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ABSTRACT

Context. Protoplanetary disks are known to form around nascent stars from their parent molecular cloud as a result of angular
momentum conservation. As they progressively evolve and dissipate, they also form planets. While a lot of modeling efforts have
been dedicated to their formation, the question of their secular evolution, from the so-called class 0 embedded phase to the class II
phase where disks are believed to be isolated, remains poorly understood.
Aims. We aim to explore the evolution between the embedded stages and the class II stage. We focus on the magnetic field evolution
and the long-term interaction between the disk and the envelope.
Methods. We used the GPU accelerated code Idefix to perform a 3D, barotropic, non ideal magnetohydrodynamic (MHD) secular
core collapse simulation that covers the system evolution from the collapse of the pre-stellar core until 100 kyr after the first hydrostatic
core formation and the disk settling while ensuring sufficient vertical and azimuthal resolutions (down to 10−2 au) to properly resolve
the disk internal dynamics and non axisymmetric perturbations.
Results. The disk evolution leads to a power-law gas surface density in Keplerian rotation that extends up to a few 10 au. The
magnetic flux trapped in the disk during the initial collapse decreases from 100 mG at disk formation down to 1 mG by the end
of the simulation. After the formation of the first hydrostatic core, the system evolves in three phases. A first phase with a small
(∼10 au), unstable, strongly accreting (∼10−5 M� yr−1) disk that loses magnetic flux over the first 15 kyr, a second phase where the
magnetic flux is advected with a smooth, expanding disk fed by the angular momentum of the infalling material, and a final phase
with a gravitationally regulated ∼60 au disk accreting at at few 10−7 M� yr−1. The initial isotropic envelope eventually feeds large-scale
vertically extended accretion streamers, with accretion rates similar to that onto the protostar (∼10−6 M� yr−1). Some of the streamer
material collides with the disk’s outer edge and produces accretion shocks, but a significant fraction of the material lands on the disk
surface without producing any noticeable discontinuity.
Conclusions. While the initial disk size and magnetization are set by magnetic braking, self-gravity eventually drives accretion, so
that the disk ends up in a gravitationally regulated state. This evolution from magnetic braking to self-gravity is due to the weak
coupling between the gas and the magnetic field once the disk has settled. The weak magnetic field at the end of the class I phase
(Bz ∼ 1 mG) is a result of the magnetic flux dilution in the disk as it expands from its initial relatively small size. This expansion
should not be interpreted as a viscous expansion, as it is driven by newly accreted material from large-scale streamers with large
specific angular momentum.
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1. Introduction

Protoplanetary disks are ubiquitous in star-forming systems.
Once they have formed, they are believed to be the main reser-
voir of mass that feeds the protostar and forms planets. In the
early stages of their evolution, they are still embedded in a
massive infalling envelope. As the system evolves, the enve-
lope is progressively accreted onto the disk, which acts as
a buffer between the envelope and the protostar. It is, there-
fore, crucial to understand the long-term evolution of such
disks. They likely result from a complex interplay between
mass input from the envelope and mass removal through
accretion onto the protostar, outflowing material, and planet
formation.

In essence, protoplanetary disks are the result of angular
momentum conservation in a process that gathers mass from
a 103 au scale down to a few tens of au. The initial config-
uration and later evolution of the disk are set by the amount
of angular momentum stored in the gas by the time of its
formation, and the mechanisms that are able to modify this
amount.

On the one hand, it is now clear from core-collapse mod-
els of growing physical complexity (see Tsukamoto et al. 2022,
for a review) that we must both account for the initial mag-
netization of the pre-stellar core and its complex chemistry to
consistently reproduce the range of sizes and masses inferred
in young disks from observational surveys (Maury et al. 2019;
Maret et al. 2020; Tobin et al. 2020; Sheehan et al. 2022). Yet,
robust conclusions about the relative importance of these ingre-
dients and the influence of the initial conditions are still
lacking.

On the other hand, results from numerical models empha-
size the importance of magnetization and self-gravity in the disk
formation and early evolution. Masson et al. (2016) find that
ambipolar diffusion is crucial during the collapse and for disk
formation, as it decouples the magnetic field and the gas suf-
ficiently to prevent the magnetic braking catastrophe, that sup-
presses the disk in ideal magnetohydrodynamic (MHD) simula-
tions (Price & Bate 2007). Hennebelle et al. (2016) support this
result and show that the size of the newborn disk is set through a
balance between magnetic braking (driven by toroidal magnetic
field amplification) and ambipolar diffusion.
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This magnetically regulated phase is often followed by a
gravitationally regulated one. In their work, Tomida et al. (2017),
Xu & Kunz (2021a,b) find a disk that becomes so massive
and resistive that it is mainly controlled by angular momentum
transport induced by self-gravity. In such a situation, they argue
that the disk is stuck in a feedback loop where mass influx from
the envelope promotes the generation of self-gravitating den-
sity waves that heat the gas, thus stabilizing the disk. Hence,
while we have a good understanding of the relative impor-
tance of magnetization and self-gravity during the early disk
evolution, their influence on a secular scale remains to be
explored.

As it falls onto the disk, the envelope can provide addi-
tional angular momentum and promote disk growth. The
classic picture of an isotropic infall through a flattened, pressure-
supported envelope (also known as pseudo-disk) is questioned
by recent core collapse simulations of sufficiently massive
molecular cloud accounting for turbulent, non ideal magneto-
hydrodynamics (MHD, Kuffmeier et al. 2017; Kuznetsova et al.
2019; Lebreuilly et al. 2021). In these simulations, the infall
from the envelope is anisotropic and takes the form of fila-
mentary or sheet-like structures. Such structures are reminis-
cent of the large-scale accretion streamers observed in recent
years in embedded systems (Yen et al. 2019; Pineda et al. 2020;
Murillo et al. 2022; Valdivia-Mena et al. 2022)

Hence, to understand the secular evolution of protoplanetary
disks, one must understand the accretion mechanisms at stake
in the disk. Magnetic braking, controlled by diffusion effects
and the magnetic field intensity, is the best candidate. Yet, in
cases where it becomes inefficient, self-gravity takes over. Thus,
understanding the secular evolution of the magnetic field is key
to understanding the regulation processes of the disk. The field
may also play a role in the formation of anisotropies in the enve-
lope.

Modeling the formation and evolution of protoplanetary
disks is challenging because of the complex physics, the implied
ranges of size and time, and the tri-dimensional nature of some
key processes. For this reason, most collapse models either under
resolve the disk vertical structure or limit the computation time
to the early class I stage. Yet, Lubow et al. (1994) showed that
the magnetic field radial diffusion efficiency depends on the disk
thickness. It is also important to correctly capture phenomena
such as magnetic field line twisting or spiral density wave gen-
eration. Thus, it is crucial to properly resolve the disk verti-
cal extent while integrating for a significant time after the disk
formation to study the disk and field evolution on a secular
scale.

This paper is organized as follows: in Sect. 2 we present our
method and numerical setup, as well as the initial conditions of
our model. Section 3 follows the overall evolution of the setup,
starting from the isothermal collapse and browsing the secular
evolution of the disk. In Sect. 4 we draw the accretion history
of the disk as a complex interplay between magnetic braking,
gravitational instability, and angular momentum influx from the
envelope while Sect. 5 probes the disk and envelope interaction
that arises in the form of a large-scale accretion streamer. Finally,
Sect. 6 confronts our results with observational and numerical
constraints. We conclude in Sect. 7.

2. Method

We aim to perform a long timescale core collapse simulation
using the finite volume code Idefix (Lesur et al. 2023). This
section presents the code and setup general properties.

2.1. Governing equations and integration scheme

The framework of our simulation lies in the context of non rela-
tivistic, inviscid, and locally isothermal non ideal magnetohydro-
dynamics (MHD). The code solves for the classic mass, momen-
tum, and Maxwell’s equations:

∂tρ + ∇ · (ρu) = 0, (1)

∂t(ρu) + ∇ · (ρu ⊗ u) = −∇P − ρ∇φg +
J × B

c
, (2)

∂tB = −∇ × E, (3)
∇ · B = 0, (4)

J =
c

4π
∇ × B, (5)

where ρ, P, u, B and J are respectively the density, the
thermal pressure, the gas velocity, the magnetic field thread-
ing the medium and the electrical current. c is the speed
of light and φg is the gravitational potential. It is the sum
of a point mass contribution from central mass φpm (see
Appendix B) and a self-gravitational contribution φsg which
is connected to the density distribution via the Poisson
equation:

∆φsg = 4πGρ, (6)

with G the gravitational constant. We assume the point mass
to be fixed at the center and therefore neglect any reac-
tion to the accretion of non-zero linear momentum mate-
rial. The electromotive field E is derived from the non ideal
Ohm’s law in the case of ambipolar and Ohmic diffusions and
reads:

E = −u × B +
4π
c
ηOJ −

4π
c
ηAJ × b × b, (7)

where ηO and ηA are the Ohmic and ambipolar diffusion coef-
ficients, and b is a unitary vector aligned with the magnetic
field.

Idefix solves the above equations using a conservative
Godunov method (Toro 2009) with a Constrained Transport
(CT) scheme to evolve the magnetic field (Evans & Hawley
1988). The parabolic terms associated with non ideal effects are
computed separately using a super-timestepping Runge-Kutta-
Legendre scheme (Meyer et al. 2014; Vaidya et al. 2017). To
prevent the accumulation of round-off errors on ∇ · B induced
by the super-timestepping, we use a modified CT scheme in
which the primitive variable evolved by the code is the vec-
tor potential A on cell edges in place of the magnetic field
B on cell faces, as recommended by Lesur et al. (2023). We
implemented a biconjugate gradient stabilized (BICGSTAB)
method with preconditioning that iteratively solves the Pois-
son equation (see Appendix A and Appendix B for the
method and its application to our problem). Finally, a grid
coarsening procedure (Zhang et al. 2019) is applied in the
azimuthal direction close to the axis to increase the inte-
gration timestep without loss of resolution in the equatorial
region.

2.2. Grid and geometry

The simulation is performed in a spherical coordinate system
(r, θ, ϕ), but we also introduce the cylindrical coordinate system
(R,Z, ϕ) that is useful for the analysis.

A253, page 2 of 20



Mauxion, J., et al.: A&A, 686, A253 (2024)

The radius ranges from rin = 1 to rout = 105 au. The radial
axis is discretized over 576 cells. A first patch of 512 cells fol-
lows a logarithmic progression from 1 to 104 au. The remaining
cells are distributed from 104 to 105 au with a stretched spacing.
The θ angle is mapped between 0 and π over 128 cells. Near
the poles, 32 cells (for each side) are spread on a stretched grid,
with increasing resolution toward the midplane. An additional
64 cells are used from θ = 1.27 to θ = 1.87 with uniform spac-
ing to ensure a satisfying resolution in the equatorial region. The
ϕ coordinate covers the full 2π with 64 cells evenly distributed.
The total size of the computational domain is 576 × 128 × 64.

The configuration reaches a maximum resolution of 10−2 au
in the r and θ directions and 10−1 au in the ϕ direction at R =
1 au, that scale linearly with the radius around the midplane.
Overall, the Jeans length λJ is resolved by more than 20 cells
in the radial and polar direction and at least four cells in the
azimuthal direction.

The disk vertical extent is properly sampled with at least
10 cells per scale height H at the inner boundary, where H = εR
is the disk geometrical scale height and assuming a canonical
aspect ratio ε = 0.1. We checked that the fiducial azimuthal
resolution of 64 cells is sufficient to accurately capture non
axisymmetric perturbations by running a more resolved test, for
a shorter time, with 256 azimuthal cells. We found no qualitative
difference between the two.

2.3. Equation of state

In our setup, we do not solve the energy equation. Instead,
we prescribe a barotropic equation of state (EOS) following
Marchand et al. (2016). As our spatial resolution is too coarse to
capture the second hydrostatic core formation, this EOS reduces
to:

T = T0

√
1 +

(
n
n1

)2(γ−1)

, (8)

where n is the gas particle density, T0 is the initial gas temper-
ature, γ = 7/5 is the adiabatic index and n1 = 1011 cm−3 is the
critical gas particle density.

Consequently, our effective thermal behavior could be sum-
marized in two stages: an isothermal phase while n < n1 fol-
lowed by an adiabatic one. We define the formation of the first
hydrostatic core as the moment where the central density reaches
n1. It corresponds to t = 0 in our simulation.

2.4. Non ideal diffusivities

The simulation takes into account Ohmic and ambipolar dif-
fusions. To compute the associated diffusivity coefficients, we
compute the steady state abundances of the main charge car-
riers. For this, we use the chemical network described in
Appendix C. The network is solved using the code Astrochem
(Maret & Bergin 2015) for a range of the gas densities ρ and the
magnetic field intensities B (when relevant). The resulting diffu-
sivities are stored in a table and, for every timestep, we read the
table and perform an interpolation on-the-fly in each cell depend-
ing on the ρ and B value.

2.5. Boundary conditions, internal boundaries, and restart

The inner and outer boundary conditions are similar to a classic
outflow condition, in the sense that the material can only leave
the domain in the radial direction. The azimuthal magnetic field

Bϕ is set to zero to prevent the angular momentum from being
artificially conveyed out of the numerical domain via magnetic
braking. The remaining quantities are just copied in the ghost
cells from the last active one.

In the θ direction, we use an “axis” boundary condition. It
is specially designed to prevent the loss of magnetic field in
the polar region (see appendix of Zhu & Stone 2018). For the
azimuthal direction, we set a classic periodic boundary condi-
tion.

For the self-gravity solver, the boundary conditions are the
same as for the dynamical solver in the θ and ϕ directions. In
the radial direction, the gravitational potential is set to zero at
the outer boundary. We define a specific “origin” inner bound-
ary condition that expands the grid down to the center (see
Appendix A.2).

We implemented three internal numerical boundaries,
mainly to prevent the timestep from dropping, while ensuring
physical accuracy. These features include an Alfvén speed lim-
iter, diffusivity caps (following Xu & Kunz 2021a,b), and an
advection timestep limiter. A detailed discussion is provided in
Appendix D.

The full integration is performed following two steps. We
first integrate the problem assuming a 2D axisymmetric geome-
try (with a single azimuthal cell) until just before the first core
formation (this takes about one free-fall time). The axisymmet-
ric assumption allows us to save computation time during the
initial collapse in which the flow is quasi axisymmetric. We then
continue the integration in full 3D geometry before the first core
formation, for a 100 kyr integration.

Because the first step is 2D, the initial conditions for the sec-
ond step are axisymmetric, which may prevent the emergence of
non axisymmetric perturbations. To alleviate this problem, we
add a white noise of amplitude ±0.1 uϕ to the azimuthal velocity
when starting the 3D simulation. We checked that the angular
momentum is conserved when adding this white noise.

2.6. Initial conditions

The initial conditions mostly follow Masson et al. (2016). We
consider a M0 = 1 M� spherical cloud of initial radius r0 =
2500 au and uniform particle density n0 ' 2 × 106 cm−3. It is
embedded in a 100 times more diluted halo of radius 105 au. The
associated free-fall time is tff =

√
3π/32Gρ0 ≈ 22.1 kyr, with ρ0

the initial uniform gas mass density1.
The thermal over gravitational energy ratio is α =

(5r0c2
s0)/(2M0G) = 0.25, corresponding to an initial isother-

mal sound speed cs0 ' 0.188 km s−1. The initial temperature2

is, therefore, T0 = c2
s0mn/kB ' 10 K.

The core is subject to solid body rotation with a ratio of rota-
tional over gravitational energy β = (Ω2

0r3
0)/(3M0G) = 0.02 cor-

responding to a rotation rate Ω0 ' 3.9 × 10−13 rad s−1. One dif-
ference with Masson et al. (2016) is that the background is also
rotating, with a profile Ω(r) = Ω0(r/r0)−2 for r > r0 which corre-
sponds to constant specific angular momentum along (spherical)
radial lines (following Xu & Kunz 2021a).

Another difference is that the whole domain is initially
threaded by a uniform vertical magnetic field B0 (and not only
the central core). We set a mass-to-flux ratio3 µ = 2 in unit

1 ρ0 ≈ 9 × 10−18 g cm−3.
2 We assume a mean mass per neutral particle mn = 2.33mp, corre-
sponding to the composition of the solar nebula.
3 µ =

M0/(B0πr2
0 )

(M/φ)cr
. The core is therefore supercritical (µ > 1).
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Fig. 1. Snapshots of the azimuthally averaged particle density (color) with attached poloidal magnetic field lines (white contours) and poloidal
velocity stream (gray arrows). From left to right, the first snapshot is a large-scale view focusing on the cloud morphology significantly before the
first core formation, while the three last snapshots zoom into the first core during and after its formation.

of the critical value for collapse (M/φ)cr = (3/2)(63G)−1/2

(Mouschovias & Spitzer 1976) which corresponds to B0 ' 4 ×
10−4 G.

3. Overall evolution

This section focuses on the qualitative properties of the run.
First, we present the behavior of the gas and attached magnetic
field during the first isothermal collapse phase and subsequent
disk formation. Second, we examine the disk secular evolution
properties. Third, we look at the evolution of the disk in terms of
dynamics, size, and mass repartition.

3.1. From pre-stellar collapse to disk formation

We show in Fig. 1 a few snapshots of the azimuthally averaged
gas particle density with attached field lines and poloidal veloc-
ity stream slightly before and just after the first hydrostatic core
formation.

The first snapshot is a large-scale view of the collapsing
core. It illustrates how the magnetic field acts upon the infalling
material: vertically, the motion is aligned with the field and the
gas is free-falling. Radially, the misalignment generates a mag-
netic tension that slows the collapse. The result is a flattening of
the core, as well as a pinching of the magnetic field lines that
are dragged along the midplane by the gas. The clear interplay
between gas motions and field line deformation is a result of the
low diffusivities involved at this stage of the collapse. They are
inefficient at decoupling the gas and the magnetic field, which
remains in a near ideal MHD regime.

The three last snapshots focus on what happens at a small
scale, just after the first hydrostatic core formation. As the core
particle density increases, it reaches the critical value n1 (cf.
Eq. (8)). The gas becomes adiabatic, which provides thermal
support to the core that stops collapsing vertically (second snap-
shot). In the meantime, the radial collapse catches up and drags
the magnetic field which acquires an hourglass shape. A torus-
like, pressure-supported structure arises: it is the first hydrostatic
core formation (third snapshot).

A253, page 4 of 20



Mauxion, J., et al.: A&A, 686, A253 (2024)

100 101 102 103
10−1

100

101

102

103

104

105

Σ
[g

cm
−

2
]

0 kyr

5 kyr

30 kyr

70 kyr

100 101 102 103
10−1

100

101

102

103

104

Ω
[k

y
r−

1
]

ΩK

100 101 102 103

R [au]

10−3

10−2

10−1

B
Z

[G
]

100 101 102 103

R [au]

10−1

101

103

105

107

109

β
P

Fig. 2. Azimuthally averaged surface den-
sity (top left), rotation rate (top right),
poloidal magnetic field intensity (bottom
left), and plasma parameter βP (bottom
right) versus the radius, computed in the
midplane. Each color corresponds to one
snapshot, the darker being the disk forma-
tion epoch, while the lighter is associated
with the later times of the simulation. In
the top right panel, the dashed black line is
the theoretical Keplerian rotation rate with
M? ≈ 0.7 M�.

The large densities also increase the ambipolar and Ohmic
diffusions. Inside the first core, the gas and the magnetic field
are decoupled, and angular momentum accumulates. As a con-
sequence, a small, rotationally supported disk settles (last snap-
shot). The newborn disk is fed by the remnant, vertically
pressure-supported gas that could never reach the radial hydro-
static equilibrium. We refer to this midplane, pressure-supported
gas as the “pseudo-disk” in the following. The “envelope”
denomination is more generic and corresponds to any material
that is not belonging to the disk or the seed.

3.2. disk secular evolution properties

In Fig. 2 we present the azimuthally averaged midplane surface
density Σ, rotation rate Ω, poloidal magnetic field intensity BZ ,
and plasma parameter βP as a function of the radius, starting
from the first core formation until the later times of the simula-
tion.

We compute the surface density as Σ ≡
∫ π

0 ρr sin θdθ, where
the density is integrated along the polar angle. The density barely
contributes out of the disk, which itself covers a small θ range
around the midplane. Therefore, this polar integration in spher-
ical coordinates is a convenient approximation of the vertical
integration in cylindrical coordinates.

At 5 kyr for R . 10 au, the gas follows a steep power-law
starting from a flat, high Σ. Further out, it follows a shallow
power-law with low Σ. As time goes on, the steep power law
becomes shallower while the transition radius increases up to
200 au.

The rotation rate is compared with the Keplerian prediction
ΩK =

√
GM?R−3/2 with M? the seed mass and R the cylindrical

radius4. At 5 kyr for R . 10 au, the gas is in Keplerian rotation.
Further out, it is sub-Keplerian. As time goes on, the Keplerian
transition radius increases up to 200 au. Thus, the steep, inner Σ
region is associated with rotation-supported material while the
outer shallow Σ region is sub-Keplerian.

4 ΩK is derived taking M? at 50 kyr, because M? is roughly constant
afterward.

At 5 kyr for R . 10 au, the poloidal magnetic field shows a
plateau. Further out, it follows a power-law. The intensity of the
plateau decreases with time down to a few mG and the plateau
transition radius increases up to a few 10 au. Initially, the plateau
is associated with the rotation-supported, steep Σ region while
the power-law is associated with the pressure-supported, shallow
Σ region.

The plateau is characteristic of the non ideal MHD regime,
responsible for decoupling the gas and BZ , while the power-law
indicates a near ideal MHD regime due to the gas being less
dense. A slight bump is observed at the transition radius and
can be explained as follows: in the pseudo-disk region, BZ is
dragged to inner radii by infalling material. Reaching the non
ideal region, most of this field cannot be conveyed any further
and piles up.

Finally, the plasma parameter is defined as βP = Pth/Pmag,
where P is the thermal pressure and Pmag = B2/8π is the mag-
netic one. Thus, βP � 1 indicates a thermally dominated gas,
while βP � 1 indicates a magnetically dominated one.

At 5 kyr for R . 10 au, it follows a steep power-law starting
from a high βP ≈ 105. Further out, the profile is slowly increas-
ing from βP ≈ 1 and stays close to this limit value between the
two regimes. Hence, there is a correlation between the magne-
tized, high surface density, rotationally supported gas, and the
thermally dominated region.

As time goes on, the steep power law becomes shallower
while the transition radius increases up to 200 au. The inner-
most region is even more thermally dominated, reaching βP ≈

109. The outer region becomes magnetically dominated, with
βP ≈ 10−1. We note that for any snapshot, the limit value
βP ≈ 1 is located near the transition radius in the three other
profiles.

3.3. Dynamics, size and mass repartition

The disk morphology is investigated in Fig. 3, which shows
the gas surface density in the equatorial midplane at 5, 30, and
70 kyr. It covers the different dynamical states experienced by
the disk during the secular integration: first, the disk is small
and subject to spiral density waves. Second, it smoothes out and
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Fig. 3. Gas surface density in the equatorial plane. From left to right: three characteristic snapshots illustrating the successive behaviors of the disk
at 5, 30, and 70 kyr respectively.

builds up, apart from one large, streamer-like spiral arm. Finally,
the outer disk triggers new spirals that propagate to the inner
radii.

In the middle panel, the disk exhibits a slightly eccentric
morphology. We caution that this is probably a consequence
of the fixed point mass assumption. In principle, while accret-
ing mass with linear momentum, the point mass should move.
Because this motion is not taken into account, there is a non-zero
indirect term from gravity which makes the disk eccentric. That
being said, we think it does not significantly affect the results,
and the eccentricity disappears afterward (see right panel).

Figure 4 gives an overview of the evolution of the disk radius
(Rd), the accretion rate (Ṁ) and the mass repartition between
the seed (M?), the disk (Md) and the envelope (Menv) over the
100 kyr of the simulation.

The top panel follows the evolution of the disk radius Rd. To
compute it, we assume that cells satisfying uϕ ≥ 0.9VK, uϕ >
uR and uϕ > cs are part of the disk (VK and cs are the local
Keplerian and sound velocities). The disk radius is then defined
as the azimuthal median of the outermost radii that satisfy this
criterion in the midplane.

As the disk forms after a few kyr, its radius reaches 10 au
and immediately starts decreasing until 15 kyr. Then, it increases
smoothly up to 60 au after 30 kyr where it remains constant until
45 kyr. After this point, the radius is subject to chaotic fluctua-
tions around 60 au and remains so until the end of the simulation.

The middle panel follows the evolution of Ṁ near the pro-
tostar (R = 5 au) and at the maximum stable outer radius
(R = 60 au). We perform an azimuthal integration over 2π and
a vertical integration between ±H. In the following, H always
refers to the disk geometrical scale height. Data are convolved in
time using a 10 kyr window (equivalent to 8 orbits at 100 au). We
caution that, in doing so, we smooth out short-timescale events
occurring in the disk to focus on secular events. For instance,
the fact that the accretion rate oscillates on the spiral dynamical
timescale (Tomida et al. 2017) is verified, but hidden due to the
large smoothing window.

We first focus on Ṁ(R = 5 au), which gives a good proxy for
the accretion onto the protostar. As the disk forms, the protostar
accretes at a strong rate of a few 10−5 M� yr−1 that immediately
starts decreasing until 20 kyr. There, it reverses with a negative
rate around 10−6 M� yr−1, which means that gas is expanding
consistently with Rd and the protostar is no more accreting. After
35 kyr, the expansion episode stops and standard protostar accre-
tion is back. It is first small, with strong variations between 10−8

and a few 10−7 M� yr−1. After 45 kyr the range increases and sta-
bilizes between a few 10−7 and 10−6 M� yr−1.

For Ṁ(R = 60 au), the material is not part of the disk until
30 kyr and only marginally belongs to the disk afterward due
to radius variability, such that we essentially probe the pseudo-
disk accretion. As the disk forms, the pseudo-disk accretes at a
strong rate of a few 10−5 M� yr−1 that immediately start decreas-
ing until 30 kyr. There, it reverses with a negative rate of a few
10−7 M� yr−1. It is shortly and slightly expanding because Rd
stops growing there. After 35 kyr, the expansion episode stops
and standard pseudo-disk accretion is back. We note that the
Ṁ(R = 60 au) is about one order of magnitude larger than
Ṁ(R = 5 au), indicating that the disk density structure is still
evolving and that proper steady state has not yet been reached.

Finally, the bottom panel shows the evolution of the mass
repartition between the seed, the disk, and the envelope. M?

accounts for any mass falling below Rin. Md is computed by sum-
ming ρdV over any cell matching the disk criterion. The enve-
lope mass is what is left of the initial 1 M� cloud.

As the disk forms, M? grows to 0.7 M� until 15 kyr and
stagnates afterward. In the meantime, Md reaches a maximum
0.15 M� and immediately starts decreasing until 15 kyr. Then, it
increases smoothly to 0.15 M� after 30 kyr where it remains con-
stant until 45 kyr. After this point, the disk mass keeps increasing
while oscillating and remains so until the end of the simulation.
The final disk mass is 0.25 M�.

Menv is rapidly decreasing until 10 kyr. Most of the lost mass
ends up in the seed, the rest becomes part of the disk. After 5 kyr,
the envelope mass becomes negligible compared to M?, and the
decaying slope is shallower. The envelope is mainly accreted
onto the disk. After 80 kyr, Menv becomes negligible compared
to Md.

4. Accretion history

In this section, we study the accretion history of the disk based
on the evolution of key physical quantities (surface density, mag-
netic field...). We isolate the main driving mechanisms for accre-
tion, address their relevance throughout the disk evolution, and
derive a comprehensive scenario over three accretion phases.

4.1. Driving accretion mechanisms

Protoplanetary disks are rotationally supported structures. In this
context, accretion is only possible if there are one or several
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Fig. 4. Top panel: radius of the disk over time. The dash-dotted black
lines emphasize the radii where the mass accretion rate is inspected
in the next panel. Middle panel: mass accretion rate over time near
the protostar (R = 5 au, red) and at the maximum stable outer radius
(R = 60 au, green). Dashed lines correspond to expanding material. Bot-
tom panel: protostar mass (orange), disk mass (blue), the total mass of
the disk-protostar system (gray), and envelope mass (brown) over time.
Data for the accretion rate are convolved in time using a 10 kyr window
(equivalent to 8 orbits at 100 au).

mechanisms capable of extracting angular momentum from the
gas.

To properly account for each of these mechanisms, we derive
the conservation of angular momentum in the cylindrical coor-
dinates system (R,Z, ϕ) for the case of a self-gravitating, magne-
tized rotating disk (adapted from Lesur 2021a):

ρuR∂R

(
ΩR2

)
+

1
R
∂R

R2 ΠRϕ︸︷︷︸
radial stress

 + R
[
〈ΠZϕ〉

]H

−H︸      ︷︷      ︸
surface stress

= 0, (9)

with

ΠRϕ = ρuRVϕ +
gRgϕ

4πG
−

BRBϕ
4π

, (10)

ΠZϕ = ρuZVϕ +
gZgϕ

4πG
−

BZ Bϕ
4π

, (11)

where Vϕ = uϕ − 1
2H uϕ, g is the gravitational field and

〈X〉 = 1
2π

∫ 2π
0 Xdϕ and X =

∫ H
−H〈X〉dZ, (12)

for any quantity X and [X]H
−H = X(Z = H) − X(Z = −H).

There are therefore six mechanisms acting upon the angu-
lar momentum transport in our case: hydrodynamical transport
(first term in Eqs. (10) and (11)), gravitational transport (second
term) and magnetic transport (third term), each of them generat-
ing both a radial stress (Eq. (10)) and a surface stress (Eq. (11)).

Among these quantities, we want to focus on the three main
levers identified in previous works (Xu & Kunz 2021a,b) as the
preponderant mechanisms at stake for such massive, embedded
and magnetized disks: the radial gravitational stress GRϕ, the
magnetic braking MZϕ (corresponding to the surface magnetic
stress), and the surface hydrodynamical stress HZϕ. Each of them
is labeled as follows:

GRϕ ≡
1
R
∂R

[
R2 gRgϕ

4πG

]
, (13)

MZϕ ≡ −R
[
〈BZ Bϕ〉

4π

]H

−H
, (14)

HZϕ ≡ R
[
〈ρuZVϕ〉

]H

−H
. (15)

Figure 5 presents a comparison of each stress for three snap-
shots (with time increasing from top to bottom). A positive
torque is associated with the extraction of angular momentum
from the disk while a negative torque brings angular momentum
to the disk.

At 5 kyr, the gravitational stress is positive and dominant in
the disk. It transports angular momentum from the inside out. In
the meantime, magnetic braking is positive and dominant in the
pseudo-disk. It extracts angular momentum from the gas. The
hydrodynamical stress can be significant but is never dominant
in the innermost 200 au.

At 30 kyr, the hydrodynamical stress is negative and domi-
nant in the disk and inner pseudo-disk. It brings angular momen-
tum from the envelope. In the meantime, magnetic braking is
positive and dominant in the outer pseudo-disk. Yet, its inten-
sity has significantly decreased. The gravitational stress can be
significant but is never dominant in the innermost 200 au.

At 70 kyr, the hydrodynamical stress is negative and domi-
nant in the inner disk. In the meantime, the gravitational stress is
positive and dominant in the outer disk and the pseudo-disk. The
magnetic braking is essentially positive but never significant in
the innermost 200 au.

The relative importance of each stress can be connected with
Fig. 6, which shows the accretion rate versus the radius for the
same snapshots. Ṁ is computed as in the middle panel of Fig. 4.
A positive rate corresponds to accretion while a negative one is
associated with expansion.

At 5 kyr, both the disk and the pseudo-disk efficiently accrete
at a few 10−5 M� yr−1. At 30 kyr, the disk expands with Ṁ
ranging between −10−7 and −10−6 M� yr−1 and the pseudo-disk
accretes at 10−6 M� yr−1. The disk is therefore growing because
of inside-out expansion and accumulation at the edge. At 70 kyr,
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Fig. 5. From top to bottom we focus on t = 5, 30 and 70 kyr respectively.
Each panel presents GRϕ (green), MZϕ (blue) and HZϕ (red) versus the
radius. Solid and dashed lines are associated with positive and negative
stresses respectively. The dotted black line is the corresponding disk
radius. Data are convolved in time using a 10 kyr window (equivalent to
8 orbits at 100 au).

the inner disk has no clear trend. It switches between accretion
and expansion. In the meantime, the outer disk and the pseudo-
disk accrete at Ṁ ∼ 10−6 M� yr−1.

Accretion therefore results from the relative importance of
each stress in the disk and the pseudo-disk. Understanding the
secular evolution of these stresses is the key to understanding
the different accretion behaviors.

4.2. Secular accretion scenario

In the following, we derive the disk accretion scenario in three
phases by looking into the physical quantities underlying each
stress.
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Fig. 6. Mass accretion rate versus the radius. Each color corresponds
to one snaphsot at 5, 30 and 70 kyr respectively. The lighter, the later.
Dashed lines represent the disk radius associated with each epoch. Data
are convolved in time using a 10 kyr window (equivalent to 8 orbits at
100 au).

First, spiral density waves are known to be an efficient angu-
lar momentum carrier. In our simulation, they are observed
simultaneously with high accretion rates in the disk, making
them a good candidate to explain accretion. Typically, Gravita-
tional Instabilities (GI) are triggered when Md & εM? (Armitage
2011, Eq. (12)). The aspect ratio of the disk is ε . 0.1 during the
simulation, while Md > 0.1M?. Thus, our disk lies in the ade-
quate regime, indicating that our spiral density waves are proba-
bly triggered by GI.

In order to characterize the stability of the disk with respect
to its own gravity, we use a simplified version of the Toomre
parameter Q (Toomre 1964; Goldreich & Lynden-Bell 1965a,b).
Assuming that the gas is in Keplerian rotation, the simplified
Toomre parameter QK writes as (Xu & Kunz 2021a,b):

QK =

(
csΩK

πGΣ

)
Z=0

. (16)

Many studies discuss the critical value for stability, which
depends on the assumptions on the disk thickness or the per-
turbations linearity (Toomre 1964; Goldreich & Lynden-Bell
1965a,b; Gammie 2001; Wang et al. 2010). Based on these
works, we expect the disk to be unstable when QK ∼ 1 while
keeping in mind that the lower QK , the more likely the GI.

Second, the magnetic braking is a function of the poloidal
magnetic field. Hence, the braking efficiency is controlled by the
amount of poloidal magnetic flux stored in the gas. It is com-
puted from the magnetic vector potential A:

φB = R〈Aϕ(Z = 0)〉. (17)

To complete our diagnostics, the hydrodynamical vertical
stress is a function of the specific angular momentum j = Ruϕ
transported by the poloidal velocity flow Vp = uReR + uZeZ .

We present in Fig. 7 a series of spacetime diagrams con-
necting the surface density of the gas (top panel), the poloidal
magnetic flux (middle panel), and the Toomre parameter (bot-
tom panel). Figure 8 shows the specific angular momentum with
the attached poloidal flow. We discuss below the different phases
that we find from these figures.

4.2.1. Phase I: A small, GI-driven disk

From the top panel of Fig. 7, we see that until 15 kyr, a
high surface density region concentrates to the innermost 10 au
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Fig. 7. Spacetime diagrams of the surface
density (top panel), poloidal magnetic flux
(middle panel), and Toomre parameter (bot-
tom panel). Colors and radii are in log scale.
The dashed white line corresponds to the disk
radius, and dash-dotted white lines delimit the
three accretion phases. Data were convolved
in time using a 10 kyr window (equivalent to
8 orbits at 100 au).

Fig. 8. From left to right we focus on t = 5, 30, and 70 kyr respectively, corresponding to each accretion phase. Each panel presents the specific
angular momentum j in colors, with the attached poloidal velocity flow Vp as white quivers.

corresponding to the disk. At the transition, there is a sharp drop
in density, and the pseudo-disk is left with a low surface density.
In parallel, the middle panel shows that a lot of magnetic flux is
stored in the gas, especially within the pseudo-disk region, while
the bottom panel presents a Toomre parameter that is of order of
unity in the disk region, which is, therefore, GI unstable.

In addition, the left panel of Fig. 8 shows that the pseudo-
disk provides material to the disk that has low specific angu-
lar momentum. At intermediate altitudes, the envelope provides
material with higher j but does not reach the inner regions corre-

sponding to the disk. At high altitudes, it provides material to the
disk through its surfaces, but with low specific angular momen-
tum.

Thus, in the first phase, the disk feeds the protostar thanks to
GI-triggered spiral density waves that efficiently remove angu-
lar momentum at low radii. The instability is itself sustained by
the mass influx from the pseudo-disk, driven by a powerful mag-
netic braking. There is a specific angular momentum contribu-
tion from the pseudo-disk and envelope to the disk, but it is not
significant.
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4.2.2. Phase II: Disk expansion fed by the envelope

From the top panel of Fig. 7, we see that between 15 and 45 kyr,
the surface density increases at R & 10 au, while the disk grows
from inside out. This is synchronous with a continuous outward
advection of the magnetic flux in the middle panel. We empha-
size that at 10 au, φB decreases by roughly 2 orders of magni-
tude in the 20 first kyr. In the meantime, from the bottom panel,
the Toomre parameter exhibits quite complex behavior. For R .
10 au, QK is close to unity. This trend, along with the persistence
of two low QK rings until the end of the simulation, predicts
that the inner disk should trigger spiral density waves which
we do not observe for these times and for these radii. Instead,
two persistent ring-like features are observed in the surface
density. Such rings are ubiquitous in self-gravitating disk sim-
ulations (Durisen et al. 2005; Boley et al. 2006; Michael et al.
2012; Steiman-Cameron et al. 2013, 2023) and are believed to
be a common product of GI. Between 10 and 60 au, a significant
decrease down to QK ∼ 5 is observed, as a response to the sur-
face density increase, but this is not enough to enter a GI regime.
The disk therefore smoothes out.

In addition, the middle panel of Fig. 8 shows that the pseudo-
disk has become more efficient at providing angular momen-
tum to the disk. At intermediate and high altitudes, the envelope
now provides material with a large specific angular momentum,
among which a significant part reaches the disk.

Thus, in the second phase, the disk stabilizes and smoothes
out. It cannot accrete, since no angular momentum transport
mechanism is efficient enough in this phase. On the contrary,
it gains angular momentum from the envelope. The net result
is a radial expansion of the disk, and the surface density power
law becomes shallower. In the process, the accumulated mag-
netic flux is advected outward in a flux-freezing manner, hence
a decrease in the magnetization. This is discussed in Sect. 4.3.

4.2.3. Phase III: GI-driven outer disk

From the top panel of Fig. 7, we see that the disk radius expan-
sion is halted around 45 kyr and stabilizes at 60 au until the end
of the simulation. In the meantime, the surface density front
stops around 100 au, with a slight tendency to decrease by the
end of the simulation. The flux outward advection in the middle
panel stops as well, and there is even some late inward advection
in the disk. In the bottom panel, at roughly 55 kyr, QK becomes

of order of unity in the outermost part of the disk. The low value
propagates to inner radii afterward, until the end of the simula-
tion.

In addition, the right panel of Fig. 8 shows that the pseudo-
disk starts to accrete low j material again. At intermediate alti-
tudes, the specific angular momentum is the strongest, near the
outer disk surfaces. From high altitudes, the envelope still pro-
vides material with significant j to the inner disk.

Thus, in the third phase, the disk does not receive enough
angular momentum to keep expanding. The pseudo-disk is still
braked and accretes onto the disk. The surface density profile
steepens at the disk edge and triggers a new GI producing new
spirals that propagate to inner radii. Hence the outer disk can
accrete. This final state holds for the remaining 55 kyr suggesting
that the disk ends up in a GI regulated state. We explore this idea
in the following.

4.3. Flux-freezing during disk expansion

In Sect. 4.2.2, we find that while the disk is expanding, the mag-
netic flux is advected along with the gas consistently with a flux-
freezing behavior. Here we discuss whether advection is indeed
the dominant contribution to the magnetic field transport during
the disk secular evolution. We define the midplane, azimuthally
averaged, ideal, poloidal magnetic flux velocity transport V id

B as
(adapted from Lesur 2021b):

V id
B =

〈Eid
ϕ (Z = 0)〉

〈BZ(Z = 0)〉
, (18)

where Eid
ϕ = uRBZ comes from the first term of Eq. (7). Physi-

cally, it corresponds to the magnetic flux variation associated to
advection.

Figure 9 presents V id
B versus the radius for each phase, along

with the location of the disk radius. It is normalized by the Kep-
lerian velocity VK . A positive velocity is associated with outward
transport while a negative velocity is associated with inward
transport. In the following, we compare the prediction for the
flux transport from advection only with the actual evolution from
Fig. 7, middle panel. If they match, we conclude that the advec-
tion is mainly responsible for the flux transport, that is,the gas
exhibits a flux-freezing behavior.

At 5 kyr, the ideal transport predicts strong (≈−0.1) inward
advection for the flux inside the disk, while we see it starts
spreading in Fig. 7 (middle panel, phase I). Thus, diffusive trans-
port dominates over advection. At 30 kyr, the ideal transport pre-
dicts significant (≈0.01) outward advection for the flux inside the
disk, which is consistent with the flux recession in Fig. 7 (mid-
dle panel, phase II). Thus, the flux is advected by the spreading
disk. At 70 kyr, the ideal transport predicts low (<0.001) out-
ward advection in the inner smooth disk and a slightly stronger
(>0.001) outward advection in the outer spiral-driven disk, while
the flux seems slightly advected back inward on the long term in
Fig. 7 (middle panel, phase III). This discrepancy suggests that
accretion is not the main driver of flux transport in this phase.

Thus, we conclude that diffusion is responsible for flux leak-
ing essentially during phase I and III. Conversely, during phase
II, advection overcomes diffusion and the field is just diluted in
the expanding disk.

4.4. A GI regulated final secular evolution

In Sect. 4.2, we conclude that the disk angular momentum
process is dominated by GI-driven spiral density waves when
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Fig. 10. disk surface density versus the radius. Each color focuses on
one accretion phase at 5, 30, and 70 kyr respectively. The lighter, the
later. The dashed black line is the predicted critical surface density from
Eq. (19).

accreting. Self-gravitating disks are prone to enter a marginally
unstable, self regulated gravito-turbulent state where the Toomre
parameter is maintained around the critical value Q ∼ 1
(Gammie 2001).

From Eq. (16), QK is controlled by two main levers: surface
density Σ and temperature T (through cs =

√
kBT/mn). Yet, we

use a barotropic EOS, such that T is set by the density. In this
specific case, Xu & Kunz (2021a) argues that the disk stability is
controlled by the surface density alone. It can enter GI through Σ
increase, as a result of mass influx from the environment. Once
unstable, such a disk can be brought back into stability only by
lowering Σ, if authorized to spread or to significantly accrete.

To probe this phenomenon, we derive a critical surface den-
sity Σcr as a function of the radius, above which the disk should
become unstable:

Σcr(R) = Σ0R(γ+2)/(γ−3) = Σ0

( R
1 au

)−2.125

, (19)

where

Σ0 =

cs,0

π

√
M?

G
(ερ1)(1−γ)/2

2/(3−γ)

≈ 2 × 105 g cm−2, (20)

with ρ1 = n1 · mn the critical mass density for which the gas
becomes adiabatic.

Σcr is calculated from Eq. (16) with the following assump-
tions:

– QK = 1.
– cs = cs,0

(
ρ
ρ1

)(γ−1)/2
(adiabatic regime).

– ρ = Σ
H = Σ

εR .
Most of the data used for the calculation are detailed in Sects. 2.3
and 2.6, and we take γ = 1.4, ε = 0.1 and M? = 0.7 M�.

The critical surface density is reported as a dashed black line
in Fig. 10, along with the measured disk surface density for three
snapshots spanning over each phase.

At 5 kyr, the steep power-law at R . 10 au matches the criti-
cal value between 2 and 4 au, and stands below further out. This
is consistent with the spiral-driven disk in phase I. At 30 kyr,
the power-law spreads, while staying below Σcr. This is consis-
tent with the smooth disks in phase II. At 70 kyr, the inner disk

stands below the critical surface density while the outer disk sat-
urates at Σcr, around which it oscillates. This is consistent with
the spiral-driven outer disk in phase III.

Hence, any deviation from the stability regime enforced by
self-gravity leads to negative feedback that promotes accretion.
In this sense, the disk is shaped by self-gravity. In the case where
a sustained influx of material increases locally the surface den-
sity, the disk enters a self regulated state where Rd stabilizes
around 60 au. This emphasizes the role of the environment inter-
acting with the disk.

5. Interaction with the parent molecular cloud: A
large-scale accretion streamer

The most striking evidence of an interaction between the molec-
ular cloud and the protostar-disk system is the appearance of a
large-scale, streamer-like spiral arm driving asymmetric infall
between the remnant cloud and the central protostar-disk sys-
tem. Here, we discuss the accretion streamer morphology and
kinematics and investigate on how it connects to the central sys-
tem. We also compute some observational properties.

5.1. Streamer spatial and velocity distribution: A sheet-like
morphology

Figure 11 presents a large-scale equatorial slice of the gas sur-
face density (top row) along with poloidal slices of the gas par-
ticle density (middle row) and poloidal velocity (bottom row)
performed at the azimuth of the streamer for two late time snap-
shots. The poloidal velocity is normalized by the free-fall veloc-
ity Vff =

√
2VK .

Focusing on the top row, we see that the environment of the
protostar-disk system is divided between a low surface density
bubble and an extended region of growing surface density that
culminates in an azimuthally localized channel of gas at lower
radii. This is the main accretion streamer, toward which the equa-
torial velocity flow is converging. The streamer structure extends
up to approximately 1000 au and connects to the disk. A second
converging flow is observed in the low-density bubble, corre-
sponding to an additional fainter streamer. The streamers rotate
between the two snapshots.

The middle row shows that the gas particle density is verti-
cally stratified, with densities ranging between 106 cm−3 close
to the polar axis and 108 cm−3 in the midplane. Overall, the
streamer converges in a sheet-like morphology that is even better
identified when represented in three dimensions5.

Finally, the bottom row illustrates two different dynamical
behaviors. Far from the midplane, the flow is near free-fall. The
gas is channeled toward lower radii at constant velocity and
falls directly above (and below) the disk. Near the midplane,
the large-scale velocity is smaller. A gradient is observed toward
lower radii as the gas catches up with more elevated material,
reaching near free-fall velocity. In this case, the gas falls directly
onto the disk edge. The associated velocity variation suggests
that material is shocking in this region.

In Fig. 12, we present a large-scale equatorial slice at
t = 60 kyr showing the plasma parameter βP. Interestingly, the
streamer and the central protostar-disk system are characterized
by βP > 1, indicating that the gas in these regions is thermally
dominated. On the contrary, the surrounding low-density bubble

5 A 3D model of the streamer at 70 kyr based on particle den-
sity contours is available on https://sketchfab.com/3d-models/
streamer-1407-fid-66107da9c4854078aadac140de9f4e73
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Fig. 11. Top row: large-scale equatorial slice of the gas surface density with associated equatorial velocity flow (white quivers). A dashed white
line indicates the azimuth of the main streamer, for which poloidal slices are performed. Middle row: large-scale poloidal slice of the gas particle
density with associated poloidal velocity flow (white quivers). Bottom row: large-scale poloidal slice of the gas poloidal velocity, normalized by
the free-fall velocity, with associated poloidal velocity flow (white quivers). Each column corresponds to a late time snapshot, respectively at 60
(left column) and 70 kyr (right column). In each plot, a line integrated convolution treatment is applied to emphasize the gas streamlines. The
innermost 100 au are masked by a gray circle to allow for adequate contrast.

is characterized by βP < 1, indicating that the gas is magnetically
dominated. This configuration points toward a magnetic origin
for the streamer formation, such as the interchange instability
proposed by Mignon-Risse et al. (2021) in the context of mas-
sive star formation or the magnetic process discussed in Tu et al.
(2023) for the collapse of a turbulent, low-mass protostellar
core.

5.2. Connecting to the central system: Looking for shock
signatures

Figure 13 provides a three-dimensional representation of the
disk and streamer with two attached streamlines at time 70 kyr.
The disk and streamer are displayed for representation purposes.
In this plot, cells associated with the disk must have gas particle
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Fig. 12. Large-scale equatorial slice at t = 60 kyr. Colors are the plasma
parameter βP.

Fig. 13. Three-dimensional representation of the disk and streamer with
two attached streamlines at time 70 kyr. Red surfaces correspond to
the disk, while green surfaces represent the streamer. Both stream-
lines start at R = 350 au and ϕ = ϕstreamer with respectively Z = 0
(orange solid line) and Z = 100 au (blue solid line). Black dots indi-
cate shocks (or rarefactions) along the streamlines while the gray dot
corresponds to a density transition (see Fig. 14 for their identification).
For an animated version of the figure with a large-scale visualization
of the streamer, see https://cloud.univ-grenoble-alpes.fr/s/
ZNwHrbWg8A24Trb.

density over 109 cm−3. The streamer corresponds to cells where
n ≥ 106 cm−3 and ur < 0 to ensure we focus on infalling material
belonging to the parent molecular cloud. We additionally require
r > 200 au to exclude the central system. Streamlines are inte-
grated with starting points of cylindrical radius R0 = 350 au and
azimuth ϕ0 = ϕstreamer, with respectively Z0 = 0 and Z0 = 100 au
to probe the gas in the midplane and at elevated location.

The midplane streamline remains in the streamer and the
midplane until it reaches the large-scale spiral arm where it
is abruptly deflected (see Fig. 14) and entrained in the spiral
motion. In contrast, the elevated streamline is channeled directly
onto the innermost part of the disk, if not directly falling onto

Fig. 14. Top: particle density along the streamlines starting at Z0 = 0 au
and Z0 = 100 au respectively. Bottom: Gas velocity projected along
each streamline. Colors and dots are the same as in Fig. 13.

the seed (see the animated version of the plot for a better under-
standing).

The question of the shock is addressed by Fig. 14. The top
panel shows the gas particle density in the streamline as a func-
tion of the position on the streamline while the bottom panel is
the normalized gas velocity parallel to the streamline V‖/Vff .

For the midplane streamline, a first shock signature is
observed at 100 au with both discontinuities in density and
velocity consistent with the encounter between the streamer
and the spiral arm. The density jumps from roughly 108 to
almost 1010 cm−3 and the gas loses more than half of its veloc-
ity. A fainter secondary rarefaction signature is observed around
170 au where density and velocity drop again. We caution that
the gas is not in a steady state, hence the streamline may not be
representative of the gas kinematics after the first deflection. For
the elevated streamline, we observe a sharp increase in density
corresponding to the moment where the gas connects with the
disk. However, the velocity along the streamline remains near
free-fall at any position, and only a faint, smooth velocity gradi-
ent is observed. This corresponds to a smooth density transition,
rather than a shock signature.

5.3. Streamer mass and infall rate: Impact on protostar-disk
accretion

To close our analysis of the streamer, we compute its mass
and infall rate. We stay as close as possible to the computation
method provided by Valdivia-Mena et al. (2022).
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We stick to the definition in Sect. 5.2 to flag cells belonging
to the streamer. The mass is then computed by summing ρdV
over each cell. We obtain Mstreamer ≈ 0.02 M� corresponding to
3% of the protostar’s mass and 10% of the disk mass at 70 kyr.

The infall rate Ṁin is the mass rate at which the streamer
is infalling onto the protostar-disk system. It is not to be
confused with the accretion rate Ṁ? directly onto the pro-
tostar. Valdivia-Mena et al. (2022) compute it through Ṁin =
Mstreamer/tff,streamer where tff,streamer is computed using a stream-
line model. On each point of the streamline, they interpolate the
velocity V‖ and length variation dl. They can therefore compute
the time needed to reach the disk.

We do the same using a streamline starting at (R,Z, ϕ) =
(Rstreamer, 0, ϕstreamer), with Rstreamer ≈ 1400 au the outermost
radius of the streamer. We then sum dl/V‖ along the stream-
line to get tff,streamer ≈ 13 kyr giving Ṁin ≈ 1.5 × 10−6 M� yr−1.
Compared to the accretion rate Ṁ? ≡ Ṁ(R = 5 au) ≈ 5 ×
10−7 M� yr−1 at the same time, we get a ratio of infall to accre-
tion of Ṁin/Ṁ? ≈ 3.

6. Discussion

In this section, we confront our disk secular evolution and final
GI regulated state with observations. We also discuss the com-
patibility of our accretion streamer with what is observed by
comparing its properties with the literature.

6.1. disk secular evolution and GI self regulation

In the first 15 kyr of its life, the newborn disk is small, com-
pact, and magnetized. It lies in the non ideal regime and accretes
through GI-driven spiral density waves. This is because efficient
magnetic braking promotes accretion in the well-coupled MHD
pseudo-disk, which in return increases the disk mass and makes
it unstable. During the second phase, between 15 and 45 kyr, the
accretion in the pseudo-disk becomes less efficient and the disk
can stabilize. In the meantime, the envelope provides high angu-
lar momentum material to the disk that can therefore expand.
As a result, the accumulated magnetic flux is advected outward
and magnetization decreases. In the third phase, lasting for the
remaining 55 kyr, expansion is halted in the disk and mass accu-
mulates at the edge from the pseudo-disk. At some point, the
outer disk is massive enough to be unstable and the disk’s final
state is GI regulated.

As a complement, we would like to emphasize an interest-
ing result regarding the plasma parameter βP. In Sect. 4.2, we
find that during phase II the disk is expanding, and its magnetic
flux is advected along with the gas. In such a case, assuming the
disk mass Md and poloidal magnetic flux φd to be constant, one
can show that βP(Rd) ∝ R2

d. This is verified in Fig. 2, bottom
right panel. At 5 kyr, βP(Rd) ≈ 10. Later on, once the disk radius
has increased by roughly one order of magnitude, the associ-
ated plasma parameter is βP(Rd) ≈ 103. The verified dependency
is a confirmation that once a given amount of flux is stored in
the disk, it follows the gas evolution, and magnetization evolves
accordingly.

Numerically speaking, our collapse and disk’s early evolu-
tion are in line with other works. Magnetic decoupling occurs
by the time of the first core formation leading to a plateau with
Bz ' 100 mG threading the disk, as expected in core-collapse
simulations including ambipolar diffusion (Masson et al. 2016;
Vaytet et al. 2018; Xu & Kunz 2021b). The initial disk size
of roughly 10 au is consistent with a magnetic regulation

(Hennebelle et al. 2016). A decreased magnetization is then
observed for simulations that properly resolve the disk vertical
extent (Xu & Kunz 2021b). The disk becomes massive and resis-
tive enough to be gravitationally regulated (Tomida et al. 2017;
Xu & Kunz 2021a,b). The piling up of magnetic field at the tran-
sition between the diffusive and ideal MHD regimes is reminis-
cent of the magnetic wall proposed by Li & McKee (1996) and
observed also in Xu & Kunz (2021b), though with a fainter accu-
mulation that could be explained by the differences in the diffu-
sivity tables.

On the observational side, resolution is often missing to infer
the surface density profile in class 0/I systems and we lack robust
tracers to unveil the magnetization. The few studies available for
the surface density find a power-law index between −1.7 and
−1.5 (Yen et al. 2014; Aso et al. 2015, 2017). This is shallower
than what we constrain to justify our GI regulation mechanism
(≈−2). On the other hand, Fiorellino et al. (2023) find that many
class I have a disk-to-star mass ratio above 0.1, which they claim
is typical for a GI regulated disk. That being said, spirals are
observed in only a few class 0/I protostars (Tobin et al. 2018;
Lee et al. 2020), while most of these objects do not show struc-
tures (Ohashi et al. 2023). Yet, it is worth mentioning that these
disks can be optically thick, in which case the spirals can be hid-
den.

The Class II stage is slightly better constrained. The review
from Andrews (2020) summarizes class II disk properties
inferred from observations. The constrained surface density pro-
file has an index of ≈−1, again shallower than our finding, mak-
ing GI regulation unlikely. Conversely, Zeeman measurements
of the poloidal magnetic field give an upper limit of ∼1 mG at a
few 10 au (Vlemmings et al. 2019) consistent with our final disk
magnetization.

Thus, most of the properties of our evolved disk are consis-
tent with current observations, with the exception of the GI reg-
ulated state, characterized by a steep surface density profile and
prominent spiral density waves, which seem to be uncommon,
even in young disks. The inclusion of internal heating, which
is missing in the current model, could help stabilize the disk.
Yet, it would not change the final picture. Indeed, in our simula-
tion, the triggering of GI is inevitable when magnetic braking is
neutralized by an inefficient magnetic coupling because no other
mechanism is able to evacuate the disk angular momentum as
mass piles up.

This however ignores the role of MHD disk winds that
could be launched from the ionized surface layers of the disk.
In our simulation, a large-scale outflowing structure arises, but
it is launched far from the disk surface. The importance of
such outflows with elevated launching points is discussed in
many core-collapse simulations (Machida & Hosokawa 2013;
Tsukamoto et al. 2015; Masson et al. 2016; Marchand et al.
2020) and they are proposed as a means to redistribute angular
momentum. However, in our simulation, we find that the outflow
is launched from a low density region (a “vacuum”) which den-
sity is set by the numerical limiters (Alfvén and density floor).
Therefore, in our view, its origin remains numerical.

Hence, we conclude that no proper MHD disk wind is found
in our simulation, while many “disk only” simulations including
surface ionization exhibit MHD disk winds (Béthune et al. 2017;
Bai & Stone 2017; Suriano et al. 2019; Lesur 2021b). These sur-
face ionization processes are due to stellar far UV and X-ray
photons that increase the ionization fraction by orders of mag-
nitude. These effects are absent in our simulation, in which we
only consider cosmic ray ionization in our chemical network.
Hence it is tempting to associate the GI regulated disk we obtain
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to the lack of stellar irradiation at the disk surface. This possibil-
ity should be investigated in the future.

6.2. Large-scale streamer driving accretion in the envelope

The long-term interaction of the envelope with the protostar-
disk system leads to the formation of an accretion streamer. It is
composed of near free-fall gas organized in a sheet-like config-
uration. It connects to the protostar-disk system either by shock-
ing onto the disk edge in the midplane or by smoothly accreting
onto the disk surfaces from higher altitudes. Quantitatively, the
streamer maximum radius is ≈1400 au with mass and infall rates
of 0.02 M� and 1.5 × 10−6 M� yr−1, corresponding to 3% of the
seed mass and 3 times the protostar accretion respectively.

Asymmetric large-scale structures are ubiquitous in numer-
ical core-collapse models with sufficiently massive molecu-
lar clouds, accounting for turbulence (Kuffmeier et al. 2017;
Lam et al. 2019; Kuznetsova et al. 2019; Wurster et al. 2019;
Lebreuilly et al. 2021) or not (Mignon-Risse et al. 2021). The
resulting envelope is often messy, exhibiting streamers with fil-
amentary or sheet-like morphologies. Tu et al. (2023) propose a
magnetic origin of the streamer formation, which is also sup-
ported by Mignon-Risse et al. (2021) and consistent with our
work.

Accretion streamers have been observed both in deeply
embedded class 0 (Pineda et al. 2020; Murillo et al. 2022) and
in class I sources (Yen et al. 2019; Valdivia-Mena et al. 2022;
Hsieh et al. 2023). They are rotating, free-falling, and connect
to the disk (Pineda et al. 2020; Valdivia-Mena et al. 2022). The
meeting point is either associated with a smooth transition
between the infalling streamer velocity and the Keplerian disk
velocity (Yen et al. 2019; Pineda et al. 2020) or it can present
a sharp velocity drop consistent with shock tracing signatures
(Valdivia-Mena et al. 2022). It is remarkable that both these con-
clusions are in agreement with the kinematics in our streamer.

A large variety of streamer sizes have been observed
(103−104 au). The streamer mass ranges between 10−3 and
10−1 M�, and can be a significant fraction of the protostellar
mass (0.1−10% of M?, Pineda et al. 2020; Valdivia-Mena et al.
2022; Hsieh et al. 2023). The infall rate of the streamer is
Ṁin = 10−6 M� yr−1, and can be of the same order as the pro-
tostellar accretion rate Ṁ?, if not higher. Pineda et al. (2020),
Valdivia-Mena et al. (2022), Hsieh et al. (2023) find Ṁin/Ṁ? ≈

1, 5−10 and ≥0.05 respectively. Our computations are all lying
in the observed range.

7. Conclusion

We performed a 3D large timescale, non ideal core collapse sim-
ulation in order to probe the secular evolution of embedded pro-
toplanetary disks while paying specific attention to the magnetic
field evolution and the disk’s long-term interaction with the sur-
rounding infalling envelope.

We follow the cloud collapse until the first hydrostatic core
formation leading to disk settling and integrate for an additional
100 kyr. The simulation lasts for about 20% of the class I stage
(Evans et al. 2009). Yet in the meantime, 90% of the envelope is
accreted by the seed or onto the disk, pointing toward an ending
class I. This faster evolution of the numerical model with respect
to the observations is probably a consequence of the dynamically
unstable initial condition.

We achieve a resolution of 10 cells per scale height (assum-
ing ε = 0.1) in order to properly capture magnetic field diffusion,
field line twisting, and GI induced spirals. Our main results are:

1. The disk experiences three accretion phases. In particular,
once the disk has settled, magnetic braking mainly controls
accretion in the pseudo-disk. Conversely, self-gravity con-
trols angular momentum transport in the disk through spiral
density waves triggered via Toomre instability. When gas is
expanding, it is thanks to the envelope providing high angu-
lar momentum material through the disk surfaces.

2. During phase II, the disk expands while keeping its mass and
flux roughly constant. As a result, the plasma parameter at
the disk edge follows βP(Rd) ∝ R2

d. This dependency is evi-
dence that the initial amount of magnetic flux is conserved
throughout the disk evolution, and magnetization evolves
accordingly to the gas motion.

3. The disk ends up in a GI regulated state maintaining Rd
around 60 au. Its surface density profile is shaped by a criti-
cal surface density radial profile of index ≈−2.

4. The early evolution of the disk reproduces well the results
from core-collapse models such as disk compacity, magnetic
field decoupling, magnetic and later GI regulation. However,
no MHD disk wind is found in our simulation. This is a natu-
ral outcome of efficient decoupling, yet it contrasts with disk-
only models that systematically find MHD disk winds. We
conjecture that this could be due to a lack of stellar ioniza-
tion processes.

5. The expanding Keplerian gas and the decrease of the mag-
netic field qualitatively match class II observations. Yet, the
observed power-law surface density is too steep to trigger
gravitational instabilities, and the presence of Toomre-driven
spirals is not supported by observations.

6. After 30 kyr, the envelope is organized in a large-scale, sheet-
like accretion streamer that feeds the disk. It smoothly con-
nects to its surfaces from elevated locations and shocks onto
the outer rim in the midplane. It is a significant reservoir of
mass whose infall rate is comparable to the accretion rate of
the protostar.

In conclusion, this secular run shows that the neutralization of
magnetic braking due to an efficient decoupling leads the disk to
a nearly pure hydrodynamical state where GI is the only means
to accrete. Consequently, the disk is stuck in a GI regulated state
shaping its surface density profile and final radius.

Yet, this scenario is difficult to support, due to the lack of
observed spirals in embedded systems. This suggests that cur-
rent models overestimate the importance of diffusion after disk
formation. It would be interesting to explore additional ioniza-
tion processes susceptible to recovering a magnetically domi-
nated accretion. The choice of initial conditions and the impact
of grain size may also act upon the diffusions. This will be the
topic of a forthcoming paper.
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Appendix A: Self-gravity solver

A.1. Implementation in Idefix

The Idefix code is upgraded with a self-gravity module. By
resolving Eq. (6), it infers the self-gravitational potential from
the gas density distribution.

The Laplacian operator is discretized using second-order
finite difference with self-consistent boundary conditions. The
resulting matricial system is solved iteratively by a biconju-
gate gradient stabilized (BICGSTAB) algorithm. It uses the
Kokkos routines encapsulated in Idefix to handle paralleliza-
tion (Trott et al. 2022; Lesur et al. 2023).

A Jacobian preconditioner P can be used to fasten conver-
gence. It is designed as the diagonal part of the discretized Lapla-
cian. It proved to be efficient at easing convergence when the grid
is irregular.

While the BICGSTAB algorithm is the one used in the
present work, we implemented two additional methods: a conju-
gate gradient (CG) and a minimum residual (MINRES). There
is a loss of generality when switching from one to another:
CG requires the operator to be symmetric positive definite,
while MINRES only assumes symmetry and BICGSTAB has
no constraint. On the other hand, improving generality increases
computational cost and/or slows down convergence. Hence, the
implementation of several solvers provides an optimum solution
depending on the problem.

A.2. "Origin" boundary condition

To circumvent the problem of the singularity at the center of the
grid, we implement a specific "origin" inner boundary condition
for the self-gravity solver. It expands the grid radially inward
with a constant spacing so as to entirely fill the inner "hole" of
the grid. We assume that the gas density is zero in this extension
of the domain.

The Poisson equation for the gravitational potential is then
solved by the self-gravity solver on this extended domain.
Because the domain includes the origin, there is no need to pre-
scribe any inner boundary condition in this approach.

A.3. Validation tests

We validate our implementation of self-gravity with two tests.
The first one is a static test and confirms that the gravitational
potential retrieved from the solver is accurate compared to the
predicted one. The second is a dynamic test, where the dynam-
ical solver is coupled with the self-gravity solver. It is based
on Jean’s instability and makes sure we properly capture mode
growth.

Figure A.1 shows the radial profile along (θ, ϕ) = (π/2, 0) of
the gravitational field in code units, inferred from an off-centered
spherical, uniform density distribution. We compute the gravita-
tional field rather than the potential to get rid of the integration
constant and to make the comparison easier.

We took the same grid configuration and boundary condi-
tions as our fiducial run. We halved the resolution on each axis,
uniformely for each patch, in order to reduce the computation
time while keeping the grid anisotropy. The density distribution
is uniform inside an off-centered sphere of radius 1000 au. The
center is located at (r, θ, ϕ) = (3000, π/2, 0). We emphasize that
only the self-gravity solver is tested here. Thus, as the physics
is unimportant, we set ρ0 = 3

4π and G ≡ 1, and the quantities
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Fig. A.1. Static validation test: Radial profile of the gravitational field
along (θ, ϕ) = (π/2, 0). The radius is in log scale. The grid configura-
tion and boundary conditions are the same as our fiducial run, but we
halved the resolution on each axis, uniformely for each patch. The den-
sity distribution is a uniform off-centered sphere of radius 1000, located
at (r, θ, ϕ) = (3000, π/2, 0). We set ρ0 = 3

4π and G ≡ 1 and the quantities
are displayed in code units. The blue line is the theoretical profile, red
dots are the computed data.
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Fig. A.2. Convergence rate of the gravitational potential (dotted blue
line) as a function of the grid spatial resolution using the BICGSTAB
method. It is based on the off-centered sphere test. It exhibits second
order spatial convergence.
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Fig. A.3. Dynamic validation test: Amplitude of density fluctuations in
log scale as a function of time following Jean’s instability for λJ = 1/3
where Poisson equation is solved at every timestep. All quantities are
dimensionless. The blue line is the theoretical prediction for the most
unstable mode (λ = 10 u.c.), the red line is the computed result.

A253, page 17 of 20



Mauxion, J., et al.: A&A, 686, A253 (2024)

are displayed in code units. We set the convergence threshold to
10−5.

The theoretical and computed solutions are well matching
thanks to the high resolution and low convergence threshold.
The convergence rate for this test is about 600 iterations, starting
from a zero initial guess potential. After this first "burn-in" com-
putation, the solver requires between 1 and ∼ 102 iterations to
converge, depending on the dynamics of the gas (it is 10 on aver-
age for our fiducial run). We checked that the scheme is second-
order accurate for the gravitational potential (see Fig. A.2).

Figure A.3 shows the amplitude of density fluctuations in
log scale as a function of time following Jean’s instability with
the Poisson equation solved every timestep. Both quantities are
adimensionned by background density ρ0 and cs0/L respectively,
L = 10 u.c. being the domain size.

The setup is 1D cartesian with periodic boundary conditions.
The x coordinate is meshed with 1000 uniform cells and ranges
between 0 and L. The density distribution is initialized with a
Gaussian perturbation of amplitude 10−4. Setup is adiabatic with
γ = 5/3, background density and pressure are ρ0 = 3, P0 = 1/γ
in code units which gives λJ = 1/3 (G ≡ π).

For a given wavelength λ, the expected growth rate is given
by s = 2π(cs/λ)

√
|1 − (λ/λJ)2| with λ > λJ . The mode of

the largest wavelength is therefore the most unstable. Then, for
λ = L, the theoretical growth rate is sth = 188.4 cs/L, and the
associated perturbation should dominate the evolution of density
perturbation.

This is confirmed by red dots, associated with the computed
evolution of density perturbation, which matches the theoretical
linear prediction for the most unstable mode (blue solid line)
where cs0t/L is in the range 0.1 − 0.4. A linear regression in
this portion of the slope gives scpt = 186.6 corresponding to a
relative error of 0.9%. Hence, the dynamic is properly captured
by our self-gravity solver.

Appendix B: Gravity step

The gravity calculation is performed just before the dynami-
cal step. It triggers the gravitational potential computation from
various sources. In our case, that includes self-gravity (see
Appendix A) and point mass contribution.

In order to properly account for the whole gravitational feed-
back, the missing inner seed is assimilated to a point mass
with:

φpm = −
GMpm

r
, (B.1)

where Mpm and φpm are respectively the mass and associated
potential of the point mass.

The initial mass is the one enclosed in a uniform sphere of
radius rin and density ρ0. We sum up mass fluxes over the inner
shell during the integration to update the central mass accord-
ing to mass transits. The net gravitational potential used for the
dynamical integration is then φg = φpm + φsg.

One can specify the frequency of the gravity step.
Béthune & Rafikov (2019) showed that updating the gravita-
tional potential every 4 dynamical timestep does not substan-
tially impact the system evolution (see their test on Jeans’ insta-
bility).

We conducted our own test and obtained a relative error of
8% on the growth rate of the most unstable mode when comput-
ing gravity every 4 dynamical timestep. We consider this varia-
tion acceptable and choose to compute gravity every 4 timestep
in our simulation to speed up the integration.

Appendix C: Chemical network

Table C.1. Rate coefficients for the ion-neutral, dissociative recombina-
tion and radiative recombination reactions.

Reaction α β
(cm3 s−1 )

Eq. (C.2) 2.1 × 10−9 0
Eq. (C.3) 1.7 × 10−9 0
Eq. (C.4) 2.5 × 10−9 0
Eq. (C.5) 2.0 × 10−7 -0.75
Eq. (C.6) 2.8 × 10−12 -0.86

The magnetic diffusivities depend on the abundances of the
charge carriers. To compute these abundances, we consider
a simple chemical network based on Umebayashi & Nakano
(1990) and Kunz & Mouschovias (2009). The network includes
the following reactions:

H2
CR
−−→ H+

2 + e− (C.1)
H+

2 + H2 → H+
3 + H (C.2)

H+
3 + CO→ H2 + HCO+ (C.3)

Fe + HCO+ → Fe+ + H + CO (C.4)
HCO+ + e− → H + CO (C.5)

Fe+ + e− → Fe + photon (C.6)
e− + grain→ grain− (C.7)
e− + grain+ → grain (C.8)

Fe+ + grain→ Fe + grain+ (C.9)
Fe+ + grain− → Fe + grain (C.10)

HCO+ + grain→ H + CO + grain+ (C.11)
HCO+ + grain− → H + CO + grain (C.12)

H + H
grain
−−−→ H2 (C.13)

The ionization of H2 (Eq. C.1) is solely due to cosmic rays.
We neglect shielding and focussing effects of cosmic rays, so
the ionization rate ζ = 1.3 × 10−17 s−1 is assumed to be constant.
The reaction rates for the ion-neutral (Eqs. C.2, C.3 and C.4), the
dissociative recombination (Eq. C.5), and the radiative recombi-
nation (Eq. C.6) reactions are given by:

k = α
( T
300 K

)β
, (C.14)

where T is the temperature and α and β are the prefactor and
temperature exponent, respectively. The values of α and β for
each reaction are given in Table C.1.

The reaction rates for electron attachment (Eq. C.7) and
charge exchange reactions on neutral grains (Eqs. C.9 and C.11)
are given by:

k = πa2
(

8kBT
πm

)1/2 1 +

(
πe2

2akBT

)1/2 S , (C.15)

where a is the grain radius, kB is the Boltzmann constant, m is
the mass of the electron or the ion, e is the electron charge, and S
is a sticking coefficient, assumed to be 0.6 for electrons and 1 for
ions, respectively. For electron attachement (Eq. C.8) and charge
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Table C.2. Initial abundances with respect to H nuclei of the species
considered in chemical network.

Species Abundance

H2 0.5
CO 8.4 × 10−5

Fe+ 2.05 × 10−6

e− 2.05 × 10−6
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Fig. C.1. Abundances of the charge carriers at the steady-state as a func-
tion of the H number density for a = 0.1 µm and ζ = 1.3 × 10−17 s−1.
The black dotted line shows the ionization fraction.

exchange reactions on charged grains (Eqs. C.10 and C.12), the
reaction rates become:

k = πa2
(

8kBT
πm

)1/2 (
1 +

e2

akBT

) 1 +

(
2

2 +
(
akBT/e2) )1/2 S ,

(C.16)

We assume that grains are spherical with a radius a = 0.1 µm.
The gas-to-dust mass ratio is assumed to be equal to 100. Assum-
ing that the grains have a mass density of 3 g cm−3, this gives a
grain abundance with respect to H nuclei of 1.3 × 10−12.

Finally, we assume the following reaction rate for the H2 on
grains (Eq. C.13):

k = α
( T
300 K

)1/2

, (C.17)

with α = 4.95 × 10−17 s−1.
Table C.2 gives the initial abundances. We assume that all

hydrogen is in molecular form and that all carbon is in the
form of CO. Iron is assumed to be ionized, so it has the same
initial abundance as free electrons. Grains are assumed to be
initially neutral. The abundances of all species in the chemical
network are computed as a function of time using Astrochem
(Maret & Bergin 2015), until the steady-state equilibrium is
reached.

Fig. C.1 shows the abundances of the main charge carriers at
the steady-state and the ionization fraction (that is the total abun-
dance of positively or negatively charged species with respect
to H nuclei), as function of the H number density, for a grain
radius of a = 0.1 µm and a gas temperature given by Eq. (8).
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Fig. C.2. Magnetic diffusivities as a function of the H number density

for a = 0.1 µm, ζ = 1.3 × 10−17 s−1, and B = 0.1
(
nH/cm−3

)0.5
µG. The

dashed line corresponds to a negative diffusivities.

The abundances of the main charge carriers are in agreement
with Umebayashi & Nakano (1990, see their Fig. 2, which cor-
responds to the same grain size and the similar initial abundances
that those adopted here). The ionization fraction decreases with
the density for nH < 1011 cm−3 and remains constant at higher
densities. For densities lower than 1011 cm−3, the main charge
carriers are free electrons and Fe+ ions. At higher densities,
the main charge carriers are positively and negatively charged
grains. The transition between the two regimes occurs when
the ion fraction becomes comparable to the number density of
grains.

Fig. C.2 shows the corresponding magnetic diffusivities
(see Eqs. 3.4, 3.5 and 3.6 in Lesur 2021a) as a function of
the H number density, for a magnetic field intensity B =

0.1
(
nH/cm−3

)0.5
µG. The diffusivities are in agreement with

Xu & Kunz (2021a, see their Fig. C2).

Appendix D: Internal boundaries

We use three internal boundaries in order to prevent a dramatic
drop of the timestep without significant loss of accuracy: an
Alvén speed limiter, diffusivity caps, and an advection timestep
limiter.

In code units, Alvén speed is defined by

VA =
BIdefix
√
ρ

, (D.1)

where BIdefix ≡ B/
√

4π.
Consequently, in strongly magnetized, low-density regions it

can become very high and require very low timesteps, incompat-
ible with the large timescale integration.

To alleviate this problem we introduce an Alvén speed lim-
iter: for any cell of radius r if VA > VA,maxr the density is
replaced with ρnew = B2

Idefix/(VA,maxr)2. The associated veloc-
ities are updated following ui,new = ui · ρ/ρnew to satisfy as much
as possible momentum conservation. Only uϕ is left untouched.
In this simulation, we set VA,max to 1 in code units.

Figure D.1, the top panel presents the Alvén speed profile at
ϕ = 0 in the midplane (solid lines) and near the pole (dashed
lines) for snapshots of increasing time. In the midplane, except
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for the very beginning, the Alvén speed limiter is never triggered.
This is not the case near the pole. Because of cavity carving, the
areas above and below the seed are strongly magnetized with
low density and we need to limit the Alvén speed up to 100 au.
That being said, the cavity region is barely discussed in this work
because it is poorly described in the actual framework.

We also use diffusivity caps following Xu & Kunz (2021a,b).
The timestep associated with diffusion processes is proportional
to ∆l2/η, where ∆l is the typical cell size and η is the diffusiv-
ity coefficient associated with the diffusion process. Particularly
strong values of ηA and η0 are therefore susceptible to dramati-
cally slow down the integration.

We solve the problem by introducing a diffusivity cap such
that for any cell of radius r, if ηA,O > η0r2, the diffusivity coeffi-
cient is replaced with ηA,O = η0r2. Here, η0 ≈ 7.1× 1018 cm2 s−1

is the conversion factor from code units to physical units.
Figure D.1, bottom panel shows the ambipolar (solid lines)

and Ohmic (dashed lines) diffusivity profiles at ϕ = 0 for the
same snapshots as the top panel. The cap is triggered for ambipo-
lar diffusion only in the very beginning. Ohmic diffusion, how-
ever, is limited for radii below 5 au as soon as the disk forms and
remains so until the end. This is expected as Ohmic diffusion
increases with gas density.

The last internal boundary, the advection timestep limiter,
is a consequence of the first one. In the innermost regions, gas
affected by the Alvén limiter cannot be launched in the outflow.
Conversely, it is falling back onto the seed, reaching high veloc-
ities that limit the timestep. To solve this problem, we use a
timestep limiter such that where dtadv < dtmin, the velocity com-
ponents are updated following ui,new = ui · dtmin/dtadv. We set
dtmin = 1 u.c.

We monitored the total mass and angular momentum in the
system during the integration to ensure that none of these rou-
tines was significantly affecting their balance.

Fig. D.1. Top: Alvén speed in code units versus the radius, where ϕ = 0.
Solid lines are the midplane values (θ ≈ π/2) while dashed lines are
closer to the pole (θ ≈ π/3). The lighter the color, the later the snapshot.
The dotted black line is the Alvén cap VA = VA,maxr where VA,max =
1 u.c.. Bottom: Ambipolar (solid) and Ohmic (dashed) diffusions versus
the radius. Color coding and dotted black line are the same as for the top
panel, with the diffusivity cap η = η0r2 where η0 ≈ 7.1 × 1018 cm2 s−1.
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