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Example 1 : HEV    
                                                                           *                                                                         *

*  M. Ghanes

A classical motor for HEV and EV, the synchronous motor : nonlinear  system.

Parameters variations             sensitivity             robust control

Note f=f(ir) for 
wound rotor 
(Zoë, …)
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Example 2 : Induction motor in Tesla  vehicle
                                               

Robust nonlinear control is essential for HEV, EV, …

Note: front motor of Tesla 
model S, Audi Q4 e-tron
…; 
rear motor for Mercedes 
EQA, …

IInversee PPendulumm SStabilisationn onn aa Car:: 
NNonlinearr Model
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AAcademicc Balll && Beamm Example
http://www.engin.umich.edu/group/ctm/examples/ball/ball.html
Et  Robotic Ball Balancing Beam (RBBB)
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MMobill Robot
u1

u2

x3
x2

x1

= (cos )
= (sin )
=

Nonholonomic system => trajectory limitations (no transversal motion  
i.e. parallel parking for a car …)
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SSeriall DCC MMotor
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*The stator flux is assumed to be proportionnel to the stator current

PPermanentt Magnetss Synchronouss Motor
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Note f=f(ir) for wound rotor (Zoë, …)
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IInductionn MMotor

WWhichh kindd off modelss forr thee Nonlinearr Systems:

-- Statee Spacee Equations

        Contrary to Linear systems

> No exact frequential representation (as for LS)

>  No transfert matrices  
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Example :  mechanical systems  
           1st order differential equations system

State Space Representation

 

( ) ( , ) ( ) ( )M q q C q q q g q F q

state = ( , )

= ( ) ( ) ( , ) ( )
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GGeneral State SSpace  RReprésentation
oof NNonlinear  SSystems  ((affine case wwrt  uu)

PProblems to solve:
 Controlability ?
 (Exact) Input Output Linearization ?
 Input Output Decoupling Control?
 Observability ?, Observers ?
 Robust Controls ? 

= ( ) + ( )
= ( )

, ,
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((1.1) 

     

11.11 Definitionn off non-linearr systemss (NLS)
 
    Consider the non-linear systems described by the models:

= ( , ) = ( ) + ( )

= ( )
     

  , ,      

1 [Glu92] Chapter 1 and Annex 1

 

CHAPTER 1 
NOONLINEARR SYYSTEMSS AND 

MAATHH PRRELIMINARIES 1
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The ffirstt approach is to linearize the system by approximation around a point ( , ) :

=
,

+
,

= +

= := Cz

           Approximate method around (x0, u0) and possible loss of system properties. For 
example: a controllable non linear system gives an uncontrollable linearized system.
See example 1.1 et 1.4.

Examplee .1.1:: Limitationss off Approximatee LLinearizationn 
Let

.
=.
= .

This nonlinear system seems to be "controllable" (we can act on x1 and x2 by u).

We linearize around  ( , ) = ([0, 0] , 0) :    = 0
                     = .

We have lost the "controllability" property on the approached system:
Solutionn =>> NLL model.
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Exercise 1::  Thee Seriall DCC motorr  

A serial DC motor with insignificant viscous damping ( = 0)   and inertia load can be 
modeled:

= ( + ) + ( + )  +e 

  = =   *

  =  =

with = , = , =      a nonlinear SISO state model is:
     

=                                               

= +
                or      

=                           
= + +

Is ([0,0] T, 0) an equilibrium point?
Is the approximate linearized model controllable in this point?
Conclusion?

* The stator flux is assumed to be proportional to the serial current
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Thee rrightt approach is an exact calculation of the non-linear differential equations and to 
rewrite the model in a state equation form.

Examplee 1.2 : Pendulum

=
= ,

.
=

=

 

mg 

  

l

EExamplee 1.33 : Inverse pendulum  

     Problem: 2 equilibrium points

     Stabilization around an unstable
     Point (rocket, …)

 
mg 
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 1 [Glu92] page 51

Examplee 1.3 : Inverse pendulum
Problem:

  stabilization around the point 
         of unstable equilibrium
         (rocket stabilization …). 

m 

u 

Examplee 1.4 : Unicycle1 

We consider a mobile cart (airport caddie type: fixed rear wheels, "crazy" front wheels). 
We note the longitudinal speed, the angular speed, and   the coordinates of 
the center of the rear wheels.                                                        

Model equations    
        

.
= .

        
.

= .
        

.
= .     

                                                                                               
        Let 0 0, [0, 0, 0] , [0, 0]T TX u . By approximate linearization,  0, 1: 
  

.
=

  
.

= 0 = 0     the linearized model is not controllable (z2 non accessible)
          

.
=         TToo usee thee NLL model.  

 u22 X33 

X11 

X22 

u11 
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Exaamplee 11.55 : Car

The system is described by the following equations :  

       = =   =
= =
=   = /   =

(= ( )) 
=  " ". 

Note. The model is non affine wrt inputs.

             Figure. Car: plan model  ([Mar99]) 
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1.2 Analyticall andd mmeromorphicc functions 
 

1.2.1 Analyticall functions 1   

1 [Glu92] Annexe 1

Definition : Analytical functions
: is said to be analytical if it is developable in Taylor series in the vicinity 

of each of its points, i.e., , ( ) is developable in Taylor series.

Propertyy  : Differentiability ( , the derivatives w.r.t  the exist and are continuous) 
and isolated zeros.
Example 1.6:: Some examples of analytical functions

Trigonometric functions
Polynomial functions.. 

Example 1.7: A counter-example
Let the function defined by: ( ) = if 0 
     if not ( ) = 0 . 
This function is really with , ( )(0) = 0 
However, it is not analytical in = 0 (non-isolated zeros).

1 

, ( )(0) = 0 
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1 [Glu92] Annexe A1

Propertyy 11:  If : is an analytical function, then :

Either the zeroes are isolated.

Corollary:: The set of analytical functions forms an integral 
ring (there is no divisor of zeros).

If . = 0 then = 0  or  = 0.

Corollary: The body of analytical function quotients is well 
defined and :

If   is analytical and   is analytical ( 0), 

then        is analytical.
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1.2.2 Meromorphic functions 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

1 [Glu92] Chapitre 1 and Annexe A1 

Definition  : Meromorphic functions 
 

:  is said meromorphic if   and  
  0 such that = . 

Example 11.88 :: Some examples of meromorphic functions 
 

 Rational functions of x: 
   P(x)/Q(x) with P and Q polynomial functions 
 = . 

 

Property: All the meromorphic functions form a field. 
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1.3  Class of the  studied NLS  
 
Let the systems of the form : 

.
= ( ) + ( )  

                                                               = ( ) 
        
with  the state   , the control  and the output  : 
 
The components of f, g and h are meromorphic functions. 
 
 
 
Remark:  of course this includes linear systems:             

.
= +  

                                                         =      
 
            with ( ) = ,  ( ) =   ( ) = . 
   
            All the results of this lecture are applicable to linear systems. 
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 1.3.1  Functions field 1 
 

Let the set of variables:  
              , , . . . , , , , . . . , , , , . . . , , . . . , ( ), ( ), . . . , ( ) . 

 
We then define :  K :=  body of the meromorphic functions of   
                      , , . . . , , , , . . . , , , , . . . , , . . . , ( ), ( ), . . . , ( ) . 
 

 K is a vector space on itself 
 KxK is a vector space on K 
 = ( ) is a vector space on K. 

 
 

 
 
 

 

 

 

 
1 [Glu92] Chapter 1 and Annexe A1  

Example  1.9  :  The following fraction is considered : 

( ) =   
( . ( )).

. . ( )   with ( . ( ))  and ( )  
        then ( ) . 
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1.3.2 Vector space  
 

 
 
 

 
The unit vectors of  are defined as follows: 
 
   (1,0, . . . ,0) = =  
   (0,1,0, . . . ,0) = =  
 
   (0, . . . ,0,1,0, . . . ,0) = =  
   (0, . . . ,0,0,1,0, . . . ,0) = =  
 
   (0, . . . ,0, . . . ,0,1,0, . . . ,0) = =  
   (0, . . . ,0, . . . ,0,0,1,0, . . . ,0) = =  
 
   (0, . . . ,0,0, . . . ,0, . . . ,1,0, . . . ,0) = ( ) = ( ). 

Definition  : We define the vector space  on the field K  by = ( ). 

Definition  : The unit vectors of the vector space  on the K-field are noted : 
, , . . . , , , . . . , , , . . . , ( ) . 
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Interest of these definitions : 
Let's consider y= ( ),   then  

 = + +. . . + = . . . .  

  = = . =
.

= ( ( ) + ( ) ) = ( )( , ) 

  = + . 
 

Functions ( , )               Functions( ) 
 
  
Remark.   contains the differential of any function  of . 

Inverse" problem:   We consider the following function:   d + . = (1, , 0)    

An important problem in NL is: is there ( ) such that = + . ? 
 
(Searching for differential relationships characteristic of an NLS: linearization by 
coordinates changing, etc.). 

K K
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1.4  Poincaré  lemma 1 

 
This lemma will help answer the following question:  

Given     ,  does it exist:  
 (  0 )   = . 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
1[Ple95] and [Cho89] 

Definition  : 1--form      
       is a 1-form with  = (. ) + (. ) ( ). 
                                
                                                                                                                           

Definition  :  exact 1--forme    
    Let a 1-form1 :    =  { , , … , ( )}. 

 
        is an exact 1-form if :  such that = . 
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Example 11.100  Example and counter-example of exact  1-formes 
 

 = + +   is exact 
 =        is not exact. 

Definition  : 2--form  
          is  2-form = ,  where  et     is  
         a unit vector     ,     ( )  
   

Let  = , . 

Example  11.111     : 0-form 

By differentiation  of : = + ( )
( )

,   is a 1-

form. 
 
By differentiation  of    a 2-form  ( ) is obtained. 
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 1) =  
 2) = 0 
 3) 0, . . ( ) 0.  
 
Thus   = ,     = +. . . +        

                      = . 
 
Example  1.12      = . Calculate the corresponding 2-form.  
 
 
 
Integration problem: 

Let a 1-forme =  
does it exist   such that =  (that is to say that    is an exact 1-form) ? 
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     Example  1.13          = + +  

 
 
 

 

 

 

 

 

 

 

 

 

 

1 [Ple95] and [Cho89] 

Theorem: Poincaré's Lemma 11 

  
Given a 1-form , then 
       is an exact 1 Form      such as =   = 0   
      where =  with the previous calculation rule. 

Example 11.114  Given = , 
 then 

=   and by antisymmetry: = 2. 0 
So,   ,  .  
There is no possible integration of this 1-form. 
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Example 11.115  Given = , then  

= = 2 + 0 

=
1

2 +
1

=
1

+
1

0 
A primitive is : = ; =  . 

Example 11.116     Given =   = 0          

Then  =   0   

         =   0  

 
     ( , ):  local solution of =  (or global on RxR-{0,0}). 
 
(Conclusion : long live symbolic computation Maple, Mathematica, …!) 
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1.5  Frobenius  Theorem  
 Probleem  :  

Given a 1-form , is there et  such that = ?  
(  is called the integrating factor).  
 
 
 
 

 11 [Ple95] and [Cho89] 

Theorem : Frobenius Theorem ( first version )1 
Let .    and    such that =  = 0. 

Example 11.177 ::  Let =  
= 2  ( 0) (no solution by using the Poincaré Theorem) 

= ( 2 ) ( )
= 2 . + 2  

                                                                                0                                      0 
So = 0                                                                                         
Then, and    such that = .  

 We can notice that: =      i.e. =   and =  is integrating factor. 
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Exaample 11.119 ::  Let = +          0 
 

= ( + ) ( + ) 
       = ( + 0) ( + ) = 0 

 
It can be shown that there are several solutions for the terms  et  : 
 
In fact, there are an infinite number of solutions. 

Exaample 11.118 ::  Let = + +  
= +    

= ( + ) ( + + ) 
= ( ) + =

( + 1) . 
 
Thus 0. No solution. 
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Note: the constraints have been relaxed compared to the first version.  
 
 
 
 
 
 
1[Ple95] and [Cho89]  

Theorem: Frobenius Theorem (2nd version) 1 
Be , , . . . ,  , 
 
There exist , , . . . ,    such that 

{ , . . . , } = { , . . . , } 
       = 1 ,  1 2 . . . = 0. 
 

                     (s+2)-Forme 
 
(span = vector subspace generated by …). 
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Exercise  2  ,  example,, application:: 
Be = +  

=  
   and   =  { , } 

Find ,  such that  = { , } 
 
Frobenius theorem conditions : 

= 0 
= ( ) ( + ) = ( )

= 0 
 Let's search   and  such that +    has an "obvious" integration. 
 
For example, = 1 =    then  + = + = ( ) + ( ). 
 
Thus { , } = { ( + ), };  = + ; = . If we 
set an invertible and differentiable (NL)coordinate change (: diffeomorphism) 
  

= + ; = ; = ; 
 { , } = { , } = { , }. 

 
Application: research of nonlinear "linearizing" transformation (e.g. classical: rotation 
matrix in robotics, electrical machines, ...). 
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22.1 Somee characteristicc exampless off thee "controllability"" forr NLS 
 

 

1[Glu97] and [Ara94], 2 [Glu95] and [Glu97] 

CHAPTER 2
COONTROLLABILITYY ANDD ACCCESSIBILITYY1

Example 2.1 22

2
1 2

2

.
x = x
.
x = u

  

is the set of
points reachable from the
initial condition X(0)

ACCESSIBLE, BUT NON-CONTROLLABLE
   Rq1 What about the approximate linear model  in (0,0) ?
   Rq2  Accessibility                       Stabilisability (to (0,0) the equilibrium point)
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Example 2.3: Unicycle [Sam91]
Consider a mobile cart: fixed rear wheels, "crazy" front wheels. 
Note u1 the longitudinal speed, u2 the angular speed, , and the coordinates of 
the center of the rear wheels and the angular velocity. 

? =0  or = : singularities    GGenericc property:: true except in (isolated) singularities.  

Example 2.2:  Let  system          = cos( )
                                                                =

Whatever the control u,  will vary only between -1 and 1: 1 is constrained.

   ACCESSIBLE, NOT CONTROLLABLE.

System equation:
  

.
= ( )

  
.

= ( )
    

.
=
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 22.2 RReminderr onn linearr systems 

Let a linear system (SL) of the form:
.

= + .

Structure of the commandability matrix (and duality):

The controllability matrix is of the form: [ … ].

RRemark: let a fictitious output  = then  = = + .
If the relative degree is 1 then   / 0 0  
( = { | . = 0}) characterizes all "outputs" having a relative degree 2

= 0      

Definition: Output relative degree
The relative degree of the output is equal to the degree of the denominator of the 
transfer function minus the degree of the numerator of the transfer function: 

r = d° Denominator - d° Numerator.

Another definition: the relative degree is the minimum order k of derivation of the 

output such as:                                                         
( )

0.                
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then     
.

= ( + ) =
..

= +   

thus 
               [ ] = { | . = 0 . = 0}  

characterizes the "outputs" having a relative degree greater than or equal to 3:

= 0

= 0

- In a more general way:
          [ . . ] = { | = 0, = 0, . . . , = 0}

describes the set of "outputs" having a relative degree greater than or equal to n+1:

                                                   ( ) " " [ . . . ]
  
    i.e..  informationn onn thee systemm structuree withh respectt too thee input.

C B AB
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To conclude, if the linear system is not controllable, 
 

then  w 0  such as a fictitious output = w    
                     is of relative degree greater than or equal to n+1 

  

            the relative degree of "output" is said to be  

 
          the "output" y is the solution of an autonomous linear differential equation  
               (i.e independent of u).  

Theorem: Controllability Criterion: 
 

([ . . ]) =  [ . . . ] = 0 
 i.e.  

( )
0) 

 
  

 
 In the system, there is no "output" that is solution of a differential equation 

independent of u ("autonomy"). 

Master EPICO M2   Nonlinear Systems and Mathematics Preliminaries               2.6 

 

  
2.3 Definitions for non-linear systems 
 

 
  

Example 2.4: let  the system   
  
                 

.
= 1

2 , [    ] = 1 0
2 0  of rank one: uncontrollable system. 

 
It can be remark that  [ 2 1]    and that the "fictitious output"  

                       = 2 +   has a relative degree      (
.

= 0, . . . , ( ) = 0) 
 
The "output" y is the solution of the autonomous linear differential equation (independent of u)  .

= 0 

Definition: Relative degree of a function  x   
The relative degree of  x  is defined by the minimum order k of derivation such that: 

                                  
k

0
u

        i.e.     
k

r min k 0
u

. 
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1[Glu97] page 11

Example 2.5:    Consider a mechanical system such as:

x = ( position, speed ) and u = Force or torque

then the relative degree (position) = 2 (otherwise under-actuated mechanical system)

Definition 1: Relative Degree of a 1-Form 

Let : =     with ii, K
The relative degree r of is defined by:    

kr min k span dx

                   where 
n

i i i i
i 1

dx dx .

Proposition:   ( ) is  autonomous

               the relative degree of    is infinite ,
( )

0.
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Sketch of proof

- (only if) Suppose that the relative degree of is infinite  (
( )

= 0, )

then =

=
   …

( )= 
( )

linear combination (over K) 
of the previous n rows

Jacobian Matrix
(n+1) rows / , , . . . , ( ) = 0            

        n columns        
         rank n                                             by the implicit function theorem

then is autonomous.
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- (if)  By contradiction, let us show that if  d° relative of  < , then  is not     
autonomous. 

    < such that  
( )

0 

   then, ( ) = +
( )

 independent of , , . . . , ( ) etc, 

             ( ) = +
( ) ( ) 

    
  is not autonomous. 
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22.4  CConntrollability and  aaccessibilityy of nonlinear systems  
 
  
  
  
  
  
  
  
  
 
 

 Problem: There is no characterization of commandability for SNL  
(see introductory example) 

 
  

Definition: Accessibility of a NLS 
 

The system x f (x) g(x)u   is said to be "accessible" 
if there is no autonomous element. 

Definition: Commandability of a non-linear system 
Let the NLS       x f (x) g(x)u .  
 

This system is said to be "controllable", if 
 

0x (initial state) and 1x (any state), ( ) <   such that 
( , ( ), ) =  
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Property: For Linear Systems only, 
 

LS is controllable              LS is accessible. 

Example 2.6: Let the following non-linear system       2
1 2x x  

                       2x u    
This system is not controllable. 
However, it is accessible because:      

( , ), ( ) <   (max 2) 

Property: For non-linear systems : 
A NLS  is accessible      ( ) , dr  
    (no autonomous element) 
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AAlgorithm to test the accessibility property 11  

 
 - Characterization of 1-Form such that the relative degree of   be   : 

 
- : = { , }        relative degree  of   
- : = { }         relative degree of    

 -  is the vector space of all 1-Forms ( ) such that the relative degree of   2 
   
 
 
 Computation of   : 

- Let , =   = ( + ) 
such that      (not for   otherwise    is degree 1!)  Compute the 

 
 -   = + = [ , . . . , ] ( ( ) + ( ) ) + (" ") 
 
   Thus   [ , . . . , ] [ ( )] = 0        [ , . . . , ]. [ ( )] = 0 
 
 - Result : = ( ) = {  |  . 0}. 
 
 
 
 

1[Ara94] page 24 et [Glu97] page 11  

i
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i.e. there are no autonomous elements (generalization of the Kalman criterion for linear 
systems)  

Definition: Chain of vector subspaces (VS) of   
 

0 1 2 k k 1... ...  

0 span dx,du  

1 span dx   

2 g  
   
 

k = VS of all 1-Linear forms having a relative degree greater than or equal to k 

k 1 k kspan  
    = : =    

Theorem: Accessibility of a NLS  
 

A NLS satisfies the accessibility condition if and only if  
0   
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Example 2.8: Let the nonlinear system:  

=  .     

 
Is it accessible? 

Example 2.7:  Let the system x Ax Bu  
 
Then:             =  
 
     = [ ]  
 
                           
 
                  =  
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11[Glu92] p. 51 and [Sam91]

Example 2.9:  Mobile cart (Exercise) 1
We consider a mobile cart: fixed rear wheels, "crazy" front wheels. We note u1 the 
longitudinal speed, u2 the angular speed, x1 and x2 the coordinates of the center of the 
rear wheels. The model equation is:

=
( ) 0

0
0 1

. , ( ) 0,

= { , }, = { }, = ( )
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=
0
0

0 1
, ( ) 0,

Computation of  = ( )
= [ ] and  . 0      

1)    . 0 = 0
       2) . 0 = [ 0]

                                          =
      

Thus    = { }.

Computation of 3: 3 2 2

= [ ] + [ ]

= [ ] + +
+ ( ) ( )

= ( ) = => = {0}

.
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CCanonical representation of accessibility in "linear form".  
 
    Search for functions x)  such as d
 
  
  
  
 
 
 
 
 
 

 
 Example 2.10: Test the integrability of   for the mobile cart 

  
- Computation of   (Poincaré Lemma): 
 
           = + 0  =>   is not integrable 
 
- then computation of  (Frobenius Theorem) : 

= [ + ] [ ] 
                          =   
 

    Thus by Frobenius Theorem application:  
        = 0   is not integrable. 
 

Definition: Integrable vector subspace 
 
A vector subspace is said to be integrable when it admits a 
base of the form:   { , . . . , } 
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Example 2.11:  ACCESSIBILITY;  INTEGRABILITY of  Hk (exercise)  
 
Let the following system: 
  

=
(1 )

3   

 
Is it accessible?  
if yes, can the Hk be integrated? 
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3.11 Introductionn 
3.1.11 Systemm Structure,, relativee degreee 

      Exercise:: relativee degreee computationn 
     =  = =                        = =

u explicitely appears         thee relativee degreee off thee outputt yy  iss rr =1. 
1 [Glu92] Chapter 3

CHAPTER 3
INPUT/OUTPUT LINEARIZATION N 1 1/

BY STATE FEEDBACK  AND STATIC DECOUPLING

Definition: rrelativee degree

The relative degree r of a system output is the smallest order of derivation (temporal) 
showing explicitly a control input.

Remark:
         in the case of linear systems, the relative degree r is the order of the system 
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33.1.22 Introductivee exampless 

 

 

 

 

1 [Glu92] Chapter 3.

Example 3.1 Monovariable Case      Let  system     = +
=

With a nonlinear control  = + , then the closed loop system is written:  
   =

                             linear system with a new control . 

                   ( )
( )

is a linear system   exact input/output linearization 

 
Interest:: no approximation, allows then to use the whole linear theory for 
example with = [ ] : pole placement + output reference !

Check the Input/Output relationship ?
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Definition: Static Feedback 
= ( ) + ( )  

 Linear case:      =  +   
 In closed loop : dim ( System + Controler ) = dim ( System ) 

 

Example 3.2   Multivariable case,  Input/Output Coupling 
 

    

= +
   = 2 +

=
=

     There is a Input/ Output Coupling (non-symmetrical) : 

 
  have an effect on  and thus     
 have an effect on   and , and thus  and . 

 
Which control can provide input/output decoupling? 

PROBLEM to solve: IIn aa general non-llinear (multivariable) framework, how to calculate a  
  static compensator that will give an exact input--output linearization of the system? 
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 How to linearize?     2 complementary tools 

1)   Reversible static feedback: 

  = ( ) + ( )  with G an invertible square matrix 

 

      2)  Transformation of state coordinates: 

  = ( ),  locally invertible i.e. out of singularities 

 

 

 

 

 

 

 

  

Example 3.3  . See the following monovariable NLS  
     =  
     = ( ) 
     =  
     =  
 
An idea for a solution, i.e. to obtain an Input-Output linearization, a 
solution approach is to examine the Input-Output structure (relative 
degree, ...) by IInversion Analysis. 
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=>     Problem formulation: Input/Output Linearization of a NLS

                   Given a non-linear system, to find  if possible :

- a state feedback  = ( ) + ( )

- a bijective coordinates transformation of state variables = ( )

such that after feedback and coordinates transformation, the NL System can be 

written:

   = +   linear dynamics

= ( , ) + ( , ).         zero dynamics (linear or nonlinear)

=

with  = ( , ), = ( , ).

and the pair (A,B) is controllable, the pair (C,A) is observable, with :
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 --   MMoonovariablee ccase:: 

=

0 1 0

1
0 0

, =

0

0
1

, = [1 0 … 0]

- MMultivariablee case:

  

=

0

0

,    

with  =

0 1 0

1
0 0

, … ,   =

0

0
1

              

   

where   r1 is the relative degree of the output , etc.

0
r1*r

1
rx1

1
r1*1

11 1,1 2 1, r 1y z , y z ,...

1 2B B B

0
Rxr

1xr
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--    AAfter coordinate transformation and static feedback  the I/O relations are:: 

  ( ) = , . . . , = : p decoupled integrator chains of length ri 1 

- zz2  corresponds to the zero dynamics: 

        Generalization of the notion of zeros in linear  

               (sometimes pay attention to the stability of the zero  dynamics) 

-  The transfer is then written ( )
( )

= ( )     

          - In addition, a complementary linear loop allows to place the poles of the transfer: 

             This then allows the application of robust linear controllers for example, (exemple 1.1) 

 Limitations of the problem:  

- Loss of "commandability" (accessibility, singularities) 

-  the zero dynamics can be unstable (not always critical) 

- Equivalent in linear to "hide poles" (=> dynamic looping, stability)  

 

1[Isi89] Normal form  
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33.2 IInput Output  Linearization  

3.2.1   Single output case ( dim y = p = 1 ) 

 

Proof :    

- Sufficient condition: 

If  ( ) = =   then  ( ) = ( ) + ( ) : =  

  And  = ( ) ( ) + ( )      is a linearizing input/output control 

   with  = , . . . , ( )  

                   and   : arbitrary  function of  such as =  ( ) is locally invertible. 

- Necessary condition: otherwise no input ! (the output cannot be controlled). 
 

1 [Isi89] Chapter 4 and [Mar95] section 4.2  

Theorem 11 

The input/output linearization of a NL single-input single-output system admits a solution 
      the relative degree of y is finite, ie    ( )  .   
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 Example 3.4  Let system:  =   
=             
=  

                
      

 = =  
    the relative degree  of the output is:  = 1 
 
 Goal : : =  thus    

1)  = +  
2) Coordinates transformation: 

   = = =  
   =        = = + = +   
      

Finally: 
=                          
= +    (?  )  

 
 The canonical form is well found: 

 
 = [0], = [1], = [1 0], ( ) = , ( ) = 1. 
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Note: Therefore pay attention to the zero dynamics. 

a) A solution: change the output 

  Example 3.5 : 

Example 3.4 with  

= + , = + = + , = + = +  

   ( )
( )

=  (stable zero) 

   To obtain a pure integrator = + ,  

                         Choose  = + , = =  

   then  
  =        

   = + :    ! 

To keep the tracking  of yref     as   = + = + 2 = + 2( ) 

 = + = + 2  

b) It is not always significant  

     Example : A control to co the position increases! 
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AApplicationn  too ttrajectoryy tracking

Given that  : = ( ) + ( )

= ( )                   and a differentiable reference trajectory ( ).    

             Find u such that:  ( ) ( ) 0  when .

Mono output case :   Let the error = ( ) ( )

Solve in ( ) + ( )1
=0 = 0  with the R  the closed loop tuning parameters. 

( )( ) + ( )( ) = ( )( , ): = ( ) + ( )

=
1
( )

( ) + ( )( ) + ( )( )

( ) is asymptotically stable : ( ) 0  when  according to the choice of the .
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Example 3.6   a perturbed linear system : the constant flux DC motor

Constant flux (as the permanent magnetic flux), the rotor scheme is:

Electric equation = + +   with  =   i.e.   = +

Mechanical equation = -Tl   with    =     and Tl  a load torque.
      With = , = , = and the output = , the state model of the DC motor can be       

read as:
= + +
= + + , =

It is a disturbed SISO linear state model. The disturbance is the load torque.

?   AAnalysiss off thee system : Relative degree, perturbation ?
Pole placement, Trajectory tracking ….

fv             J        Tl
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vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

    Exercise   a perturbed nonlinear system : the serial  DC motor

    v

                                                                                   v(t)

?   AAnalysiss off thee system : Relative degree, perturbation ?
Pole placement, Trajectory tracking ….
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33.2.22 MMuulti--ooutputss casee ((MIMO)) (dimm yy == pp >> 11) 

( , , ,

( )

= ( ) + ( )

 

  Proof :  SC A linearizing Input/Output control  u = B (x)[ A (x) + v]

Remark: a decoupled system can be obtained after feeback.

1[Isi89] Chapter 5

Theorem (Sufficient Condition): 11

Input/Output linearization via static state feedback admits a solution if 
( ), . . . , ( )

( , . . . , ) : = =
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NC Counter-example to necessity  

= + et =

= = 1

= + = 1

  
( ),..., ( )

( ,..., ) = 1 0
1 0 = 1 <   

      

and yet the system is linear in input-output !

Master Epico M2 Ch. 3 Static Linearization and Decoupling Control                                                                                                                               3. 16

33.3 NNeww problem::  tthee sttaticc ddecouplingg andd Input/Outputt linearization,, multivariablee case 

Goal : Find      - a state feedback     = ( ) + ( )

- a bijective change of state variables = ( )

such that after feedback and transformation the NL system can be written :

= . + .       Linear dynamics

= ( , ) + ( , ).

= .     with

= ( , ), = ( , ), pair( , ) est controllable, pair ( , ) is observable,

with      = , , . . ., = , ,…

   =

0

0

,        = [ …]

with  =

0 1 0

1
0 0

, … , =

0

0
1

      where r1 is the relative degree of , etc

r1*r r1*1
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Sketch of proof:    

  - Sufficient condition: the p decoupled systems can be obtained by feedback. 

  - Necessary condition: otherwise, the accessibility of the "Input/Output" dynamics 

after feedback is not satisfied (fall of the rank of  ). 

Theorem:  

The NL System can be decoupled  by static Feddback     
( ),..., ( )

( ,..., )
 =  

Definition: Decoupling matrix 

The Jacobian Matrix    
( ),..., ( )

( ,..., )
 is called "decoupling matrix" (:= ( )) 

After feedback, we get p independent Input/Output subsystems that are easy to 
linearize 
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 Remark 1: 

If the theorem is satisfied (B0(x) inversible), the system can be written: 

     

( )

( )
= ( ) + ( ) =   

and  = ( )[ ( ) + ]    =>   pp decoupled integrator chains of length  

 

 Remark 2 : 

2.1    Coordinates transformation: , = , . . . , , = ,  … 

2.2    The  p+1 dynamic is unobservable (noted the zero dynamics) 

2.3  We obtain controllable linear subsystems of relative degree identical to those before 

feedback (because we have used a static state feedback).  
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Example 3.7  Mobile Cart (EExercise) 
 
We consider a mobile cart (rear drive wheels, front "crazy" wheels).  
Let   the longitudinal speed, 
         the angular speed,  
       and  the coordinates of the center  
      of the rear wheels.  
         the rotation angle wrt the center of  
       the rear wheels. 
 
 The model equation is: 
 

          

.
=

.
=
.

=
 

  
 
2 study cases:    a) outputs = , =   
         b) outputs      = , =  
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Example 3.7  Mobile Cart  with  = , =   (case b) 

- no solution by static compensator  
- ? dynamic compensator: for example, = , = , =   
with  : longitudinal acceleration   
=>  extended system dynamics = system dynamics  + compensator dynamics: 
 
           = ( )                             =  

         = sin ( )                             =  
      =  
     =   

  
Compute  = ( ) + ( )  such that ( , ) et ( , ) are decoupled. 
 
- Calculate the decoupling matrix 
- Linearization Input/Output:  ,  
 
             First: Input-Output Inversion 
    = ( ) ,  = ( ) + ( ): =  

 = ( ) ,  = ( ) + ( )  =  
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  Example 3.7 continuation    Mobile cart (case b) 
 

Decoupling matrix :   ( ( ), ( ))
( , )

=

( ) ( )

( ) ( ) =  

Its determinant is ( 0)  row matrix 2 
 
So we can decouple. 
Then, = +  

=
+

 

We choose   , = , , = , , = , , = ( ). 
 
Note : no zero dynamics. 
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33.4  AApplication of static decoupling to trajectory tracking 11  

 Given that  :  = ( ) + ( )  

    = ( )                    and a differentiable reference trajectory ( ).              

      Find u such that:  ( ) ( ) 0  when  

 Single output case (reminder) :   Let the error = ( ) ( ) 

 Solve in  ( ) + ( )1
=0 = 0  with the  R  the closed loop tuning parameters.  

  ( )( ) + ( )( ) = ( )( , ) = ( ) + ( )  

=
1
( )

( ) + ( )( ) + ( )( )  

 ( ) is asymptotically stable : ( ) 0  when   according to the choice of the . 

 Multi outputs case:  after decoupling and linearization, we have p single-output systems: 

( )( ) = ( ) 

 Remark: if the NSC of the theorem "Static Decoupling" is satisfied, one can: 

            a) DDeeccouple, b)  llineearize  aand  cc) mmake trajectory tracking "" in a single feedback!  
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Example 3.8  DC motor, with a separately excited flux stator coil 

Electrical scheme of a separately excited flux DC Motor
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             ( )

Is the system decouplable?

- Calculate the decoupling matrix
- If decouplable, compute  = ( ) + ( ) such that ( , ) et ( , ) are decoupled.
- Linearization Input/Output:  , , Trajectory tracking …
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33.55 AApplicationn ttoo ACC machiness 

Example 3.9  Currents controlled Induction motor  

Here the iinputss aree thee twoo currents: = , =
The induction motor reduced model is then 

=
             = +
             = +     with  = , = , = (rotor flux angle).

        = , = , = , =     
Case 1  = = , = =

Case 2  = = , = =
  

Is the induction motor controlled by stator currents is decouplable by static feedback ?

Exercice 3.10 Synchronous motor

Exercice 3.11 Induction motor
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4.11 Introductionn too systemm inversion

Let the system: 

                  
= ( ) + ( )
= ( )      

find, if possible, the inverse system:  

                                                        
= ( , , , )
= ( , , , )

such that ( ( ), ( )) a solution of is also a solution of and vice versa. 

Method: Differentiation of outputs + algebraic elimination of input variables u.

1[Glu92]                   

CHAPTER 4
                        SYSTEMS INVERSION AND

DYYNAMICC DEECOUPLINGGGG 1
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1[Glu95]

u

Compensateur  
dynamique    z 

y

Example 4.1 11: Current in dipoles
Let u be the voltage across a resistor R through which the current flows y. 

Then
  =     and        :  = hence the control   …

Now let's take a resistor R and an inductance L in series (u voltage, x current)

     = +
=

.     

:  = +   the inverse system is not proper (depends on the 
derivative of y).
By this inversion analysis, this is the information on the system structure  that is 
researched

Definition: Dynamic compensator

= ( , ) + ( , )
= ( , , )

                       
In closed loop

     Dim of (system + compensator ) = system dimension + compensator dimension

System
                /

Dynamic 
compensator  

                          /
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44.2  IInversion algorithm11  :: to find p independent I/O equations.  
 Step 1 
- Compute = [ ( ) + ( ) ] = ( ) + ( )  

- Let : =  [ ( )] 

- Choose  independent rows of  such that the  first rows of are independent (swap 
the order of the outputs if necessary).      

Important notation:  it is defined: : = where contains the independent 

equations.           Step 1 
 

= ( ) + ( )  
                                                         = ( ) + ( )         with the rank of =  * 

 
- Eliminate u between the  and : 
                               = ( ) + ( )  

     = ,  
 
Remark : ,  = basis of { , } 
 
 
 

 
1[Glu92] page 27 and annex 4.  

*Vocabulary: The system has   zeros at infinity of order 1 (step 1). 
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  Step 2 

- Compute    

= + [ ( ) + ( ) ] 

= , , + ,  
 

- Let = ( )
( )

, total number of independent equations in step 2. 

- If <   swap if necessary, the order of the outputs to obtain: 
 

: = ,  = , dim = ,   

Let  
= ( ) + ( )
= ( ) + ( )

  with = ( )
( )

  

and  = ( ) ( ) + ( ) ( ). 
 

- After elimination of u we obtain  = , , ,  
  after this step, there remain   dependent equations. 
    
 
 Vocabulary: The system has    zeros at infinity of order 2   (i.e. ) 
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Summary in step 2 of the independent equations found : 
 

= ( ) + ( )  
= ( , , ) + ( , )  

 
 

 
Step k+1 

( ) = ( ) , , , ( )  

- Compute  ( ): 
( ) = (. ) + (. )  

 
 
- So:  
 

=

( )

( )
( )
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- Decompose  ( ) into                           with  ( ) having     independent 
equations. 
 
 
- Eliminate u : 

( ) = ( ) + ( )  
( ) = ( )( , , , ( )) 

 
 dim =  

 
 
 
 
 
 
Result at step k+1: the independent input-output equations retained are: 
 

= ( ) + ( )  
  

( ) = ( , , , ) + ( , , )   

Vocabulary : the system has     zeros at infinity (of order  k+1) 

(k 1)yk 1
(k 1)ŷk 1
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TThe inversion algorithm yields to  ccompute::  
 

= =        
 
 Vocabulary:  

-   is the rank of the system 
   - the orders of derivative of the highest outputs in the equations considered 
independent are called "essential orders" ( )  i.e. they are the minimal orders that it is 
necessary to reach in the inversion to have independent differential relations Input-Output 
(necessary and sufficient condition for the decoupling problem). 
 
 

 Remark 2 :  
     - The inversion of the system will allow the Input-Output Decoupling control by dynamic 
compensator      
     -   In the case of a linear system,  is the rank of the transfer matrix. 
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44.3  CCoonclusion::  ddeecoupling by dynamic state compensator  vvia Inversion algorithm  

Note:  the essential order nie is the largest derivation order of  yi  in the inversion equations. 
 

CConstruction of the dynamic compensator:   the inversion algorithm gives the equations   
 

( ) = ( , ( )) + ( , ( ))  
 

  We solve in u the following equations: 
 

( ) =  ,   
( ) =    1 -  

 
The dynamic compensator is then:              =  

 
 ,  =      = 1, …  

                                                                          = ( ,  ,  )     
             
Remark 3: generalizes the rank of the transfer matrix of a linear system 
Notation: if rank=p, then the SNL is right invertible, if rank=m, then the SNL is left invertible. 

Theorem:  
The dynamic decoupling admits a solution               the rank of the system is equal to p.   
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EExxamplee 44..22:: UUnicycle 11 

The system is described by the following equations:
= ( )  =
= ( ) 

                                                                                        =       =   
    

Equations of the inversion algorithm:  
= =
= ( ) + (1 + )    STOP

=> = 2, = 2    ordre minimal de découplage
   

Construction of the dynamic compensator:
    We solve in u :    =   =   =

                                                =   = ( )
( )

          

1[Glu92] page 51

Dynamic 
Compensator    
                              /z

  
z

System          
        /x
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EExeercicee 44..11  IInductionn motor ccontrolledd byy currentss (reducedd model)  

The inputs are the two currents  = , =
with  =   , =  , = , the induction motor reduced model is: 

    =       = =  , = =   (case 2)  
                 = +        
                 = +          =  , = , = , =     

  Is the induction motor controlled by stator currents is decouplable by static feedback?

If not, is a dynamic feedback is possible ?  If yes, what is the minimun size of the Decoupling 
Compensator ?

IInversion  Step 1           =       = 1  ( )                    
                  = +      = 1 (   2)

     ( ) =
0
0      1 = 1  

                                          Static feedback cannot be used for decoupling control    ...
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EExaammplee 44..33:: CCar ((Exercissee)  

The system is described by the following 
equations:
    = =   =

= =
=   = /    =   

(= ( )) 
         = .

Note: it is a non-affine system!

Coordinates inputs change ?

Is it possible to decouple and Input-
Output linearize this system?

         

  

   
Figure : Car  ([Mar99].)

x2

      x1
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Inversion  Step 1
Compute the relative degree of each output:

= = 1 
                                                 = = 1,                    = 1

= =
= 1

           Step 2: we differentiate =     explicitely depends of    STOP

So the equations of the inversion algorithm are:   
  = =

   =  + ( )
  

   = 2
          = 2, = 2     the minimal orders for input-output decoupling.

= 3,   = 4    dim of the DC =1

- Construction of the dynamic compensator:   we solve in u ….       
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55.11 Remainder:: Limitss off input-outputt linearizationn 
The unobservable part of the closed loop system may be unstable
Corresponds to hiding zeros by poles (for linear systems)

[Ara94] Chapitre 4

CHAPITRE 5
INNPUTT STTATEE LIINEARIZAATIONN  « FLLATNESS »1 

Example 5.1:        Note    :  
=
=

=
        ( )

)
=     (of degree 1)   

     
Input Output linearization: 

Inversion  = = + =
      
  en BF

=
= +

=
= =

=

= + =
= +

=
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  Alternative :
Search for a fictitious output noted y with minimal phase (stable zeros)  

Remarks:
    - If there is only one input (m=1) and the relative degree of y = n, then the 

Input-Output linearization obviously involves the complete Input-State 
linearization.

- If m >1,   = , and the decoupling matrix is invertible, then the whole 
state can be linearized by feedback

Then It exists et such that: 
= , , , ( )

= , , , ( )

         
 (Flatness)  
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55..2  PProbleemm 1  IInput State LLineeaarizzaation bby static state feedback  
 

 
 
  
 
 
 
 
 
 
 
 The Hk's have been defined in the chapter on the accessibility of  nonlinear systems. Their 
integrability is verified with the Frobenius theorem. 
 
 
11 [Ara94] Chapitre 4 page 39 

Problem 1 Input State Linearization by static state feedback 
 Given  = ( ) + ( ) , , ,  
Find if possible : 
             = ( ) + ( ) ,  ( ) square invertible and coordinates = ( )  
such that the closed loop system is written 
              = +    with (A,B) controllable. 
 

Theorem : 11 
The Input-State linearization by static feedback admits a solution    
      = 0 
              integrable k 1 

M2 EPICO ACEV Chap. 5: Input state Linearization or flatness        5.4 

- Proof : Case m=1 
 - Sufficient condition, if = 0 no autonomous elements then 
      = , = 1, = 2, = + 1, 
      = 1,  = = 0 
   Integrability of : = { ( )} 
   The « output » y = (x) has a relative degree = n 

   New state variables:       = ( ) =

( )
( )

( )

 

               Solve equation 
                   ( ) = ( )( , )  =  ( )  + ( ) : =  = ( ) ( ) + ( )     
  
 
- Necessary condition: 
  If 0 then an autonomous nonlinear element can exist. 
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Example  5.2 :                   With   : =
3

3
2  

 = { , } 
      = +  

.
= +( + 2 )   

 + 2 = 0     = 1, = 2     
 = {2 } which is not integrable (Frobenius theorem): 
                             No Input-State linearization for this system. 
 
 = 0 (= )   is accessible but not Input-State linearizable by static feedback. 

Example 5.3  (m=1): 
 

  =
+

0
+

0
0
1

         Search for an output with a relative degree = 3 
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Example 5.4 (m=2): Mobil cart 
 

 

=
( ) 0

0
0 1

,  ( ) 0,    

  
  
Computation of = ( )  

             . 
    = {( ) ( ) }  

   = {0} 
    . 

         ?      
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PProbleemm 2  IInput State  LLineeaarizzaation bby  ddynamicc feedback  

  
 

Problem 2:  
 
With  = ( ) + ( ) ,  , ,  
 

Find a dynamic feedback: 
= ( , ) + ( , )
= ( , ) + ( , )   

   
and     = ( , ),  such that  = +  with (A,B) controlable. 
 
 Goal:  search for m outputs y (called flat outputs) such that the system is invertible (thus 

decoupable by dynamic feedback) and { } , … , ( ) =  
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Canonic basis of  Hk :   
= 0 with k* ={max k :  H 0} 

Let = { },  
 and  = + { }  with direct sum,  i.e. 
          + { } = {0} 
 
The Input State linearization by dynamic feedback requires the search for integrable forms 
generating the Hk.  
 

 
Rq 1. There is no constructive Necessary and Sufficient Condition to the total linearization 
problem by dynamic feedback. 
 
Rq 2  The constraint can be relaxed a little if a non-controllable dynamic is linear ! 
  

Theorem: 
If 1 k,...,  is integrable then there is a solution to the Input-State linearization by 
dynamic feedback. 
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Reminder:                                                                 
It is known that there is a dynamic feedbcak which realizes a "total" linearization of 
the outputs     = ; = . 

We can therefore associate to the unicycle the model "increased" by the addition of an 
integrator in front of the input u1!

Example 5.5: Mobile Cart
             

  =
( ) 0

0
0 1

,  ( ) 0,     

         
This system is not Input-State linearizable by static feedback. 

Is it linearizable by dynamic feedback? 
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Examples of systems that can be Input-State linearized 
(from SIAM News, 1995! )

In addition, there is also a catalog of systems that cannot
be linearized, for example

- the "ball and beam" system
- the pendulum of variable length
- Car with 2 trailers and axis of rotation
- the double inverted pendulum
- …
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6.11 Introductionn 

Remark:  For linear, the observability can be verified by the criterion:  =n.

   The observability of linear systems is therefore :
- independent of the input
- characterized by the possibility to express x as a function of y and its time 

  derivatives at an order lower than n-1.  

 

1 [Ple95] Chapter 3

CHAPTER 6
NON LINEAR SYSTEMS

OBBSERVABILITYYYYYY 1YYY 11111 

Definition: Observability
It is the property to reconstruct the state from the measured output,
the input and their temporal derivatives.
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Typical examples of the observability of nonlinear systems: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 [Ple95] Chapter 3 p.27

Example 6.1 11:
Let the system: = 0 

=

This system is not "observable" because one cannot distinguish the 
sign of with only the knowledge of y.
We needs complementary information as … 

Example 6.2:  Let the system = ; = /
       =   (n=2) 

  We can write  =
0 if = 0

otherwise

To distinguish the sign of ,  one also needs the knowledge of = ( ) ! 
(to be compared to the linear case). 
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- Conclusion. The observability of nonlinear systems is a generic notion:  
 there may be singularities in the state or in the input that may cause observability to be 
locally lost. 
 
 
Remark: if the input is not permanently singular, then the notion of input persistence is 
introduced (observability is obtained in "average") [Bes96].

Example 6.3:  Let the system :  
 

  
=
= 0 

=  
   The system is observable for 0 

 => observability is dependent on the input unlike 
the linear case 
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66..2  FFormal characterization of generic observability for nonlinear systems  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

    - Remark 1:    For the linear case: = { , , . . . , } 
 

 

 

1 [Ple95] Chapter 3 p.28 and [Glu97]  
 

Notation: = { } 
   = ( ), 0  
   = ( ), 0  
   =  

Definition.  Observability filtration 11 
0 . . . . .. 

with          : = ( + ) et = 0 
 
The limit of this filtration: = ( + ) is called "observability space". 
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11[Glu97] Tr.13,  2 [Ple95] Chapter 3 p.28 

Definition 11   
= ( / ) := number of observability indices ki  that are greater than or equal to i. 

 
The list of observability indices ki  is then defined by: 

 =  i.e. the number of   . 
 > >. . . >  

Theorem 2   A system is generically observable  =  

Example 6.4.  Check the observability of the system:  
  
  =

= 0
=
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Example 6.4 Solution       
           = .    = 0  =      
Calculation of output derivatives: 
   =      thus =  
   = = .      = . + .  
      

= { , }, = { , , . . . } 
= { }, = { , . + . } 

 
= { + } = { , } { , , , . . . } 

 = { } 
= { , } { , , , , . . . } = { , } 
= =  dim =  2,      

 
= /{ } = 1    1 
= { / } = 1    2 

: 1 = 2 (    !) 
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Example 6.5.  Mobile cart (MIMO). 
We consider a mobile cart. 
Note   the longitudinal speed,   the angular speed,  and  the coordinates of the 
center of the rear wheels. 

 
   

The system equation is: 
         =  
        =  =  
       =  
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Example 6.5  solution: Mobile cart, Characterization of the observability 
 

= , = = ( ) , = = ( ) + ( ) , 
= , = = ( ) ,  

 = = ( ) + ( ) = ( ) + ( )
.

 
 

= { , , } 
K 1 2U span du , du ,... = { , }, 

 = { , , [ ( ) ], [ ( ) ]} 
 
       = { + } = { , } 
       = { + } = { , , } 
       = = = 3  The system is observable. 
 
       = ( / ) = 2   
       = ( / ) = 1  1 observability indice = 2 

= 0 
 
Conclusion: the system is generically observable, with an observability index k1=2 and an 
observability index k2=1 (decreasing order by convention).  
 
Remark: the association of the observability indices to the outputs is not always unique. 
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66.3  PPractical characterization of generic observability for nonlinear systems  
 

Reminder    For linear system, the observability can be verified by the criterion:  

 =n. 

 
For nonlinear systems, the characterization of generic observability can also be seen as the 
generalization of the linear criterion:   
 

                rank ( , ,..., ( ))
( ) 

 

 
 

 
- A "canonical" form based on observability can be defined. It allows the decomposition 

of the system into subsystems whose dimensions are equal to the observability indices 
(obviously linked to the choice of the observability indices). 
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- Exemple 6.6: Mobile cart practical characterization of generic observability  
 

Remainder 
= , = = ( ) , = = ( ) + ( ) , 
= , = = ( ) ,  

                  = = ( ) + ( ) = ( ) + ( )
.

 
 
 

Thus   ( , ,..., ( ))
( ) 

 => 

                    
  1 0 0
  0 1 0
  0 0 sin ( )
 0 0     cos ( )

 

 
Note:  There is an observability singularity  for  = 0 !    High order derivatives have 

to be analysed! 
 
Generically  (outside the singularity), the observability indices can be chosen as: 
 

{ , } = {2,1} 
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66..44  ««  CCanonical  »» form of observability  
  
We can then define a state coordinate transformation: 

= ( , ), . . . , ( , )    where = { , , . . . , ( )}, 
 

 with for 1 :           = . . .
( )

        We obtain:          

 
 
 
 
 
 
 
 

     
 
 
 
 
 
     with 

(n 2)
11

(n 2)
2 2

(n 2) (n 2)
3

(n 2)p p

(z,u,u,...,u )A 0 0 ... 0
0 A 0 ... 0 (z,u,u,...,u )
0 0 ... ... 0z A.z z,u,u,...,u .z (z,u,u,...,u )
... ... ... ... ... ...
0 0 ... ... A (z,u,u,...,u )

1

2

p

C 0 0 ... 0
0 C 0 ... 0
0 0 ... ... 0y C.z .z
... ... ... ... ...
0 0 ... ... C

Master EPICO, ECN, Chap. 6. Nonlinear Systems Observability       6.12 

 
the matrices Ai  and the vectors Ci (1 ) are defined by: 
 

=

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
0 0 0 0 ×

 and = [1 0 0] ×  

 
 
For 1 , the functions  , are defined by: 

=

0
0

0
( )( ( , ))

. 
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The system description 
 
 
 
 
 
 
 
 
 
 
 
is called the canonical observability form. 
 
Each nonlinear function ( )( ( , )) is a function of z and of the first n-1  derivatives of u.

(n 2)
11

(n 2)
2 2

(n 2)
3

(n 2)p p

(z,u,u,...,u )A 0 0 ... 0
0 A 0 ... 0 (z,u,u,...,u )
0 0 ... ... 0z .z (z,u,u,...,u )
... ... ... ... ... ...
0 0 ... ... A (z,u,u,...,u )
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 Example 6.7: Mobile cart 
 
Note   the longitudinal speed,   the angular speed,  and  the coordinates 
of the center of the rear wheels. 
 

   
The model equation is: 

=
=
=             

,  =  

 
Observability indices: = 2, = 1   
Reminder:  is not necessarily associated to the output 1 (idem condition of 
rank). 

=> writing in canonical form: 
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Example 6.7 following:  Observability canonical form for the mobil cart (k1=2, k2=1) 
 

= =  
= = = , = ( ) 

= =  
 

 
= =  

= . . + . = . +  

= . =  

= 0 1
0 0 +

0
. +  

= 0 +  
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CHAPTER 7
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7.11 Introductionn  
 
Linear case: Observability  observer Type Luenberger. 

Time-variant case : = ( ) +

   Observability Deterministic extended Kalman type observer
       Variable gain observer given by solving a Ricatti equation

Nonlinear case: the observability property does not imply the "design" of an observer.

CHAPTER 7 PART 1
INNTRODUCTION TO OBSERVERS FORR 

NOONLINEARR SYYSTEMS
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PPosition of the problem:  
  
Given    = ( , ), = ( )  
           (1) 
- Determine ˆ  such that  x̂ x    is not a solved problem for nonlinear systems in general. 
 
- Moreover, the separation principle does not exist for NLS (=> no "Observer-Controller 
superposition" without stability check!) 
 
7.2 Different solutions for establishing Observers 
 
- Luenberger type observer modulo injection of known quantities   
- Observers for state affine systems (Deterministic extended Kalman type with a Riccati 
differential equation) 
- Observers with large gains 
- Observers for interconnected systems 
- Sliding mode observers (with discontinuous feedback) for triangular systems. 
- Observers with finite time convergence, ....  
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77.2.1 Luenberger type observers modulo a generalized input injection  [[Lue64]    
  

Reminder for the linear case: Luenberger type observer (pole placement of the 
dynamics of the deviation (e (A KC)e)  : 

 
= + + ( )
=        

 

 
Generalization: 
If a nonlinear system (1) can be written in the form (2)  by a (nonlinear) change of state and 
output coordinates and modulo an input-output injection  ,   
 

= + ( , ),  =       (2) 
 

then a "Luenberger like” observer can be written: 
                                                            = + ( , ) + , =   

 
 Problem 1 to solve: 
Is there a transformation such that the NLS  

.
= ( ) + ( ) , can by change of state 

and/or output coordinates, and modulo an input-output injection ,  be "linearized" i.e. 
be written:  = + ( , ),  =  ? 
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77.2.2 OObservers for state affine systems  [[Ham90]  
  

If a nonlinear system (1) is written in the form: 
               = ( , ) + ( , ),  =  
then under certain conditions (depending on u) a "Kalman like" observer can be written :
  
                             = ( , ) + ( , ) ( ),  = .  

= ( , ) ( , ) +  
> 0 > 0  

( ), > 0. 
 
 Problem 2 to solve: 
Is there a transformation such that  = ( ) + ( )  can be written by change of 
state coordinates and output modulo an input-output injection: 
  = ( , ). + ( , ),  =    (A State Affine System)  ? 
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1

2

p

C 0 0 ... 0
0 C 0 ... 0
0 0 ... ... 0y C.z .z
... ... ... ... ...
0 0 ... ... C

77.2.1 HHigh Gain Observers  [[Esf92]  
  

If the transformations defined above (problem 1 and 2) do not exist, a solution is possible 
for the uniformly observable system (no singularity of the observation because of the 
inputs). The writing of the system in the canonical observability form with   z =  (x): 

i

i

i
i

(k 1)
i

y
y

z ...

y

 

 
 
 
 
 
 
 
          
 
 
allows the writing of a High Gain Observer if the system can be written (monovariable case): 
 

(n 2)
11

(n 2)
2 2

(n 2) (n 2)
3

(n 2)p p

(z,u,u,...,u )A 0 0 ... 0
0 A 0 ... 0 (z,u,u,...,u )
0 0 ... ... 0z A.z z,u,u,...,u .z (z,u,u,...,u )
... ... ... ... ... ...
0 0 ... ... A (z,u,u,...,u )
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= + ( ) + ( ) ,  =         with A canonical observability matrix, 

C = [1, 0, …, 0] and   ( ) =

,.( )
,.( , )

,.( )

 (triangular structure with respect to z)  

-  with the functions (z)et (z)  globally Lipschitz with respect to z, 
- and the inputs u are measurable and bounded. 

 
A High Gain Observer is then written: 
 
           

.
= + ( ) + ( ) ( ),  =  

with > 0 a setting parameter, S is the unique solution of the algebraic Lyapunov 
equation 

                  + + =  and 
 = (1, , , . . . , ).  The observed state is then   = ( ) 
 

In the original coordinates, the observer can also be written : 
.

= ( ) + ( )
( )

( )
( ( ) ). 
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OUTLINE 

• Reminders and problem introduction 

– Nonlinear systems assumptions 
– Observability - Rank condition 
– Observers 
– Problems to solve 
– State of the art - Objective - Ways 

• A  of the Input-output Injection 

• Linearization via generalized input-output injection 

• Linearization via generalized input-output injection with ouput derivatives 

• Extensions, Conclusions and Prospects 

 
NNonlinear Observers. Part 2:  OBSERVER DESIGN BBy 

LINEARISATION VIA GENERAL INPUT--OUTPUT INJECTION  

Assumptions  

                     Nonlinear observers. Part 2.             7.2.2.

 

 

 
 
 

Nonlinear Systems Model : 
 
 
 

  = ( , )  

= ( ) (1) 

 
 

The state is  , the input and the output . 
M is a dense open subset of  

 
(. , . ) and ( ) are analytics over M ; u(t) is admissible. 

 
The body of the meromorphic functions in {x, u, u , · · · , u(q), q 0} is 
noted K.   A space generated on this body is noted SpanK. 
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Observability - Rank condition - Observer 

3.

Examplee 11 Let the system:

=  , = 0,  =   

>  =  , = /

Introduce the Generic Observability Space: O with

O = X (Y + U )

where U = SpanK {du(q), q 0}, Y = SpanK {dy(s), 0}, X = SpanK{dx}.

 11 System (1) is generically observable if and only if dim O = n. 

 22 An asymptotic Observer of system (1) is a system in the form:

Such that:

= ( , , )
=  ( , , )     

(2)

• ( )  = ˆ( ) ( ) 0 when t 
-    If, for  =  , ( ) =  ( ), then for every t t0, 

we have     x̂(t) = x(t).

   Nonlinear observers. Part 2.  7.2.

Observability - Rank condition - Observer 

4.

Goal: to determine an output coordinates transformation ỹ = T (y) and a
generalized state cordinates transformation = (x, u, u, · · · , u(q 1)) such that 
the systelm (1) is equivalent to:

=  +  , , ,· · · , ( )   (3) 
=    

: A and C are in observability canonical form.

An observer for (3) is:

=   +  , , ,· · · , ( ) +       – 

Exponential convergence function of K. 

      Observed State of system (1) is computed by

 =  ( , , ,· · · ,  ).

Hypothesis
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State of the art - Objective - Means

5.

• Exact linearization

– Geometric approach: [Kre83], [Kre85], [Xia89], ...
– Algebric approach: [Kel87], [Pro93], [Glu96], ...

• Approximate Linearisation : [Bes83], [Zei87], ...

problem 
via a generalized input-output injection.

• To study the structure of the input-output equations of nonlinear 
system Realisation problem.

• By means of the  systems theory.

Objective

Means
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Linearization of MISO systems by generalized state transformation 
and generalized input--output injection: Example 

1

Hypothesis: initial problem with p = 1, and no output coordinates 
transformation

EExamplee 22 Let the nonlinear system:
=    , =  0,  =  (4)

The input- equation is:    ( )=2   If the system is locally 
equivalent to:

1= 2 + 1(y, u, u, ü)  
2 = 2(y, u, u , ü)

y  =  1, then y(2) = (1) + 2 with a solution:

  = , = 2  ( )

NSC for the existence of a generalized state coordinates    
transformation
Design of an observer
Errors dynamics
Coordinates transformation
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MISO systems linearisation by generalized state transformation 
and generalized input--output injection: Algorithm 

:

( ) = ( ,  , … , ( ), ,  , … , ( ))        

Let P0 := P and 0(y, u, u, · · · , u(q)) := 0. For k = 1 to n, let 

Pk :=  Pk 1 [ k 1(y, u, u, · · · , u(q))](n k+1)

The form k is by:

= ( ) d + ( ) d ( )

• If d k du du
• IF d k du du

 · · · du(q 1) 0, then the problem has no solution.
 · · · du(q 1) = 0, then the function k is solution of:

d +  ( ) d ( )=            (1 1)

      n(y, u, u, · · · , u(q)) =  Pn 

                Note : q = 0 d k du( 1) := d k.

System input-output equation (1)

G.I.O.I.A.m. algorithm
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MISO systems linearisation by generalized state transformation 
and generalized input--output injection: NSC 

ROBOT 
ARM

FLEXIBLE 
JOINT

Theorem 1 (IEEE TAC) [Glu96]   Nonlinear system (1) (with p = 1) is
locally equivalent to system (3) by = (x, u, u, · · · , u(q-1)) and T (y) = y if and 
only if:

for 1 k n.

d k du du  · · · du(q-1) = 0

: Flexible joint robot with the measurement of the arm position.

x1 arm position, x2 arm speed,
x3 motor position, x4 motor speed.

RM

JOINT

Application
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      MISO systems linearisation by generalized state transformation 
     and generalized input--output injection: Application 

   = 
   = sin  -  ( - ) -     
   = 
    =    ( - ) -      +     

:

= ( + )

=  - sin y – ( + + ) y

=  - sin y –  ( + ) y

  = - sin y – u    

y = 

via the state space coordinates  transformation :

Flexible joint robot model.

Equivalent system (q = 0)
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      MISO systems linearisation by generalized state transformation 
     and generalized input--output injection: Application 

0

A
rm

po
si

tio
n

es
tim

at
io

n

via the state space coordinates  transformation   :

= [ , +( + ) ,  +    +( +  ) ,

+ + + ]

An observer with a linear error dynamics can be designed.

:

0.2

0.1

0

               Error between real and estimated arm position 
              (rad)  

          Error between real and estimated motor position (rad)  

1.2

0

Simulation results
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MISO  systems  linearisation  by  generalized  state  transformation,  
output  transformation  and  generalized  input--output  injection  

 

 

 
 
 

Hypothesis : Initial problem with p = 1. 
 

Objective : to enlarge the class of the linearisable systems. 
 
 

Example 3 Let the nonlinear system 
=   

= +   

=  

 
 

The NSC of Theorem 3 is not   This system is not linearisable. 
 
 

The NSC of Theorem 3 is  with    =   This system is linearisable.
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MISO  systems  linearisation  by  generalized  state  transformation,  
output  transformation  and  generalized  input--output  injection:   N.C  and  N.S.C  

 

 

 
 

Theorem 2 (Respondek) [Kre85] If nonlinear system (1) (with p = 1) is
locally equivalent to system (3) with  = (x, u, u , · · · , u(q 1)) and with 
then: 

d[ ( )] d  = 0

ỹ = T (y), 

   If this condition is  then T (y)  
 

dT 2P d2T 
dy 

 
y y(n 1) + n 

dy2 =  0
 

 

                   By applying Theorem 3 to system (1) with the new output ỹ .  
 
 

Theorem 3 (IEEE TAC) [Glu96]  Nonlinear system (1) (with p = 1) is 
locally equivalent to system (3) by  = (x, u, u , · · · , u(q 1)) and ỹ = T (y) if and 
only if : 

 

 
for 1  k  n. 

                d˜k  du  du  · · ·  du(q-1) = 0 

with ˜k a  form deducted from the G.I.O.A.m. algorithm applied to 
system (1) with the new output. 

N.S.C 
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MISO systems linearisation by generalized state transformation, 
output transformation and generalized input--output injection: Application 

Serial DC Motor. Measured Motor Current [Chi94].

=
+

+      =

= + K 

= 0
x1 inductor x2 motor speed,
x3 load torque/inertia assumed to be constant.

System equivalent to (q=0) 
= + ( ( ) + ) ln      =

       = + ( ( ) + ) ( )

= 0

               with output coordinates transformation ỹ = ln y and state coordinates
transformation = [ln x1, k1 x2 + k2 ln x1, k1 x3]T . 

Design of an observer with linear dynamics errors.
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MISO systems linearisation by generalized state transformation, 
output transformation and generalized input--output injection: Application 
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MIMO systems linearisation by generalized state transformation 
and generalized input--output injection 

Hypothesis : Initial problem for any p, and no output transformation.

Problem : the input-output (I/O) equations are coupled.

Example 4 let the nonlinear system:

x 1 = x2 y1 = x1

x 2 = x2 x3

x3 = x1 y2 = x3

The I/O equations (with observability indices k1 = 2, k2 = 1) are:

If this system is linearisable, then : 

The I/O equation associated to y1 is coupled 
y2. 

Use independant variables ( ),  j <                   
A solution: = ,  = , =  .
     

y(2).y2!,2)

(2)
12

(2)
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MIMO systems linearisation by generalized state transformation 
and generalized input--output injection: C.N.

i i i2

( ) = ( ,  , … , ( ), … , ,  , … , , ,  , … , ( ))

Theorem 4 If nonlinear system (1) is locally equivalent to system (3) with
= (x, u, u, · · · , u(q 1)) and T (y) = y, then:

        ( ) = 0  ( ) = 0                                       (8)

for ki (1 i p), for any output yj (1 j p) with an observability index 
greater than ki and for any input uk (1 k m).

Proof. If the system (1) is linearisable, then for any output yi (1 i p), the 

y(ki) = (ki 1) + (ki 2) + · · · + ik

Necessary condition. 

I/O equation associated to each output:

i
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MIMOO systemss linearisation byy generalizedd statee transformation 
andd generalizedd input--outputt injection:: Algorithm 

i

i i

For i = 1 to p, P 0 := Pi and i0(y, u, · · · , u(qi)) := 0.
For k = 1 to ki: Pk = Pk 1 [ ik 1(y, u, u, · · · , u(qi))](ki k+1)

The number of outputs whose observability index is strictly greater than ki k is

noted . The form   is by:

     = ( ) d + ( ) d ( )

If < then:

– If d +1  · · · d du d  · · · d ( )= 0, then   is

solution of  d + ( ) d ( )= for 1 1   

( , , , · · · , ( )) =
– Otherwise, the system is not linearisable.

– If = , then if d du d  · · · d ( )= 0, then ik is solution of:
      d + ( ) d ( )= for 1 1

( , , , · · · , ( )) =
– Otherwise, the system is not linearisable.

Algorithm G.I.O.I.A.
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MIMO systems linearisation by generalized state transformation 
and generalized input--output injection: N.S.C. 

i i

i

1 2

1

1 1

2

1

1

Theorem 5 [Ple96] The nonlinear system (1) is locally equivalent to system (3) 
with = (x, u, u, · · · , u(qi 1)) and T (y) = y if and only if the condition (8) of 

• d k dydk+1 · · · dyp du du · · · du(qi 1) = 0, if < p,

• d k du du · · · du(qi 1) = 0, if = p,

with 1 i p, 1 k ki and q = Max{q1, · · · , qp}.

Example 5 Let the nonlinear system:

x 1 = x2 y1 = x1

x 2 = x2 x3

x3 = x1 y2 = x3

The Input-Output equations are: y(2) = y 1 y2 y(1) = y1

1 = y2dy1 d 1 dy2 = 0 11 = y1 y2
• Output y1 : 2 = 2y1dy1 d 2 = 0 12 = y2

• output y2 : 1   = dy1             = 0           21 = y1

The necessary and condition is

1
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MIMO  systems  linearisation  by  generalized  state  transformation,  
output  transformation  and  generalized  input--output  injection:  C.N.S.  

 

 
 

 

Hypothesis: Initial problem. 
Output Transformation results: [ Kre85]. 

Theorem 4 and 5 are applied to system (1) with the new outputs .  
 

 ,  the input-output  equation associated to each output  

  (1 i p). 
     a  form derived from the algorithm G.I.O.I.A. applied to system (1) with 
the new output coordinates. 

 
Theorem 6 The nonlinear system (1) is locally equivalent to system (3) by 

 = (x, u, u , · · · , u(qi 1)) and  = ( ) if and only if  ( ) = 0  ( ) = 0           

     for   ki (1  i  p), for any output yj (1  j  p) with an observability index 
greater than ki and for all input uk (1  k  m), and: 
   d  d    · · ·  d  du  du      · · ·  du(qi 1) = 0, if < p, 

                 d    du  du  · · ·  du(qi 1) = 0, if < p, 
         with 1  i  p, 1  k  ki and q = Max{q1, · · · , qp}. 

  
 
 

 
  

N.S.C. 
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MIMO  systems  linearisation  by  generalized  state  transformation,  
output  transformation  and  generalized  input--output  injection:  Application  

 

  

 
 

Stepper motor - Speed observer ([Chi93]) 

 
x1 = x2             y1 = x1 
x 2 = K1 · x3 · sin(Nrx1) + K3 · x4 · cos(Nrx1)  K4 · x2 
x 3 = K1 · x3 + K2 · x2 · sin(Nrx1) + u1 y2 = x3 
x 4 = K1 · x4  K2 · x2 · cos(Nrx1) + u2 y3 = x4 

with x1 rotor position, x2 rotor speed, x3 and x4 phasis currents. 

: 
 

1 = 2  K4 · y1 
2 = K3 · y1 · sin(Nr · y1) + K3 · y2 · cos(Nr · y1) 
3 = K1 · y2 + u1 
4 = K1 · y3 + u2 

with output coordinates transformation 

= [ , + ( ) ,  +  ( )]  

  

and state coordinates transformation 
  =  [ , + , + ( ) , + ( ) ]  

 
 Design of an observer with linear errors dynamics. 

Motor model 

System equivalent to (q = 0) 

Application 
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ˆ ˆ

GENERALISED PROBLEM 

Goal: To determine a generalized state coordinates transformation

= (x, u, u, · · · , u(z)) such that the system (1) (with p = 1) is equivalent to:
1 =  2

2 =  3

. 
s =  s+1

s+1 = s+2 + s+1(y, y , · · · , y(s), u, u, · · · , u(q))

s+2 =  s+3

. 
+ s+2(y, y , · · · , y(s), u, u, · · · , u(q)) 

(9)

n 1 = n + n 1(y, y , · · · , y(s), u, u, · · · , u(q))
n = n(y, y , · · · , y(s), u, u, · · · , u(q)) 

y = 1

An observer for (9) is: 

=  A · + (y, · · · , y(s), u, · · · , u(q)) + K · C · ( ˆ)

Use of outputs derivatives: Diop-Grizzle-Moraal-Stefanopoulou (1994).
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LLinearisation bby ggeneralized IInput--OOutput iinjection wwith ooutputs 
dderivatives: EExample 

1

Hypothesis: Generalized problem.

Objective: Propose a solution using a limited number of output derivatives, 
taking maximum advantage of the system’s structure.

Example 6 Let the nonlinear system:

x1 = x2 y = x1

x2 = x3

x 3 = x2 sin x2 + x3 + x2 + x1 x2

Input-Output equation

The NSC of theorem 1 is not . 

Use of an output derivative: if the system is locally equivalent to:

1 = 2 y = 1

2 = 3 + 2(y, y )
3 = 3(y, y )

The Input-Output equation is:

A solution of the problem is: 2 = y 3 = y · sin y + y2 + y y
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Linearisation by generalized Input--Output injection with outputs  

derivatives: Algorithm  

 

  

 

 
 
 

 
: 

 

y(n) = P (y, y , · · · , y(n 1), u, u , · · · , u(n 1)) 
 
 

 

Note Ps := P and s(y, y , · · · , y(s), u, u , · · · , u(q)) := 0. For k = s + 1 to n,  

Pk := Pk 1  [ k 1(y, y , · · · , y(s), u, u , · · · , u(q))](n k+1) 

The  form k is  by: 

= ( ) d ( ) +  ( ) d ( ) 

• If d k  dy  dy   · · ·  dy(s 1)  du  du  · · ·  du(q 1) 0, there is no 
solution to the problem. 

 
• If d k  dy  dy   · · ·  dy(s 1)  du  du   · · ·  du(q 1) = 0, then 

k (y, y , · · · , y(s), u, u , · · · , u(q)) is solution of:

( ) d ( ) +  ( ) d ( ) =   for s + 1  k  n – 1,

n(y, y , · · · , y(s), u, u , · · · , u(q))  =  Pn 

Input-Output  equation of system (1) 

G.I.O.I.A.d. Algorithm 
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Linearisation  by  generalized  Input--Output  injection  with  outputs  
derivatives:  C.N.S.  

 

  

 
 
 

Theorem 7 [Ple96] Nonlinear system (1) is locally equivalent to system (9) by 
 = (x, u, u , · · · , u(v 1)) if and only if: 

 

d k  dy  dy  · · ·  dy(s 1)  du  du  · · ·  du(q 1) = 0 
 

for s + 1  k  n and v = Max(s  2, q  1). 
 
 
 
 

: Flexible joint robot - measured motor position [Ple94]. 
 
 
 
 

   = 

   =  sin  -  ( - ) -      

   = 

    =    ( - ) -      +    

    =  

Application 

Flexible joint robot model. 
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Linearisation by generalized Input--Output injection with outputs 
derivatives: Application 

state coordinates transformation

= ( + )

=  - ( + + ) y + u    

=  –  ( + ) y + u

  =  u    - sin ( + + y -   )

y = 

with the : 

= [ ,  +( + ) ,  +    +( +  ) ,

+  + ( + ) ]

Design of an observer with linear errors dynamics.

System equivalent to (s = 2,q = 0)
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Linearisation by generalized Input--Output injection with outputs 
derivatives: Application 
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Sliding Modes Control with a sinusoidal reference + encoder noise measurement.
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Summary  -  Extensions  ”Linearissation”  by  generalized  
input--output  injection  

 

  

 
 
 
 
 

System Approach Applications 

 
 =  + (y, u) 

Geometric 
[Kre83, Kre85, 
Mar91, Xia89] 

Algebraic 
[Glu96, 
Ham88, 
Lop97, 
Ple95] 

DC Shunt motor 
Serial DC motor: [Chi94, 
Ple95], 
Stepper motor: [Chi93]. 
Flexible joint robot: 
[Ple94]. 

 
 =  + (y, u, u ) 

Geometric 
[Wil77, 
Kel87] 

Algebraic 
[Pro93] 

 

Biological system: 
[Wil77], 
Bilinear system: [Pro93]. 

 =  + (y, u,· · · ,u(w)) 
Algebraic: 

[Ple93] 
Numerical 

 
[Dio94] 

 = A  + (y, · · · , y(s), 

u, · · · , u(w)) 

Algebraic 
[Ple97] 

Numerical 
Dio94] 
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Conclusions 

• Approach based on the structural study of nonlinear systems. 

• Using the theory of exterior  systems. 
 

Supplements 

• Generalization of the theory to MIMO systems without calculating I/O 
equations([Lop97] 

• State  Case ([Lop98, Sou03, Sou07] 
 
 

 = A(y, u)  + (y, u) 
 

Algebraic [Bes96, 
Ham92, Ham90, 
Lop98] 

Inverse pendulum 
[Bes96] 

Distillation column 
[Vie94] 

 

Prospects 
 

• 

output coordinates using an algebraic approach. 

• Non-additive input-output injection linearization study 

• … 
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Chapter 7 part 3

Observer design by Transformation into an Affine System

Outline
Introduction
State of the art
Problem statement 

IV Transformation
NLS

formatiformatiformati

V Application to
SAS (State Affine System)
the Inverse Pendulum

VI Conclusions, other results

Nonlinear Observers Chap 7 Part. 3 7.3.2

To expand the class of observers for non-linear systems

Focus on the applicability of solutions: algorithms and symbolic calculation

Implementation on experimental site (pendulum)

Introduction, Objectives
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Observer

Input
u

Output
y

•State Feedback
• Filtering
• Diagnostics
• Sensor limitation ...

    

Nonlinear Observers Chap 7 Part. 3 7.3.4

II State of the art: Observer Class for NLS

References Systems Hypothesis Solutions

Bornard,et al[Bor88]
Hammouri De Léon 

[Ham90]

z A(y,u) (y,u) 
y Cz

Observability
u -persistent

Exponential local 
observers
High gains

Hammouri, Busawon
[Ham93]

Observable for all u 
x Ax (x) (x)u 
y Cx

           MIMO

Globally
Stabilisable 

(x), (x) Lipschitz

SC
Exp local Obs.
High gains

Gauthier, Kupka 
[Gau92]

x Ax u(Bx b) 
y Cx
Observable Dissip. MIMO

Accessible
Asymptotic observers.
High gains

Marques [Mar93] x f(x) g(x)u 
y h(x)

MIMO Dissipative

Observability
Global stability

Lyapunov function

Asymptotic Observers
High gains
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Linearisation Modulo one Injection

Affine's Modulo Injection system (SAS)       • Bornard, et al [Bor88]
• Hammouri, De Leon [Ham91]

A
:

z A(y, u)z ( y, u),
y Cz

• Hammouri, Gauthier [Ham92]
• Tornambé [Tor93]
• Besancon, Bornard [Bes96]

Possible techniques

  :
A ( y,u),

L y C

• Krener, Respondek [Kre85]
• Xia, Gao [Xia89]
• Plestan, Glumineau [Ple97]

Nonlinear Observers Chap 7 Part. 3 7.3.6

I Introduction

II State of the art

III

IV Transformation
NLS   SAS (State Affine System )

III Application to Inverse Pendulum

IV Conclusions, other results.

Outline

Problem statement
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Is there a transformation ( ) : A such that

:
x

y

f (x,u) 
h(x)

(Observable u )

  is equivalent to:

A : z A(y, u)z (y, u),
y Cz

Problem Statement 

:: (SAS)

Nonlinear Observers Chap 7 Part. 3 7.3.8

If ( ) :
A then with (y,u)

A : z A( )z ( ), 
y Cz,

A Kalman like observer can be designed (Hammouri, DeLeon, [Ham91]):

:   
             A

= A( ) ( ) R 1CTC ( )

such that:

     R R AT( )R RA( ) CTC

      e(t)  2 exp t
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        Applications examples

    z A ( y,u)z
  y Cz

( y,u),

   • Synchronous generator: de Léon M., Acha Daza
       [Leon98]
   • Inverse pendulum : Besançon, Bornard [Bes96]
  • Chemical reactor: Guillaume, Rouchon [Gui97 ], Viel

         [Vie94]

• Hydraulic process diagnostics: Kaboré, Hammouri,
          Othman [Kab97]

Nonlinear Observers Chap 7 Part. 3 7.3.10

Outline

I Introduction

II State of the art

III Problem statement

IV Transformation

V Application to Inverse Pendulum

VI Conclusions, other results.
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( ) : A
: = f (x, u)

              y = h(x)

where x observable

: =

0 1( ) 0 … 0
0 0 2( , ) … 0

0 0 0 … 1( , )
0 0 0 … 0

( , )
( , )

( , )
( , )

= =

Affine system, MISO case (m>1,p=1)

Nonlinear Observers Chap 7 Part. 3 7.3.12

Preliminary example 
I/O differential equation
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Algorithm: MISO case

Synthesis of r

yes
Research of r

intégrable?

no

stop

No solution

yes
intégrable?

no

stop
substitution of the Ai in the I/O equation

Nonlinear Observers Chap 7 Part. 3 7.3.14

Equivalence SNL to SAS
MISO

I/O Differential equation approach
Necessary and Sufficient Conditions
Constructive method
Synthesis of a "Kalman like“ observer

Conclusions
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Outline

I Introduction

II State of the art

III Problem statement

IV Transformationansformationansformation

VI Conclusions, other results.

V Application to Inverse Pendulum
• SAS transformation
• Pendulum control
• Results : Simulation and experiments

Nonlinear Observers Chap 7 Part. 3 7.3.16

Inverse pendulum or Crane
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y

Simulation Scheme: Inverse Pendulum observer

INVERSE PENDULUM (OR CRANE) CONTROL and OBSERVER

Clock To Workspace1
4.17
x1_ref

Mux Animation 

wk-spac

Reference CONTROL

.0

u2

PENDULUM

Mux

_

phi

omega

etat -x3 
etat -x4

OBSERVER
poursuite ERROR

ref 1 u_1
dot ref 1
ddot ref 1

Control Obs

t

u[1]-u[2]

in_2

in 3
Z 2

Mux

in_4

Z1
in_1

Signal

etat-3

in_2
etat-4

etat-1

in_1
etat-2

etat -x1 

etat -x2 

etat -x3 

etat u-x_41

ref

dot ref

ddot ref

Initialisation 
parameters 

PENDULUM CRANE
file ci_LO

Mux

f(u)

Nonlinear Observers Chap 7 Part. 3 7.3.18

Angle position error Speed angle error

Simulation
Inverse Pendulum observer
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Position trajectory

Simulation
Inverse Pendulum observer

Speed trajectory

Nonlinear Observers Chap 7 Part. 3 7.3.20

Control with state estimation
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Experimental Validation in Crane Mode
Angular position

Estimated angle

Measured angle

Observation error of the angleObservation error of the angle

Nonlinear Observers Chap 7 Part. 3 7.3.22

Experimental Validation in Crane Mode 
Angular Speed

Estimated angle

Measured angle

Observation error of the angle   Observation error of the angle  
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Observer for a class of  NLS

Equivalence NLS SAS
Necessary and sufficient Conditions
Constructive method
Application to a real system

General conclusions

Nonlinear Observers Chap 7 Part. 3 7.3.24

NLS SAS Transformation in the MIMO Case

Direct approach (without calculation of the I/O equations)
General matrix A(y,u) and generalised injection (derivatives of
y and u if necessary)

Stability: Controller - Observer (Lyapunov)

Other available results
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Purpose: Introduction to two robust controls of nonlinear systems: 

 - Sliding mode control 

 - Backstepping control 

Common points of these two techniques : 

 - Deterministic approach 

 - Stabilization by controlled Lyapunov functions 

 

Outline : 

- Chap. 8  Definitions and examples of Lyapunov stability 

- Chap. 9  Sliding Modes control 

- Chap. 10 Backstepping control 

 

CCHHAPTTER  88  
IINNTRODUCTION  TTO    SSTTABILITY  OOF  

  NNOONLLIINEAR SSYYSTEMS  
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88.  NNotion of stability and Stabilization of Nonlinear Systems ((NLS)  [[Zin89] 

88.1  Preliminary definitions 

NLS equilibrium point :  

   For   = ( ) + ( )      any point (xo,uo) solution of = 0. 

 

Remark 1  In general we talk about the equilibrium  points of the autonomic system 

          :  = ( )  

Example 8.1 : the pendulum has two points of equilibrium, =0° or 180°  (stable or unstable ?) 

 

Definition 1.  Stability (in the sense of Lyapunov)  The equilibrium point  is said to be stable if  

      > 0,  > 0: (0) <   ( ) < ,  > 0.  

 

Definition 2.  Asymptotic stability (in the Lyapunov sense) 

The equilibrium point   is said to be asymptotically stable if 

 > 0: (0) <   ( )   0       . 
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SSufficient conditions for stability around an equilibrium point  

Using linearization by first order approximation of the SNL around the equilibrium point:  

    { = ( )   =    or    . 

 

TTheorem 1. Stability by means of the first order approximation (around a point) 

1) If the linearized system is asymptotically stable (the eigenvalues of A have real part < 0) 

then the SNL is asymptotically stable. 

2) If the linearized system is unstable ( at least one eigenvalue of A with real part > 0) then 

the SNL is unstable 

3) If the linearized system is marginally stable  

(one real part eigenvalue = 0), then we cannot conclude on the stability of the SNL. 

 

Exercices    Calculation of the stability of    
1) = ± +  for x = 0 (2 )                       
2) =   ,   k > 0   for  x = 0                                   
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88.2 SStudy of the equilibrium  ffor  NNLSS  bby uusing Lyapunov ffunctions 

DDefinition 3. A continuously differentiable function ( )  is called a LLyapunov function if 

      V(0) = 0 

      V( ) > 0   0  (positive definite)    

      V( ) 0   0 (negative semidefinite). 

 

Theorem 2.  Lyapunov Stability 

For an NLS with an equilibrium point at 0, if there is a function ( ) such that: 

 (0) = 0  

and for   0,   (0) > 0 and  V( ) < 0   

then the equilibrium point is aasymptotically stable. 

 

Remark 2. Stability in the sense of Lyapunov is a mathematical translation of the fact that if 

the total energy of a system (linear or not, stationary or not) dissipates continuously then this 

system tends to return to an equilibrium state.   
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RRemarkk  33. There is not only one function that can be Lyapunov! 

EExample of conservatism of Lyapunov functions: 

     For the system :     
= 2 ( 1)
= ( + 1)

 

Let the candidate Lyapunov function ( , ) =
+
2

, then its time derivative 

( , ) = 2   could be < 0 in a domain of  R .   

Example in  (1,1) or  (2,2) ? 

 

For the same system, the function ( , ) =
+ 2
2

 has the time derivative: 

( , ) = 2 2    that is  < 0 in all R ! 

 

The first Lyapunov function V1 is conservative because it gives a ppessimistic result on 

the stability domain of the system 
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EExercisseess::   SStability of NL systems   

Ex 1 

    
=

 

 

 

 

 

 

Ex 2   

=
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88.33  RReminderss onn deterministicc controlss..

 
Exactt Input/Outputt linearizationn problemm ++ polee placementt    

y'' :== y  is the output of the system after feedback

So in closed loop:

 

 

Trajectoryy trackingg problemm i.e.. exactt linearizationn off thee errorr dynamicss  

  iss noww thee output.. 

So in closed loop: 

y' =  yy'
...

(r)

r-1

0

- --
+v

y' =  yref - y
y'

...
(r)

r-1

0

- --
+0
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Contentss :: 

- Chap.. 99     Slidingg Modess Controll 

- Chap.. 100   Backsteppingg Control 
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LINEAR SYSTEMS

F NON
SS

APPLICATION TO ELECTRIC DRIVES
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9.11 Slidingg Modess Controll off orderr 1:: Seminall workss andd principlee 

- Historic framework: control of systems with discontinuous inputs:

- A. G. Phillipov Differential equations with discontinuous right-hand sides, 1960 
(Russian), 1988 (English), SPRINGER, Mathematics and its applications. 

- Vadim Utkin, Variable structure systems with sliding modes, IEEE Transactions on 
Automatic Control, May 1977. 

- Principle. Suppose that the nonlinear system to be controlled is written in the form: 

  
= ( ) + ( ).
= ( )         with , , .

CHAPTER 9
SLIDING MODES CONTROL 

EPICO M2 Chap. 9 Sliding Modes Control                9.2

The control by sliding modes finds its justification by using the notion of stability according to 

Lyapunov. The stability is determined using a differentiable function V(x) from Rn to R+ so-

called Lyapunov function ("picture" of the system energy) which satisfies the following 

conditions:

( ) > 0 0, (0) = 0 (1)
( , ) 0 < 0 (2)

V(x) is positive definite (1), and ( , ) is negative semidefinite (or definite) (2). 

This function will be determined from a "pseudo-output" of the system S(x) called sliding 

variable because in closed loop, the system will be forced to slide on the equation surface

S(x) = 0.

AA particularr choicee off pseudo-outputt S(t,, x))     

With the trajectory to be followed  ( ), define:

( , ) = . ( ) ( )
( )

    

= 1 and r the relative degree of the output y.
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FFiirst--oorder sliding mode control  ppurpose:  

 To bring the dynamics of the system onto the surface S (t, x) =0 and make them slide on it. The 

convergence dynamics of the error is ensured by the choice of the coefficients i.By taking the 

candidate function of Lyapunov   ( , ) =  =  

with 

= + = + [ ( ) + ( ). ] 

 = ( , ) + ( ).  

=
( )
( ) =

( )
 

By choosing = +     

where ueq is the so-called equivalent control (a linearizing control of the pseudo output S !), then 

after this first feedback : 

                                                                                    = . 

To force  < 0 for S 0, it is sufficient to design    = . ( ),  > 0.  
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This last part of the control = . ( ),  > 0 (of discontinuous type) forces the 

system dynamics to converge towards the surface, even if the system parameters are not 

perfectly identified, and/or if the system varies slowly over time, and/or if a bounded 

perturbation acts according to certain conditions (such as an action at the same level as the 

control i.e. "matching condition"). The dynamics of the looped system is shown in Figure 1: 
 

We obtain a dynamic equation of the error which is "forced" to S=0 by  and which is 

autonomous for   =0 . 
 

 

 

 

 

= . ( ),  > 0    

 Figure. 1.  Dynamics error after SM feedback 

   

y    - y y' 
... 

S(x)  (r-1) 

r-2 

0 

- - - 
+ ref 

un 
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99.2 CChhatteringg pphenomenon.. 

Due to disturbances or poorly known or varying system parameters, the "closed loop 

system" does not slide perfectly over the surface, it leaves it. The discontinuous control returns 

it to the surface. 

=>   Switching phenomenon around the surface (chattering). 

e

e.S = 0

Figure 2. Switching phenomenon around the surface (chattering).

This can be detrimental to some actuators. To limit this problem, one solution is to use softened 

sign functions.  
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SSoftenedd signn functions:: examples. 

The basic softened sign functions are:

Standard sign        Sign’   Sign''

Figure 3.  Softened sign functions

Remark: for digital practical implementation (real sliding mode), the frequency of switching is 

limited by the sampling period of the controller. 

More  complex  “sign” functions are also available :

       

      +1                           +1                     +1

     -1                            -1                         -1
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Figure 4.  Softened sign functions " (following)
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99.3 EExample 11 :: SSlidingg Modee Control ddesign ((monovariablee case)

=

=

=
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99.4  UUnncertain case,, robustness analysis.  

Reminder = + = + [ ( ) + ( ). ] : = ( , ) + ( ).  

 

If  ( , ), ( ) poorly known, let's pose: 

( , ): = ( , ) + ( , ) ( ): = ( ) + ( ). 

                      with  ( , ) the  uncertainties  and with     | ( , )| << | ( , )|  

   and ( ) the  uncertainties  and with    | ( )| << | ( )|. 

                                         then  = ( , ) + ( , ) + ( ( ) + ( ))   

and with u = - 1n

2n

( )
2n

       = ( + 1) ( ) 

                                                      where  | | = ( ) ( ) ( )/ 2n( )  

                                                                    | | = | ( )/ 2n( )| << 1   

                                                      By choosing    = ( ), 

a Sufficient Condition to have  < 0  > | |  

 choice of          SM robustness. 
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99..55 SSliding Mode Control:: Multivariable Case 

If the system  to control has p outputs      p switching surfaces of relative order 1.  

If   has m ( p) inputs, then 

 
.
( , ) = + [ ( )] + [ ( )]  

: = ( , ) + ( )  

  

 Non-linear static decoupling problem 

 Is Matrix B (x) invertible? 

 If yes, then the "equivalent control" is a decoupling and linearizing control. 
.

( , )
.

( , )
=  

 

  If not, is dynamic decoupling possible? 
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EExxamplee 22. a Multivariable case: unicycle

 

 

Exercisee  11 

  = + + , =        with ,  unknown bounded uncertainties.

            = + + , =  

 

  

= (cos ) =
= (sin )     =
=
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PParticularr Slidingg Surfacee                     internall variablee limitation..   

Example: Direct Current motor.
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99.66 AApplication to the Permanent Magnet Synchronous Motor  

The Sliding Modes Control of Order 1 is applied to the permanent magnet synchronous motor: 

From the equations of the machine, after successive application of the Concordia and Park 

transformations, we obtain the model of the permanent magnet synchronous machine of the 

form: 

         = ( ) + ( ) , 

=

+
f
J

R
L

+  
L
L

  

p
L

 
L
L

  
R
L

+

0
0
1

L
0

0
0
0
1

L

+
C
J   

 is the load torque and is considered as an unmeasurable disturbance.  

Outputs to control:    ,   0 (linearization of the motor torque by elimination of the 

magnetic salient effect ( ).  
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DDesign of the sliding modes control of order 1. 

From the state equations and considering the motor without load ( = 0). 

 

First output: rotor position of relative degree 3 

Note = . The surface is defined by = . + . +  to which is associated the 

candidate function of Lyapunov  = .  By time differentiation of this function: 

= . = . + .  

with  

= . + + + .

  + + . + +

=
.

+

 

 

The term    appearing in the calculation of    has been neglected as weak, but it could be 

formally taken into account by using the analytic equation. 

  



 

EPICO M2 Chap. 9 Sliding Modes Control                    9.15 
 

The control    to be taken is then  = , + ,  where: 

, =

, =  = ( ), > 0.
 

This control implies   =   0. 

 

Second output objective: set  to 0 i.e. linearization of the torque by suppressing the salience 

effects ( =0). Its relative degree is 1: 

 

We define the surface =     associated with the candidate Lyapunov function 

          = . 

Let's compute : 

= .  with = . . . . . . 

Then define  = , + , , with  
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, = . . .
, =  = ( ), > 0. 

  

And after feedback, we finally get for the synchronous machine a Lyapunov function =

+     

such that: 

=      ( )  0. 

 

Practical implementation of SM of order 1 

- Chattering: softening the Sign function 

         - Robustness tests with respect to parametric variations.
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99.77  SSppeed and flux control of an asynchronous machine  ((Induction machine)  **  

For an asynchronous machine the two-phase model is:  

    = ( ) + +     where   = [ , , , , ] , = [ , ] , 

and  is a perturbation (load torque, … ). 

( ) =

( )
( )
( )
( )
( )

=

( / ) ( / )
( / ) + ( / )

+ ( / ) + ( / )
( / ) ( / )
( / ) ( / )

,  =

0 0
0 0
0 0

1/ 0
0 1/

, =

/
0
0
0
0

 

 et  are the stator and rotor resistances.   and  are the stator and rotor inductances.  

is the mutual inductance between stator and rotor. J is the inertia of the system (motor + load), 

p is the number of pole pairs,  is the coefficient of viscous friction and  is the load torque. The 

 

       : = 1 , : = . 

* Sliding Modes Control of the Induction Motor: a Benchmark Experimental Test, A. Glumineau, L. C. De Souza Marques, 

and R. Boisliveau, Book Sliding Mode Control in Engineering, Ed. Marcel Dekker, 2002, ISBN ISBN 0-8247-0671-4 .   
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SSliding Mode Control Design  

The outputs to control are  =   the rotor speed and =  = +  the flux 

squared.  Note that for  and the relative degrees are 2. With respect to the previous SM 

control introduction, the selected sliding surfaces are defined by:  

= ( , ) =   for the speed tracking 

= ( , ) ( , ) =  for the flux tracking 

 

So we can write the dynamics of the pseudo-output ( , )  as : 

= ( ). 

If the load torque is not taken into account by considering it as an unknown disturbance, the 

equation takes the form     
( , , ) = ( , ) ( ( ))

: = ( , ) + ( ) + ( )
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With the same technique, we obtain for the dynamics of the pseudo-output  ( , ): 

( , , ) =    2( ( , ) + ( ( )) + ( , ) + ( ( )) )

( 2( ( ) + ( )))

 ( , , ): = ( , ) + ( ) + ( ) . 

 

Thus the control is written as : 

     = =
( ) ( )
( ) ( )

( , )
( , )

( )
( )  

  

where the   are the switching gains. 
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99.88     SSliding Modes Control of order 2  ((Twisting Algorithm principle)  

99.8.1 Goal 

 Reduce the switching of the control in case of Sliding Modes Control of order 1 

(Chattering) 

 Improve sliding accuracy (i.e. to limit the switching zone around the sliding surface). 

9.8.2   Way   

To obtain by feedback  = 0 and  = 0  with ( , ) = .
( )

 where   is the 

reference trajectory (i.e. S is a speudo output of relative degree one). 

 

Let the candidate Lyapunov function ( , ) = + . 

 To have an asymptotic stability the Lyapunov conditions are:      
(0) = 0,
( , ) > 0 , 0
( , , ) < 0, 0

. 

Its time derivative is 

( , , ) = . + . = . + .  
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In a ffirst step, the control u can be calculated as for Sliding Modes of order 1: 

 = ( , ) + ( , ).  

= + . 

 

Thus,  = ( , )
( , )  and  = ( , )    with  is a new control to finally reach: 

0    ,
 
 0   i.e.   < 0. 

 

After applying the control u, it is obtained: 

 =  and =
.

 

i.e.   = ( +  ).  

 

Or in equivalent ways the stabilization of the closed loop system is obtained by: 

+
.

0 if  > 0 

+
.

> 0 if  0.  
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In the first order Sliding Modes method,  is a discontinuous function of  type 

 = . ( ).  

 

Here, iit is considered a discontinuity on 
.

  with a limitation of    to  1: 

      
.

=  ( )     if  | | 1  . > 0 , with > | | 

                     
.

=  ( )      if  | | 1  . < 0 , with < | | 

     
.

=    if | | > 1     

  

This control allows to satisfy the condition  ( , ) 0. 

 

The choice of these two positive constants  and  define the trajectory of convergence 

towards the surfaces 

S = 0 et = 0.  
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99.88..3 PPhasee pplane                

Whatever the quadrant,

      
•

( , ) 0

 

                   > 0 < 0

Figure 5.  Phase Plane for SM of order 2

An alternative to the calculation of the equivalent control is possible with the original Twisting 
Algorithm.

S

dS/dt = un

S

m

m
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99.88..44 OOriginall TTwistingg Algorithmm (Levantt Int.. Journall off Control,, 1993)) 

The control is:

.
=

| | > 1
( ) | | 1, . > 0, | |
( ) | | 1, . 0, 0 < | |

with the two positive constants and that must check the following constraints :

> > 0

>
4

>

> + where          

| |

0 <

+

.

Remark: the constants and are thus defined according to the maximum variations of S 

and its derivatives, which depends on the trajectories, so the first method is simpler.
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Figure 6. Trajectory in the phase plane: SM of order 1(blue) and order 2 (green) comparison.

EExercisee 2.  SM of order 2 = , = ,   =
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99.88..5 AApplicationn too thee ppermanentt magnett synchronouss machine.. 

 

From the exposed method for the sliding modes of order 1, it can be defined:

=

= . + . +

= + .

= . + . + . . . + . .

+ . . + .
.

. +
.

. . + .

=
.

. . +
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Let the candidate function of Lyapunov      = + . 
 

 

Let   control defined by  = , + ,  where: 

, =

, =
1

. ,

 

                         
.

, =
,       , > 1

.   , 1,  . , > 0, 

.   , 1,  . , 0,  0 <
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Identically, in order to control the current  : 

=  

= .
.

. .
1

.  

 

Let's consider Lyapunov's candidate function     = + + . 

 

The control  is then  = , + ,  where: 

 

, = . . .
, = . ,

 

with 

.
, =

,       , > 1
. ( )  , 1,  , > 0, | |
. ( )  , 1,  , 0,  0 < | | .
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III.2.. Applicationn  

Gains : alphaMi = 3;   alphami = 1   alphaMp = 3;  alphamp = 1

Figure 7. tetaref (rad) and teta (rad) wrt time (s)
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Figure 8.  Vd (V), Vq (V) wrt time (s)
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Figure 9.  Vsa (V), Isa (A) wrt time (s)

CComments: Very satisfactory performance in position control. Moreover, chattering is almost 
totally eliminated. Controls remain acceptable despite a few peaks in Isa above 10.8 A.

  

0 1 2 3 4 5 6 7 8 9 10
-100

-50

0

50

100
Vsa

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15
Isa

EPICO M2 Chap. 9 Sliding Modes Control                9.32

RRobustnesss andd disturbancee rejectionn tests 
 

Rejection of load torque disturbances:

Figure 10.  Load torque disturbance CL(Nm) wrt time (s)
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Figure 11.   Angle error (rad, blue) and disturbed angle error (rad, red) wrt time (s).
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Figure 12. Vsa (V)and Isa (A) wrt time (s)

CComments: Disturbance rejection is almost perfect; however, there are larger peaks in Isa.
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RRobustnesss testss : 

First the resistors are varied by +50% and the inductors by +20%. The result is:                                           

Figure 13. Angle error (rad) versus time (s).
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Figure 14.  Vsa (V) and Isa (A) versus time (s).

CComments: This control is very robust even if the errors in the model cause position deviation 
peaks to be increased.

0 1 2 3 4 5 6 7 8 9 10
-100

-50

0

50

100
Vsa

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15
Isa



EPICO M2 Chap. 9 Sliding Modes Control                9.37

CComparisonn off orderr 11 andd orderr 22 slidingg modes

For the two methods compared, draw the following 3D parametric curve:

X(t) = Ep(t) := Ep , (position error)

Y(t) = (position error):= dEp

Z(t) =  (position error) := d2Ep

as well as the projections in the Z=0 and X=0 plane.

The curve corresponding to method 1 ( order1 + Sign'' ) is drawn in green and that of 
method 2 (order2) in red. 

The plotted part corresponds to the response to the second ramp.
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Figure 15.  Error planes responses: Ep, (error):=dEp and (error):=d2Ep.
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CConclusion Sliding Mode of order 2 applied to the synchronous machine  
  
        It can be noticed that only a little chattering is present on the controls. 
        The performance goal is obtained.  
 

99.8.6  Conclusion SM order 2 : 

- Finite time pour , ,  robustness and precision without "chattering"! 

- What about sliding modes higher than two? ( = 0, = 0, = 0 , . ..) ?   

 Yes it exists (precision proportional to the order). 

Experimental results: Sensorless control of a MAS by higher-order sliding modes  

(IFAC08). 

- Complementary technique: "Integral Sliding mode": the initial surface "passes" 

through the initial conditions of the system and is modified to go to the "objective 

surface". 

- others development: to automatically compute the gain of the discontinuous 

control (real time) i.e.  Adaptive Sliding Mode Control.  
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CCHHAPTER  110       
RROOBUST CCOONTROL  
VVIA BBAACKSTEPPPING  
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110.11..   IIntroduction to BBackstepping Control 

  

Principle: the Backstepping Control is a recursive methodology for the construction of robust 

nonlinear control laws from Lyapunov functions. The reference documents on Backstepping are 

[KANE92], [KRST95], [SEPU97]; see also [FOSS98].  

Goal: To establish Robust Control Laws with respect to the "quality" of the model and / or to the 

bad knowledge of the parameters. This method is complementary to the deterministic nonlinear 

controls (Linearization, Decoupling Control, Trajectory tracking, …).  

How: The main property of the Backstepping Control is to make the looped systems equivalent 

to stable cascading subsystems of order 1 within the meaning of Lyapunov functions.  

The control is therefore based on criteria of Lyapunov stability with respect to an equilibrium 

point or a reference to follow. 

Note 1: This objective can be obtained by controlling only the “bad nonlinearities” i.e. by limiting the 

constraints on the control input. 

Note 2: The structure of the system must allow this recursive methodology (usually the case): output 

controllability condition.  
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110.22..  IIntegrator Backstepping  MMethod  ((basic method) 

  

Consider system :                      = ( ) +  

   =   

=           

 

The purpose of the control will be to force y to 0 when t    and to make the equilibrium point 

"Globally Asymptotically Stable" or "Globally Exponentially Stable".   

 

The only equilibrium point with y = 0 is: ( , ) = 0, (0)   

                                               corresponding to = ( ) + = 0. 

 

Preliminary notation: Change of coordinates: 

  z =  (x):=[z1,z2]T 

where  is a diffeomorphism (invertible with  (x)  and   -1(x) differentiable ). 
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      IIntegrator Backstepping  AAlgorithm  

SStep 1. 

Note the error = 0 , and consider a subsystem defined by the first equation: 

          = ( ) +  

Consider : 

    as the "control" of this subsystem (a pseudo or virtual control) 

 the candidate Lyapunov function   ( ) = ,    then = = ( ( ) + ) . 

To stabilize the subsystem , a sufficient condition is that V1 is a Lyapunov function. For this, 

just take as a control 

= ( )   with k1 > 0.   Then ( ) =   ! 

 

But      is not a real control ! It is a “pseudo control”.  So we note: 

: = = ( )     the desired control to stabilize the dynamics of  

and we note the error  =    between     and the desired control. 

= +  = +  
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Then   = ( ) + +  and  = ( ( ) + + ) = +                   (*) 

with  k1 the closed loop gain of dynamics . The control term is now  whose dynamics are 

= =                      (and      = ( ) + ) 

 

SStep 2. 

Consider the function  ( ) = ( ) +      (stacked Lyapunov functions). 

then with  (*) 

= + = + ( + ) and  = =  

 

To stabilize the complete system (i.e. V2 is a Lyapunov function), it is sufficient to take as a control 

                  =   with  k2 > 0.  Then,  = < 0  for 0, 0. 

 

                 The z dynamics of the closed loop system are stable:     y              0   
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NNote  33:: Computation of    

To avoid temporal derivatives terms in the control, one can express the temporal derivatives 

according to the dynamics of the state:   

 As = ( ) , 
.

= ( ) . .
= ( ( ) + ). [ ( ) + ]. 

  

Note 4: The closed loop system is made up of stable "cascading" subsystems. 

 

Exercise 1: for  ( ) =    (linear case), in original coordinates, the integral backstepping 

algorithm leads to the following control law: 

 

= (2 + + + ) ( + + 1) : =  

(Poles placement, …). 
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110.33..  BBackstepping  ccoordinates transformation     

  

The new coordinates are the differences between the references (output or virtual controls) 

and their values. 

                                                          z =  (x),,     = ( )  

x =  -1 (z) , = + ( ) +  

 

The dynamics written in the new coordinates   ( , ) are 

                                                                 = 0
0 . + 0 1

1 0 .  

i.e.  = Kz + Sz 

with K  positive definite diagonal matrix and S antisymmetric matrix  ( =  and  = 0). 
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110.44..  GGeneralization:  Backstepping cllosed loop stability study  

 

With these notations and for n dynamics, the general Lyapunov function Vn is written 

=    

thus        = ( ) + ( + ) 

( ) = ( ) = ( + ) = +  

            =
1
2

[ + ]
1
2

+
1
2

 

                diagonal  = ,  =   

         = < 0  with K diagonal > 0. 

 

so the equilibrium point of the closed loop system is gglobally asymptotically stable (GAS). 



 

Master EPICO Chap. 10 Robust Control via Backstepping Control  10.9 
 

110.55..  IIntegral BBackstepping aand linearizing control.. 

IInitial note: The integral backstepping method is a linearizing control since the objective is to 

exactly "compensated” for the nonlinear function ( ) but this implies: 

  a perfect knowledge of ( ) 

  a control sensitivity to modeling errors 

 a maximum energy penalization of the control 

 

Solution: the Backstepping gives the possibility of exploiting the "good" non-linearities ". 

Example: consider 

( ) = . . . .  

where a0, a1 et a2 are positive constants, 

 the only destabilizing term in the expression of  ( ) is   . 

 

 to stabilize the system, it is therefore sufficient to eliminate this term with, 

                                       for example: =     with =  . 

 

Master EPICO Chap. 10 Robust Control via Backstepping Control  10.10 
 

 

 the control law is simplified and "minimized": the control is only "used" for stabilization. 

 

 In addition, it is no longer necessary to perfectly know  and .   

 

 Moreover, to “desensitize” the command of the knowledge of a1, one can add a stabilizing 

nonlinear damping overstating the term                      >   >  . 

                          More robustness. 
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110.66..   AAnother solution: BBackstepping Control with aa nnonlinear damping..  

For the example above, the destabilizing term  (with <   ) can be "dominated" by 

adding a nonlinear damping term proportional to   : 

= [ + ( )]  

with k1 >0 and 

( ) =  avec > 0 

So,         = ( ) + +  

 = | | ( + ) +  

 = ( + | | + ) +  

The calculation of the Lyapunov function for subsystem 1 gives: 

( ) =
1
2

 

       = ( + + ) +  
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The time derivative of the candidate Lyapunov function ( ) = ( ) +  is: 

= ( + + ) + ( +
.

) 
 

By taking  =
.

, > 0 then 

 

= ( + + ) , 

 

= ( + + + ). 

 

As > 0, > 0, > 0, by choosing the gain   >        implies  0. 

 

Thus the controller does not require the exact knowledge of the parameters of the model a0, a1 

and a2. 
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110.77..   IIntegral Backstepping:  mmiismatched  pperturbation rejection  

In the case where unknown terms bounded and described by piecewise constant functions (or 

with weak temporal variations compared to the dynamics of the system) come to disturb the 

behavior of the system, it is possible to reject these classes of disturbances. 

PPrinciple: Let a system                = ( ) + ( ) +                              =  

= ( , ) + ( , ) +  

with  and  unknown bounded disturbances that are piecewise constant. 

    is a mismatched perturbation. Only   is directly "accessible" by the control (matching 

condition). The standard calculation of the Backstepping Control gives: 

 

Step 1    Let   = ,       = + ( ) + ( ) +  . 

with                         = ( )  [ ( ) ]      and        =  

                                             then         = + ( ) + .  

Because of the disturbance , the convergence of  is no longer assured when  is forced to 0 

by step 2 of the Backstepping !   
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SSolution: add an integral term in   ((i.e an observer of the perturbation) 

= + , so  = +  .  

Then      = + ( )[ ] +  

If Backstepping step 2 forces  to zero, then the integral term makes it possible to reject  that 

is not “directly accessible" by the input (mismatched disturbance). 

 

Step 2                                              

 = + = + + ( , ) + ( , ) +  . 

From where a control  

= ( , )
1

( , )  
1

 

gives the dynamics:     =  +  

with the integral term which makes it possible to reject  a disturbance directly "accessible" by 

the input (matched disturbance). 
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110.88.. Conclusion 

  AA robustt controllerr iss obtainedd withh thee Backsteppingg approachh  

- ccomplementaryy too exactt linearizationn requiringg exactt knowledgee off thee model.. 

- TThee basicc methodd presentedd abovee cann bee generalizedd too cascadingg systemss (Nonlinearr 

bblockk Backstepping)) andd too systemss withh boundedd unknownn nonlinearitiess (Nonlinearr 

Dampingg orr Adaptivee Backstepping).. 

Example: Speed control of the induction motor (reduce model)
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10.9. Example: Application to a synchronous machine with permanent magnets (European 
CRAFT contract)

The application of the Integrator Backstepping method to the permanent magnet synchronous 
motor was carried out in [KRST95], [GLUM15] in order to control the motor position.

The motor model state equations are established in the dq reference frame linked to the rotor
position:

= ( ) + ( )

with the rotor position;   the rotor speed;  , the stator currents in the dq frame, V , V the 
voltage control inputs, R   the stator resistance, L   L   the stator inductances, f ,    the viscous 
damping and the inertia of the motor-load system. C is the unmeasured load torque (i.e. a bounded 
unknown disturbance). The reference position path is noted  ref.
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SStep  11: Note the difference between the position of the motor and its reference: 
 

                     = ref = , with =  and = ref. 
 
By differentiation and using the backstepping symbols, we get: 
 

=
= +

 

with = =  and = . 
 

Consider the candidate Lyapunov function = . 
 
Then = .( + ). If  was a real control input, we would take 

 = . > 0  
      to obtain 0.  
      
 

Since this is not the case, note = . and the error = .  Then 
 

= .
= . + .  

with   is the virtual control of the first subsystem. 
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SStep  22: 
 
By differentiation of this second error : 

 
=

=
.

+

= +

 

 
with  =

.
 and =   (without load torque) . 

 
Consider the candidate Lyapunov function  = + . Then 
          = . + .( + + ). 

 
If  was a real control input, we would take = . > 0 to force  0. 
 
Then we note = .  and the error  = . This gives: 
 

=
= +   
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SStep  33: By differentiation of this third error:   
            

 =                                                                      

             =  +

= +                                                              

  

with  = pL   and  =
.
.

. 

 
 

We notice that a real command has appeared (V ). Consider the candidate Lyapunov function: 
= + . . 

Then  = . . + . + + . .  In order to force 0, it is sufficient to 
apply the control: 

= ( ) > 0. 
 

 
Thus, the first three components of the state are controlled by the Backstepping feedback. 
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SStep  44: The fourth component  must be stabilized around 0 (minimization of the effects of 
reluctance on the torque). Its dynamics are described by the differential equation: 

 
= = + .  + . 

 
Consider the candidate Lyapunov function: = + . This gives: 

 = + + . + < 0. 
 
And    = pL + > 0,  yields  0. 

 
Conclusion  

We can write our loop system in the form: 
 

=

0 0 0
0 0 0
0 0 0
0 0 0

. +

0 1 0 0
1 0 1 0

0 1 0 0
0 0 0 0

.  

 
which is the form provided by the "Integrator Backstepping" method. 
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10.10 Motion Control Benchmark: Experimental results (European Contract CRAFT Auto 

Drive) 

The controller is tested on three cases of inertia in the framework of the Motion Control Benchmark 

(CRAFT Contrat):Load inertia  = [ 0 (unloaded drive) ;  5* drive inertia ; 10* drive inertia]. 

Step 1 with some basic measurements the open loop time constant of the currents (Tol_id, 

Tol_iq) and the mechanical time constant (Tol_o) are approximated.  

Step 2 The desired closed loop time constants are then chosen Tcl_id, Tcl_iq, Tcl_o (i.e the 

choices of , , , ): 

id control iq control Speed &Position Control 

Tol_id 0.0036 s Tol_iq 0.004 s Tol_o   70 s 

r_id 1.11 r_iq 1. r_o =r_p  350 

Tcl_id 0.004 Tcl_iq 0.004 Tcl_o 0.2 

3 250 4 250 2 15 

The tuning is computed with the estimated parameters and applied to case 1 and 2 of the Motion 

Benchmark.  
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Case 1.   

Inertia load = 0 
 

  

 

 

 

 

 

 

 

 

 

 

 

These measurements show that the max values for currents respect the motor limitations. 
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CCase 1.    

IInertia load = 0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental results case 2 
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Experimental results case 2 
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CCase 2.    

IInertia load = 

 5 * drive inertia 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental results case 2 
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CCase 3.  Inertia load = 10 * drive inertia.  

  

Step1 Drive and process parameters estimation. 
 

Drive manufacturer 

parameters 

Identified 

parameters 

R (Ph - Ph) 6.5  Rs 5.61  

L (Ph - Ph) 30 mH Ld 18 mH 

Is_eff 3.8 A Lq 20 mH 

Jm 0.37g

m2 

Phif 0.4 Wb 

J total 4 gm2 fv 0.013 10-3 kg m2s-1 

  J total 5 10-3 kg m2 
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SStep 2 Design of Backstepping controller   (Case 3.  IInertia load = 10 * drive inertia).  

 

 

 

iidd  ccontrol  iiqq  ccontrol  SSpeed Control  PPosition Control  

Tol_id 3.2 ms Tol_iq 3.56 ms Tol_o 384.6 s Tol_p 384.6 s 

r_id 5.42 r_iq 6.03 r_o 38460 r_p 96150 

Tcl_id 0.59 ms Tcl_iq 0.59 ms Tcl_o 0.01s Tcl_p 0.004 s 

3 1700 rad/s 4 1700 rad/.s 2 100 rad/s 1 250 rad/s 
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Experimental results case 3 
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Experimental results case 3: Electrical voltages and currents 
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EExperimental tests conclusion (CRAFT CONTRACT)  
The previous sections results show that the auto-tuning (identification and controller design) is 

realised for the Motion Control problem when using a Backstepping Control. Nevertheless, for 

some industrial applications, it is necessary for the users (control technician) to have the 

possibility to adjust the controllers with a minimum of control theory knowledge. That must be 

carried out by using tuning meta-parameters as Faster tuning, Slower tuning, … . These meta-

parameters are used to modified the closed-loop time response over open-loop time response 

ratio given by r_id, r_iq, r_o, r_p. 

The initial values of tuning have to be adapted to the performance of hardware: sampling time 

computation of the board processor, inverter frequency, noise sensitivity … .  This implies the 

initial ratio has to be chosen with respect to these constraints. The best result could be obtained 

for best initial manufacturing tuning with the knowledge of the controlled motor drive. 

Roughly speaking, accurate data is the key of good performance. Thus, the user has to privilege 

the knowledge of the motor and load data.  If these data are not available, the user has to choose 

the most significant plant conditions in order to start the auto-tuning procedure to obtain the 

best results.  



Master EPICO Chap. 10 Robust Control via Backstepping Control 10.31

MManyy otherss results   for:

- Permanent Magnet Synchronous Motor (PMSM, = )

- Induction motor are in the book:            
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CComparaisonn off Robustt Nonn linearr Controlss off  ACC machiness withh observerss 

 

 

- Surface Permanents Magnets Synchronous Motor (Ezzat 2011)

Control laws

HOSM Pre Compute 

trajectories

       Backstepping Homogneous 

HOSM

Simplicity of development    * * * * * * * * * * * * *

Simplicity of tuning * * * * * * * * * * *

Iteration Time Dspace DS 

1103 en 
36 s 16 s 36 s
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- Interior Permanent Magnets Synchronous Motor  [HAMI13]. 

 

  CControl laws  

Backstepping HOSM  Precalculated traj. Homogenous HOSM 

EExperimental results  Yes No Yes 

++50 % Rs  * * * * * * * * * * * * 

--550 %  Rs  * * * * * * * * * * * * 

++20% Ld, Lq  * * * * * * * * * 

--220% Ld, Lq  * * * * * * * * *  

SSimplicity of tuning  * * * * * * *  * * * * 

CConvergence   Exponential Finite time Finite time 

CComputation time by 

iiteration  

 

11 s 

 

26 s 

 

16 s 

 
   

 

Master EPICO Chap. 10 Robust Control via Backstepping Control  10.34 
 

- Induction Motor [TRAO08].  
 

 Controls  

PI controller (FOC) SM of order 1 Backstepping HOSM order 3 (PT) 

Observable area Stable Stable Stable Stable 

Unobservable area Stable Stable Stable Stable 

Nominal case Convergence Convergence Convergence Convergence 

Robustness  ± 50% 

Rr 

* * * * * * * * * * * * * * * * * * * * 

Robustness  +10% 

Lr 

* *  * *  * * * * * * * * * * 

Robustness  + 10% 

Ls 

* * * * * * * * * * * * * * 

Computation time 

Control+Observer   

s 

10 + 20* 11 + 20* 12 + 34 ** 35 +34** 

* Interconnected Observer,    ** Adaptive interconnected observer 
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