min
y

T−1∑
t=0

∑
s,a,b

(Cs(s) + Cp(b))ys,a,b(t) + γ(1− πA(t))


s.t.

∑
a,b

ys,a,b(t+ 1) =
∑
s′,a,b

ys′,a,b(t)Ps′,s,a,b, (10a)

πA(t) ≤ α, πH(t) ≤ β, (10b)∑
a,b

ys,a,b(0)=m0
s, yK,1,b(t)=0, ys,a,b(t) ≥ 0, (10c)

∀t ∈ {0, . . . , T − 1},∀s ∈ {0, . . . ,K},
∀a ∈ {0, 1},∀b ∈ {0, 1}.

The solution to the relaxed LP converges asymptotically
to the solution of the original LP problem as N grows to
infinity [13]. However, applying the solution of the relaxed
LP directly to the original system may not be feasible under
the current system configuration. To address this limitation,
in [13] the authors suggest to solve the LP taking the current



system configuration as the initial state, and the remaining
time of interest as the horizon T [13, Algorithm 1]. An alter-
native approach is proposed in [15]. In essence, those works
provide ways to map a solution to the LP with constraints
on expectations (10b) to a solution to the stricter LP with
constraints on samples paths (7b). Given that such mappings
are known to exist, in the remainder of this paper we focus
on the problem with constraints on expectations, noting that
constraints on expectations are of interest by itself [16], and
leaving a detailed analysis of the mapping between constraints
on expectations and sample paths as subject for future work.

Handling the above LP becomes challenging when transition
probabilities P a,b

s′,s are unknown. One of our contributions
lies in solving the relaxed LP in the presence of unknown
transition probabilities. To this aim, we derive the Lagrangian
of the relaxed LP and employ a two-timescale stochastic
approximation scheme to tackle the LP in an online fashion.
Our approach is further elaborated in the following section,
with numerical experimental results presented in Section IV.

D. A two-timescale stochastic approximation algorithm

Next, we derive the Lagrangian for the relaxed LP formu-
lation. Subsequently, we leverage the Lagrangian to propose
a two-timescale stochastic approximation algorithm to solve
the problem introduced in the previous section. We denote the
Lagrangian of the LP in (10) as L(y, λ, µ). Here, λ and µ are
vectors of Lagrange multipliers corresponding to the inequality
and equality constraints in (10), respectively.

L(y, λ, µ;P,m0) =
T−1∑
t=0

C(y, t) +D1(y, µ, t;P,m
0) +D2(y, λ, t), (11)

C(y, t) =
∑

s,a,b(Cs(s) + Cq(b))ys,a,b(t) + γ
∑

s,b ys,0,b(t).
The Lagrangian terms corresponding to equality and in-

equality constraints are denoted by D1(y, µ, t;P,m
0) and

D2(y, λ, t), respectively.

D1(y, µ, t;P,m
0) =

∑
s

µs
1

∑
a,b

ys,a,b(0)−m0
s

+

+
∑
b

µb
2(t)yK,1,b(t)+

+
∑
s

µs
3(t)

∑
a,b

ys,a,b(t+ 1)−
∑
s′,a,b

ys′,a,b(t)P
a,b
s′,s

 ,

D2(y, λ, t) = λ1(t)

∑
s,b

ys,1,b(t)− α

+

+ λ2(t)

(∑
s,a

ys,a,1(t)− β

)
−
∑
s,a,b

λs,a,b
3 (t)ys,a,b(t).

Since the Lagrangian exhibits linearity with respect to y, the
derivative of the Lagrangian with respect to y is constant.

Therefore, we proceed by extending the previous formulation
and introducing a regularization term to the problem. The
regularized Lagrangian is expressed as follows:

L̃(y, λ, µ;P,m0) = L(y, λ, µ;P,m0) + Γ||y||22. (12)

Then, we minimize the Lagrangian with respect to y and
maximize with respect to the Lagrange multipliers to find a
saddle point which corresponds to an optimal policy:

PROBLEM WITH CONSTRAINTS AS PENALTIES:

max
λ≥0,µ

min
y

L̃(y, λ, µ;P,m0). (13)

If all parameters are known, the above problem can be
solved using a Primal-Dual Gradient Descent-Ascent (GDA)
method [17]–[19]. However, in this work we assume that the
transition probabilities P is unknown. To this aim, we perform
stochastic gradient updates. While computing the Lagrangian,
at each step, instead of using the actual P matrix, we use an
estimate of P . We denote by P̂

(k)
s,s′,a,b the estimate of Ps,s′,a,b

(see (3)) at iteration k, e.g., derived from a simulator. The
estimate P̂

(k)
s,s′,a,b is obtained by repeatedly performing actions

a, b in state s. Let I be the number of collected observations.
P̂

(k)
s,s′,a,b corresponds to the fraction of those observations that

lead to state s′. Our final stochastic gradient iterates are:

y(k+1) = y(k) − η1∇yL̃(y
(k), λ(k), µ(k); P̂ (k),m0) (14)

λ(k+1) =
[
λ(k) + η2∇λL̃(y

(k), λ(k), µ(k); P̂ (k),m0)
]
+

(15)

µ(k+1) = µ(k) + η2∇µL̃(y
(k), λ(k), µ(k); P̂ (k),m0) (16)

The above description to solve the stochastic problem cor-
responds to a stochastic variant of GDA, referred to in the
literature as Stochastic Gradient Descent-Ascent (SGDA). We
let y vary at a fast time scale, and λ, µ vary at a slow scale. We
denote by η1 and η2 the learning rates of the fast and slow time
scales, respectively. Note that, [x]+ = max(0, x), enforcing
that λ ≥ 0. Recall that the Lagrange multipliers λ and µ
correspond to inequality and equality constraints, respectively.
Therefore, after convergence of the above iterative procedure,
the fixed point satisfies the KKT conditions, including com-
plementary slackness, as λ ≥ 0, and corresponds to an optimal
solution to the LP problem.

IV. EXPERIMENTS

In this section we investigate properties of load balancing
and auto scaling strategies, by analyzing the impact of different
parameters on the optimal policy (Section IV-A). We also nu-
merically investigate convergence properties of the considered
algorithms (Section IV-B).

For our numerical evaluation, the storage cost is given by
Cs(s) = s/K and the processing costs are given by Cp(b) =
2(1+ q(b)). In particular, it follows from Little’s law that the
linear storage cost is proportional to the delay.



(a) (b) (c)

Fig. 1: Analysis of the impact of (a) arrival probability p, (b) high service rate budget β, and (c) job dropping cost γ on the
solution of LP-based policy (10). The figure also shows the impact of the regularization coefficient, Γ, on the optimal policy.

A. How does the optimal policy behave?
Next, we report properties of the optimal policy, indicating

how different parameters impact actions. To this goal, we
consider the policy obtained through the solution of (10),
i.e., the PROBLEM WITH INEQUALITY CONSTRAINTS ON
EXPECTATIONS, leveraging CVXPY for that matter.

1) What are the impacts of different parameters on the
optimal policy?: We consider the impact of p, β and γ on
the optimal policy. To this aim, recall that πA(t) and πH(t)
refer, respectively, to the probability of accepting a job and
the probability of choosing the high service rate at time t.
We derive from (9) the normalized quantities π̂A and π̂H ,
π̂A = 1

αT

∑T−1
t=0 πA(t), and π̂H = 1

βT

∑T−1
t=0 πH(t). Recall

also that πA(t) ≤ α and πH(t) ≤ β. Therefore, 0 ≤ π̂A ≤ 1
and 0 ≤ π̂H ≤ 1, with π̂A = 1 and π̂H(t) = 1 if the
corresponding inequality constraints are active.

We let α = 0.5, q(0) = 0.05, q(1) = 0.1, K = 10 and T =
100, under the CJS scenario. In our reference setup, we also
let p = 0.14, β = 0.3 and γ = 10. The latter three parameters
are varied according to the experimental goals. Those values
are selected to simplify presentation, allowing us to illustrate
insights by varying a parameter, while maintaining all others
fixed, as indicated in the sequel. The discussion that follows
considers Γ = 0 (solid lines in Figure 1). The impact of Γ is
pointed in the end of this section, motivated by SGDA.

Arrival rate up, high rate use rises. Figure 1(a) shows
that as job arrival probability (p) increases, overall system
utilization and the likelihood of using the high service rate
increase. This implies that with more jobs, there’s a greater
chance of assigning a high service rate to minimize dropping
probability and delay costs. Once p hits a threshold (e.g.,
p ≈ 0.2 in this case), the high service rate constraint becomes
active, preventing further increase of π̂H (recall that π̂H is
normalized by the high service rate budget β).

Budget up, high rate use steady. Figure 1(b) illustrates
the impact of the high service rate budget (β) on its allocated
fraction (π̂H ). When the constraint is stringent (β ≤ 0.28),
nearly the entire budget is utilized (π̂H ≈ 1). Conversely,
with a relaxed constraint, i.e., as β increases, the allocated
fraction π̂H decreases, and the high-rate use βπ̂H remains
roughly steady. This suggests that increasing the budget for

high service rate doesn’t necessarily lead to increased resource
consumption due to associated energy costs affecting the
objective function. The motivation behind limiting high service
rate is driven by budget constraints (β) and the need to manage
energy expenditure reflected in the objective function’s cost
term (Cp(b)). Increasing β beyond a certain threshold leads to
a decrease in normalized high rate use π̂H due to Cp(b).

Costlier drops, fewer rejections. As the cost associated
with dropping jobs increases, the normalized probability of
job acceptance shows a phase transition (see Figure 1(c)). Up
to γ = 0.2, the normalized acceptance probability remains
roughly 0, meaning that almost all jobs are rejected. Indeed,
if the rejection cost is low, it is beneficial to keep the system
almost always empty, to avoid incurring energy and storage
costs. However, as γ surpasses the threshold 0.2, there is a
phase transition, and the normalized acceptance probability
remains stable at 1 for γ > 0.2. For large enough dropping
costs, the acceptance budget should be fully utilized.

Regularization coefficient. Up until now, we considered
Γ = 0. In the next section, we consider Γ > 0, as required
by GDA and SGDA. Figure 1 shows how, as Γ increases,
the behavior of the optimal policy diverges from that obtained
with Γ = 0. For instance, we see a smooth transition of π̂A

as a function of γ, for Γ ∈ {0.1, 0.2}. This illustrates that one
must carefully set Γ while relying on SGDA, noting that a
detailed sensitivity analysis of Γ is subject for future work.

B. How do the proposed algorithms behave?

Next, we consider convergence properties. Our reference
setup consists of p = 1/2, α = 1/2, β = 1/2, γ = 100, (b =
0.4, b = 0.8) and T = 10. We let Γ = 0.5. K is varied between
1, 2, 4 and 8. Under SGDA, we collect a mini-batch of I = 10
observations before each gradient update, with stepsizes η1 =
0.1 and η2 = 0.01.

Recall that we leverage the gradient descent ascent al-
gorithm (GDA) and its stochastic version (SGDA) to find
solutions to the load balancing and auto scaling problem, by
finding the saddle point associated with its Lagrangian (12).
While GDA uses full information, SGDA learns the transition
probabilities and the optimal policy concurrently. In the rest



of this section, we compare GDA, SGDA, given by (14)-(16)
and the LP solution obtained with CVXPY, given by (10).

Firstly, our analysis focuses on the convergence of GDA
towards the optimal solution of the LP problem in (10). The
convergence reveals that the Frobenius norm of the difference
between the GDA output and the optimal solution diminishes,
approaching zero after 20,000 iterations, for buffer sizes (K)
ranging from 1 to 8. It’s noted that prior to stabilization,
the solution discrepancy exhibits oscillatory behavior. This is
typical of GDA, wherein disparities in learning rates used for
minimization and maximization cause some updates to be too
aggressive compared to others, leading to overshooting and
thus inducing oscillatory behavior towards convergence [17].

Both CJS and SJS show similar trends, with SJS oscillations
reaching slightly larger values. This occurs because SJS costs
can vary across a broader range of values than CJS, as SJS
relies on a single service per slot whereas CJS can concurrently
serve multiple jobs at a given slot. Additionally, an increase
in buffer size (K) decreases GDA’s convergence speed, due to
the larger cardinality of the set of control variables.

Secondly, we contrast the convergence behaviors of GDA
and SGDA. In particular, we focus on the Frobenius norm
of the difference between the solutions found by the two
algorithms at each simulation epoch. Drawing from the theory
of stochastic approximation (see Chapter 9 of [20]), SGDA’s
trajectories are expected to mirror that of GDA. Our results
indicate a close agreement between SGDA and GDA after
35,000 iterations. A formal treatment of the convergence of
SGDA, leveraging [20], is left as subject for future work.

V. CONCLUSION

We approached the challenge of load balancing and auto
scaling across parallel queues through the lens of a weakly
coupled MDP. Drawing on recent advancements in solving
such systems, we proposed an LP-based policy and developed
a novel online learning algorithm to refine this policy when
parameters are unknown and may change dynamically. Our nu-
merical experiments shed light on policy behaviors, including
a phase transition in job acceptance probability as the dropping
cost grows. The experiments also allow us to assess the effi-
cacy of our online learning algorithm. Future work includes a
real-world reality-check of the quality of the policies obtained
through the proposed LP. To ensure reproducibility we make
code and experiments publicly available [21].
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