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Example 1 : HEV
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A classical motor for HEV and EV, the synchronous motor : nonlinear system.
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Example 2 : Induction motor in Tesla vehicle
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Note: front motor of Tesla
model S, Audi Q4 e-tron
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rear motor for Mercedes
‘ EQA, ...
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For an asynchronous machine the two-phase model said in «f is written:

X = f(x) + gu +€ Where X = [-QJ (Prcp @rﬁu Lsar isﬁ]r, u = [usal us.B]T,

and ¢ is a perturbation (load torque, ... ).

fl (x) (pMsr/]Lr)(quaisﬁ - gﬂrﬁisa) - (fv/])ﬂ

fz (x) _(Rr/‘[’r)@m'. - p-Q(Prﬁ + (Rr/Lr)Msrisa: g g
f)=|fzx)|=| +PRPra = (Rp/L)@rp + (Rp/L)Msisp |, g=| 0 0
fa(x) (Msr/ULer)((Rr/Lr)(Pra - pﬂ@rﬁ) — Visa 1/gLS 1/3'1,

fs (x) (Msr/O—Ler)((Rr/Lr)garﬁ - p-Q(Pm) - Visﬁ’

‘ Robust nonlinear control is essential for HEV, EV, ...
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Inverse Pendulum Stabilisation on a Car:
Nonlinear Model

(M+mi+bx+mlécos 8- mlé*sing - F
(I+ml%) 8+ mglsin 8 = -mlcos &
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Academic Ball & Beam Example

Et Robotic Ball Balancing Beam (RBBB)

I . :
0= (R2 +m) r+mgsina— ms (e’
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Mobil Robot

\4

x1
X, = (cosx3) uy

X, = (sinx3) uy
J.C3 = uZ

Nonholonomic system => trajectory limitations (no transversal motion
i.e. parallel parking for a car ...)

Advanced Control of NonLinear Systems, Application to Electric Drives. M2 EPICO 0.8



Serial DC Motor

; it
u = (Ry + R,)i + (Ly+L, )= +e % ©
oy
e=KOQ=KK;iQ * /N Rs
Ls
aqQ X . . U(O
—=K®i - f,2—-C, = KK;i* — {,Q—T
] dt fv i ,{' f‘L I J’ fv' TI
R: Lr, e(t)
Thus
agq B e
]E:KK;I _IUQ_ T!
(Lt Lr)% =—(Rs+R,)i— KK;iQ2+u
KK -
aQ_Ruy .2 _&_(_)_ETf
di _ Rs+R,. o 1
s e R R
*The stator flux is assumed to be proportionnel to the stator current
Advanced Control of Nonlinear Systems , Application to Electric Drives. M2 EPICO 0.9

Permanent Magnets Synchronous Motor

Q2 f. c [0 0
; P 3 : ; i)
2 }((Ld *Lq )’ci +(I)j')’q *71;977 0
0 R L 1 vy
= Ay g s +l=— 0]
i L R T o L’q
i @ L R 0 —
q J d s
fp—pr—Qrdf—rq i
B L‘] Lq Lq - 7

with 6 the rotor position; Q the rotor speed; ig4, i, the stator currents in the dq frame, Vy, V, the
voltage control inputs, R the stator resistance, L; L, the stator inductances, f,,/ the viscous

damping and the inertia of the motor-load system. C; 1s the unmeasured load torque (1.e. a bounded
unknown disturbance). The reference position path is noted 8.

Note ®=f(i,) for wound rotor (Zog, ...)

Advanced Control of Nonlinear Systems, Application to Electric Drives. M2 EPICO 0.10



Induction Motor

For an asynchronous machine the two-phase model said in af} is written:

x=f(x)+gu+& where x =[2, @rar Prp lsar Isp]T, u=[Usar Usp]T,

and ¢ is a perturbation (load torque, ...).

fl(x) [ (pMsrf]Lr}((praisﬁ - fprgl'sa) — (ﬁ;/j)ﬂ 1 . . ]
f2 (X) _(RT'!L?‘)(pTa - pﬂfprﬁ? + (Rl‘fL‘r')Msrisa 0 0 a d’fj
f)=|f00]= +pl@rq — (RT'/LT)‘;OT'B + (Rr/Lr)Msrisﬁ L g=| 0 0o [&=]| o
fa@) | |My,/oLsL) (R /L) Pra — PROr5) — Visa /oL 0 0
f5 (X) o s 0 l/ULs 0
_(MsrXULs Lr)((Rr/Lr)gorﬁ’ pﬂ(p‘ra) }/lsﬁ_

R, et R,. are the stator and rotor resistances. L, and L, are the stator and rotor inductances. M,
is the mutual inductance between stator and rotor. | is the inertia of the system (motor + load),
p is the number of pole pairs, f,, is the coefficient of viscous friction and T; is the load torque. The

parameters ¢ (coefficient of dispersion) and y are defined by:

=1 — Msrzj = Lr2R5+M5;~2Rr
LgLy GLgLy
Advanced Control of Nonlinear Systems, Application to Electric Drives. M2 EPICO 0.11

Which kind of models for the Nonlinear Systems:
- State Space Equations
Contrary to Linear systems
> No exact frequential representation (as for LS)

> No transfert matrices

Advanced Control of Nonlinear Systems, Application to Electric Drives. M2 EPICO 0.12



State Space Representation

Example : mechanical systems
m==) 1st order differential equations system

M(q)g+C(q,9)q+g(q)=F(q)r
l state x =(q, q)

. X2
T (M_l(xl)[F(xl)r — C(x1,X2)x3 — g(xl)])

Advanced Control of Nonlinear Systems, Application to Electric Drives. M2 EPICO 0.13

General State Space Représentation
of Nonlinear Systems (affine case wrt u)

x=fx)+g)u
y = h(x)
X €E€ERY u€eR™yeR?P

Problems to solve:
Controlability ?
(Exact) Input Output Linearization ?
Input Output Decoupling Control?
Observability ?, Observers ?
Robust Controls ?

Advanced Control of Nonlinear Systems, Application to Electric Drives. M2 EPICO 0.14



CHAPTER 1
NONLINEAR SYSTEMS AND
MATH PRELIMINARIES 1

1.1 Definition of non-linear systems (NLS)

Consider the non-linear systems described by the models:

x=fl,u)orx=f(x)+gx)u
{y = h(x)

XxXE€ER"“ ueR™yeR?P

1 [Glu92] Chapter 1 and Annex 1

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries

The first approach is to linearize the system by approximation around a point (x,, ug) :
Zz[a—f] z + [a—f] v :=Az+ Bv
Oxdx,u, oul iy ug

y = [Z—Z]xo z:=Cz

(1.1)

11

mm) Approximate method around (X0, uo) and possible loss of system properties. For

example: a controllable non linear system gives an uncontrollable linearized system.
See example 1.1 et 1.4.

Example .1.1: Limitations of Approximate Linearization
Let x; = x23
X, = U.
This nonlinear system seems to be "controllable” (we can act on X1 and X2 by u).

We linearize around (X, uy) = ([0, 0]7,0): Z;, =0
Z,

V.

We have lost the "controllability” property on the approached system:
Solution => NL model.

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Exercise 1: The Serial DC motor

A serial DC motor with insignificant viscous damping (f, = 0) and inertia load can be
modeled:

\/'(f)

u= (R +R)i + (Ly+L,)5, +e

Ls
e=KpQ=KKiQ * u(®)

J = = K®i = KK;i? Re Ly =0

withx; = @ x, =1, y = x; anonlinear SISO state model is:
. KKy¢ 2
xl == _xZ . 2
J { X1 = ax,
or .
__ Rs+Ry KK Xy = dxy +exix, + fu

. f
Xy = Xy ———X1X> +
2 Lo+L, 2 N 1X2

Is ([0,0] T, 0) an equilibrium point?

[s the approximate linearized model controllable in this point?
Conclusion?

* The stator flux is assumed to be proportional to the serial current
Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries

1.3

The right approach is an exact calculation of the non-linear differential equations and to
rewrite the model in a state equation form.

Example 1.2 : Pendulum
6 =ksind
x = (6,6)
. Xy
= [—k sin xl]

Y mgcosd Wlth k = g7’7"',

!

Problem: 2 equilibrium points

Stabilization around an unstable
Point (rocket, ...)

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Example 1.4 : Unicycle!
We consider a mobile cart (airport caddie type: fixed rear wheels, “crazy” front wheels).
We noteu, the longitudinal speed, U, the angular speed, x| andx, the coordinates of
the center of the rear wheels.
, Model equations

A Xq = COS X3 .Uq

( X, = SiNX3.Uq
?.C' 3 = Uy.

v

Let (Xo.u,)= ([0, 0, 01", [0, O]T). By approximate linearization, sinX = 0, cos X =~ 1:

7=
Zy =0%u; =0 thelinearized model is not controllable (z2 non accessible)
Z3 = U, = To use the NL model.

1[Glu92] page 51
Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
1.5

Example 1.5: Car

The system is described by the following equations :

X = Xq{ = U COS X3 Vi = X1
Y =Xy = UqSIN X3
0= X3 =uu/l Y2 = X3

with u, car speed (= F(t))
and u, = tan ¢ "wheel orientation".

Note. The model is non affine wrt inputs.

y [t

Figure. Car: plan model ([Mar99])

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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1.2 Analytical and meromorphic functions

1.2.1 Analytical functions!

Definition : Analytical functions

f:R — R is said to be analytical if it is developable in Taylor series in the vicinity
of each of its points, i.e., Vx € R, f(x) is developable in Taylor series.

Property : Differentiability (C*®, the derivatives w.r.t the x; exist and are continuous)

and isolated zeros.

Example 1.6: Some examples of analytical functions
e Trigonometric functions
e Polynomial functions..

Example 1.7: A counter-example

1

Let the function defined by: f(x) = e x* ifx #0
ifnot  f(x) =0.
This function is really C*®with vk, f ¥ (0) = 0
However, it is not analytical in x = 0 (non-isolated zeros).

1[Glu92] Annexe 1

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries

1L

NV

vk, f®0O)=0

1.7

Property1: If f:°R — R is an analytical function, then:
e Either f=0
e Either the zeroes are isolated.

Corollary: The body of analytical function quotients is well
defined and :

If f; isanalytical and f, is analytical (f, # 0),

then i is analytical.
f2

Corollary: The set of analytical functions forms an integral
ring (there is no divisor of zeros).

Iffl.fz = Othenfl = 0 or fz = 0

1[Glu92] Annexe Al

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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1.2.2 Meromorphic functions !

Definition : Meromorphic functions

3 analytical f, # 0 such that f = ]fi
2

ffR->NR is said meromorphic if 3 analytical f;

and

Property: All the meromorphic functions form a field.

Example 1.8 : Some examples of meromorphic functions

e Rational functions of x:
P(x)/Q(x) with P and Q polynomial functions

sinx

e tanx = .
cos x

1]1Glu92] Chapitre 1 and Annexe A1l

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries

1.3 (Class of the studied NLS

Let the systems of the form : { x=f(x)+gxu
y = h(x)

with the state x € R™, the control u € R and the output y € RP :

The components of f, g and h are meromorphic functions.

Remark: of course this includes linear systems: {J'c = Ax + Bu
y=C(Cx

with f(x) = Ax, g(x) =B and h(x)=Cx.

1.9

‘ All the results of this lecture are applicable to linear systems.

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries

1.10



1.3.1 Functions field !

Let the set of variables:
. . . k k k
{xl,xz,...,xn,ul,uz,...,um,ul,uz,...,um,...,ul( ),uz( ),...,um( )}.

We then define : K:= body of the meromorphic functions of
{21, X2, o Xy Uy, Uy ooy Uy, Ty, Uy ooy Uy v, Uy B0, 0,0, (O}

» K is a vector space on itself
» KxKis a vector space on K

= & = KM"M+D) js 4 vector space on K.

Example 1.9 : The following fraction is considered :
(x5.5in(xy))u?+ii
f) = ————
u+u.ii.tg(x)

then f(x) € K.

with (x,.sin(x,)) € Kandtg(x) € K

1[Glu92] Chapter 1 and Annexe Al

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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1.3.2 Vector space &

Definition :We define the vector space € on the field X by € = K"(m+1),

The unit vectors of € are defined as follows:

[(1,0,...,0) = e; = dx;
(0,1,0,. ,0) =€ = dxz

(,...,0,1,0,...,0) = e, = dx,
< (0,...,0,0,1,0,...,0) = ep.q = duy

©0,...,0,...,0,1,0,...,0) = ey = du,
(O, e ,0, A ,0,0,1,0, .. ,O) = €n4+m+1 — du1

\ (0,...,0,0,...,0,..,1,0,...,0) = ep(ms1) = duy ™Y

Definition : The unit vectors of the vector space € on the K-field are noted :
(dX1, dxs,...,dx,, duq, ..., duy,, du,, ..., ditm(n_l))_

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Interest of these definitions :
Let's consider y= h;(x), then

dyl—ahld +ah1d2+ +ah1d

0x; 7 0xp

dx1
_ [ 6h1] [

. da 0h, d oh __0h
== d—’; = 2% =2 (f(0) + g(Ow) = @ T

. dhqt ah
dy1=2?161d +Z§nlald : € &
Functions (x, u) Functions(x)

e K e K

Remark. € contains the differential of any function ¢ of K.

dx;
Inverse"” problem: We consider the following function: dx; + x3.dx, = (1,x3,0) [dxz EK
dX3
An important problem in NL is: is there ¢(x) € Ksuch that d¢ = dx; + x3.dx,?
(Searching for differential relationships characteristic of an NLS: linearization by
coordinates changing, etc.).
Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
1.13

1.4 Poincaré lemma?

This lemma will help answer the following question:

Given w € &, does it exist:
¢ € K (noted 0 — form) such that w = de.

Definition : 1-form
w € ¢ isal-formwith w =} a;()dx; + 275 0 Ly B Yduy, D,

- —
EK EK

Definition : exact 1-forme
Letal-form!: w € & = Vecty {dx, du, ...,du(”‘l)}.

w is an exact 1-form if : 3¢p € K such that w = d¢.

1[P1e95] and [Cho89]

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Example 1.10 Example and counter-example of exact 1-formes

e Wy =dx; +x,dx; + x3dx, isexact
e w, = x;dx, — x,dx; isnotexact.

Definition : 2-form
2 is 2-form& N =3}, ;a;je;j where a;j € Kete;; is
aunitvector dx; Adx; ,with A exterior (wedge) product

Let 2 = Zi,j aijdxi A dxj

Example 1.11 ¢ € K : 0-form
By differentiation of ¢p: d¢ = D7- 1 X d i+ Z] k3n (k) du; ®) isa1-

form.

By differentiation of d¢ =a 2-form d(d¢) is obtained.

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
1.15

Reminder: Outdoor product calculation rules (A) and differential calculation

1) dXi JAN dx] = —dx] FAN dxi
2) dxl- N dxl- =0
3)d? =0,i.e.d(dx) = 0.

Thus w =Y, a;dx;, dw = (Z? L gal ) Adxi+...+ (Z?zl%dxi) A dx,
L
oaj

_Z]<LZ <__6_x]) dxl/\dx]
Example 1.12 ¢ = x,x,. Calculate the corresponding 2-form.
Integration problem:

Leta 1-forme w = )i~ a;dx;
does it exist ¢ € K such that w = d¢ (that is to say that @ is an exact 1-form) ?

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Theorem: Poincaré's Lemma !

Given a 1-form w € g, then

wisanexactl —Form & 3¢ suchasw =d¢p & dw=0
where dw = Y)[-; da; A dx; with the previous calculation rule.

Example 1.13  w = dx; + x,dx3 + x3dx,

Example 1.14 Given w = x,dx; — x1dx,,
then

dw = dx, Ndx; —dx; A dx, and by antisymmetry: dw = —2.dx; Adx, # 0
So, V¢, w # do.
There is no possible integration of this 1-form.

1[Ple95] and [Cho89]

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Example 1.15 Given w = ;—22 dx; — xl dx,, then dw
1 1

do = d(%)/\dx1 —d(x—ll)/\dxz = [#dxz - z%dxl] Adxy — [—%] Adxy+ 0

1

1 X, 1 1 1
dw = x—lzdxz N dx1 — 2x—13dx1 A dx1 + ?dxl A dxz = [——2 + x—lz] dx1 A dxz
=0
A primitive is: ¢p = —=2; w=d(—x—2).
X1 X1
Example 1.16 Given w = sz sdx; — %dxz > dw=0
X1 +XZ X1 +.X'2

Then |[w=d [Arctg (i—:)] if x,#0
w=d [Arctg (— i—i)] if x1#0

¢ (x4, x2): local solution of w = d¢ (or global on RxR-{0,0}).

(Conclusion : long live symbolic computation Maple, Mathematica, ...!)

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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1.5 Frobenius Theorem

e Problem :

Given a 1-form w), is there ¢ € Ket A1 € K such that w = Ad¢?
(Ais called the integrating factor).

Theorem : Frobenius Theorem ( first version )t
Letw €¢. 3¢ € Kand IA € K suchthatw =Ad¢p & dwAw=0.

Example 1.17 : Let w = x,dx; — x;dx,
dw = —2dx; ANdx, (# 0) (no solution by using the Poincaré Theorem)
dw A w = (—2dx; Adxy) A (x,dx; — x1dx,)
== _2x2. dx1 A dxz N dx1 + ledxl A de N de
0 0

SodwAw=0
Then, 3¢ € Kand 31 € K such that w = Ad¢.

. x i x .. .
We can notice that: @ = —x;? <d (—2)> ie.¢p = x—z and 1 = x,? is integrating factor.
1

X1

1[Ple95] and [Cho89]

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Example 1.18: Let w = dx, + x1dx, + x,dx5

dw =dx; Ndx, +dx, Adxz #0

do Aw = (dxy Ndx, + dxy, ANdxs) A (dxg + x,dx, + x,dxs3)
dw AN w = dx; ANdxy A (xpdx3) + dx, Adxs ANdxy =

(x; + 1)dxy Adxy A dxs.

Thus dw A w # 0. No solution.

Example 1.19: Let w = x3dx; + dx; dw # 0

dw ANw = d(x3 ANdxy + dx3) A (x3dx; + dxs)
= (dx3 N dx1 + 0) A (X3dx1 + dx3) =0

[t can be shown that there are several solutions for the terms A et ¢ :

In fact, there are an infinite number of solutions.

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Theorem: Frobenius Theorem (2m version) !
Be W1, Wy, ..., Wg € g,

There exist 1, P5,..., s € K such that
span{wy, ..., ws} = span{de,..., d¢p}
& Vi=1-s, dw;ANwiAwyA...Awg=0.

(s+2)-Forme

(span = vector subspace generated by ...).

Note: the constraints have been relaxed compared to the first version.

1[Ple95] and [Cho89]

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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Exercise 2, example, application:
Be wq = x3dx; +dx,
W, = dx;
and 2 = span{w;, w,}
Find d¢,, d¢, such that 2 = span{dp,,dp,}

Frobenius theorem conditions :

d(l)z N (1)1 A (1)2 - O
d(l)l Nwi Nwy, = (dx3 A dxl) N (xgdxl + dxz) A dx3 = (dx3 A dx1 A dxz) A dx3
=0
Let's search p and A such that w4, + Aw, has an "obvious" integration.

Forexample,u =1 et A =x; then pw; + Aw,; = w1 + x;w, = d(x1x3) + d(xy).

Thus span{w,, w,} = span{d(x;x3 + x,),dx3}; @1 = x1X3 + X9; @, = x3.1fwe
set an invertible and differentiable (NL)coordinate change (: diffeomorphism)

52'1 = X1X3 + xz;fz = xg;f?) = X1,
then span{w,, w,} = span{dp,,dp,} = span{dx,, dx,}.

Application: research of nonlinear "linearizing" transformation (e.g. classical: rotation
matrix in robotics, electrical machines, ...).

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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2.1

S

0

CHAPTER 2
CONTROLLABILITY AND ACCESSIBILITY!

me characteristic examples of the "controllability” for NLS

Example 2.12
X, = x22
{ X,=u
is the set of

points reachable from the
initial condition X(0)

ACCESSIBLE, BUT NON-CONTROLLABLE
Rq1l What about the approximate linear model in (0,0) ?
Rq2 Accessibility * Stabilisability (to (0,0) the equilibrium point)

1[Glu97] and [Ara94],2[Glu95] and [Glu97]

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries 2.1

Example 2.2: Let system X {xl = cos(xy)
562 =Uu

Whatever the control u, x; will vary only between -1 and 1: x 1 is constrained.

mmmm)> > ACCESSIBLE, NOT CONTROLLABLE.

Example 2.3 Unicycle [Sam91]

Consider a mobile cart: fixed rear wheels, "crazy" front wheels.
Noteu the longitudinal speed, u, the angular speed, x;, and x, the coordinates of
the center of the rear wheels and x; the angular velocity.

System equation:
x, = cos (x3) uy
x, = sin(x3) uy
X3 = U,

X

? x3=0 or x3= n/2: singularities ®® Generic property: true except in (isolated) singularities.

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries 2.2




2.2 Reminder on linear systems

Let a linear system (SL) of the form: x = Ax + Bu.

Definition: OQutput relative degree
The relative degree of the output is equal to the degree of the denominator of the
transfer function minus the degree of the numerator of the transfer function:

r =d°Denominator - d° Numerator.

Another definition: the relative degree is the minimum order k of derivation of the

FIGI)
Y 2 0.
ou

output such as:

Structure of the commandability matrix (and duality):

The controllability matrix is of the form: [B AB ... A" 1B].

Remark: let a fictitious output y = Cx then y = Cx = CAx + CBu.
If the relative degree is 1 then dy/du#0< CB #0
(B* = {w | w.B = 0}) characterizes all "outputs" having a relative degree >2

Py
X=0ocCLB
du

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries 2.3

then y = C(Ax + Bu) = CAx et y = CA*x + CABu

thus
[B AB]* = spanf{w | w.B =0 et w.AB = 0}

characterizes the "outputs” having a relative degree greater than or equal to 3:

ay

a_o

. < C_1[B AB]
dy

— =0

ou

- In a more general way:
[B 4B .. A"Bl*={w| wB=0,wAB =0,...,wA" 1B = 0}

describes the set of "outputs" having a relative degree greater than or equal to n+1:
dr(y) 2k "C"L[B AB ... A*2B]

i.e. information on the system structure with respect to the input.
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Theorem: Controllability Criterion:

Rang([B AB .. A™'B)=n =dim[p AB ... A"'B]*=0
)
<  no "output" having a relative degree > n+1 (i.e. % * 0)

<  notation: no "output " with a relative degree oo

< Inthe system, there is no "output” that is solution of a differential equation
independent of u ("autonomy").

To conclude, if the linear system is not controllable,

then 3 w # 0 such as a fictitious output y = w X
is of relative degree greater than or equal to n+1

& the relative degree of "output” is said to be oo

& the "output” y is the solution of an autonomous linear differential equation
(i.e independent of u).
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Example 2.4: let the system

X = B] u, [B AB] = B 8] of rank one: uncontrollable system.

It can be remark that [-2 1] € B* and that the "fictitious output”
y = —2x; + x, hasarelative degreeco (y =0,...,y*® = 0)

The "output” y is the solution of the autonomous linear differential equation (independent of u)

y=0

2.3 Definitions for non-linear systems

Definition: Relative degree of a function ¢(X)

ool (1)

=04,
ou

#0 i.,e. r=min keNa(p

The relative degree of (o(x) is defined by the minimum order k of derivation such that:
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Example 2.5: Consider a mechanical system such as:

X = ((position, speed ) and u = Force or torque

then the relative degree (position) = 2 (otherwise under-actuated mechanical system)

Definition1: Relative Degree ofa 1-Form o € &

Letw:= Y-, a;dx; with Vi, a; €K
The relative degree r of o € ¢ is defined by:
r= min{k € N‘a)(k) & span{dx}}

n
where @ = > o;dx; + o;dX; .
i=1

Proposition: @(x) € K is autonomous
. e a0
< the relative degree of ¢ is infinite <& Vk € N,(g—u =
1161u97] page 11
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Sketch of proof
: R [
- (only if) < Suppose that the relative degree of ¢ is infinite ( P =, Vk)
7]
x € R™ then do = % dx
R
do = " dx
| 20
de'™ = o dx « linear combination (over K)
of the previous n rows
Jacobian Matrix - U
(n+1) rows EIF/F(go,qb, . ..,(p(")) =0
n columns
rank <n by the implicit function theorem

then @ is autonomous.
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- (if) = By contradiction, let us show that if d° relative of ¢ < oo, then ¢ is not
autonomous.

™
3 r < oosuch that > 0

™
then, (p(r+1) =x + %u independent of @, ¢, ..., <p(r) etc,

40 =y 4227 1)
0] * + ou Y

= ¢ is not autonomous.

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries
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2.4 Controllability and accessibility of nonlinear systems

Definition: Commandability of a non-linear system
Letthe NLS  x=f(x)+g(x)u.

This system is said to be "controllable”, if

VX (initial state) and VX, (any state), 3 u(t) and T < oo such that
X(xO,u(t), T) = xl

e Problem: There is no characterization of commandability for SNL

(see introductory example)

Definition: Accessibility of a NLS

The system x =f(x)+g(x)u is said to be "accessible”
If there is no autonomous element.
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Property: For Linear Systems only,

LS is controllable & LSisaccessible.

Example 2.6: Let the following non-linear system {Xl = X22

Xz =u
This system is not controllable.
However, it is accessible because:
Vo (xq,x3),dr(p) < oo (max 2)

Property: For non-linear systems :
ANLS isaccessible & Vo(x) # cte, dr(p) <o

(no autonomous element)
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Algorithm to test the accessibility property 1

e - Characterization of 1-Form w € esuch that the relative degree ofw be =2 :

- Hy: = span{dx, du} = w € Hy, & relative degree of w =0

- Hy:= span{dx} c H, = w € H; & relative degree of w >1

- H, is the vector space of all 1-Forms w (€ H;) such that the relative degree of w > 2
H, c Hy

e Computation of H, :
-Lletw EHy, w =Y qidx; = o =Y (q;dx; + a;dx;)
= Compute the ¢; suchthatw € H; (not for Hy otherwise o Is degree 1!)
-0 = Yy apdxy + Ying aidx; = [ag, ., @] d(f () + g(0)w) + (" € Hy")
Thusw € H; © [ay,...,a,][g(x)]du=0 & [a,...,a,].[g(x)] =0

-Result: H, = g(x)* = span{w € H; | w.g = 0}.

1[Ara94] page 24 et [Glu97] page 11
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Definition: Chain of vector subspaces (VS) of €

HO DHI :)H2 :)DHk DHk+1 DHoo
H, = span {dx,du}
H, =span {dx}
Hy=g"

Hy 4 :span{a)er a')er}
3 a limit k*such that Hyp+_, = Hp+_1:= Ho,

H, = VS of all 1-Linear forms having a relative degree greater than or equal to k

Theorem: Accessibility of a NLS

A NLS satisfies the accessibility condition if and only if
H, =0

i.e. there are no autonomous elements (generalization of the Kalman criterion for linear

systems)
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Example 2.7 Let the system X =Ax+Bu
Then: H, = Bt

Hy = [B AB]*

He = [B - A*2B]"

Example 2.8: Let the nonlinear system:
X = [‘x23] :
u

Is it accessible?
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Example 2.9: Mobile cart (Exercise)!

We consider a mobile cart: fixed rear wheels, "crazy" front wheels. We note u;the
longitudinal speed, u-the angular speed, x;and x»the coordinates of the center of the
rear wheels. The model equation is:

Xz

r

X4
cos(xzy O u
. 1
x=[sinx3 0 -[uz], f(x) =0,
0 1

Hy, = span{dx,du}, H, = span{dx}, H, = g(x)*

1[Glu92] p. 51 and [Sam91]
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cosxz 0]
J’c:[sinx3 o] L] fe@=o
0 1

Computation of H, = g(x)*
w=[a a az]land w.g =0
= 1) wg,=0 & a;=0
2) w.g1=0 = forexample w = [sinx3 —cosx; 0]
W = sinxz dx; — coSx3 dx,

Thus H, = span{sinx; dx; — cos x5 dx,}.

Computation of Hy: Hy = {w e H, | e H, }

T [sinx; dx; — cosxz dx,]

= a[sinx; dx; —cosxs dx,] + a uycosx; dx; + a u, sinxs dx,
+ asinx; d(uq cos x3) — acos x3d(u, sin x3)
= (€ H,) — au, sinx3% dx; — au, cos x3% dx; =+ —au,dx; &€ H, => Hy = {0}

w = a[sinxs dx; —cosxs dx,] +«a

= the system is accessible.
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Canonical representation of accessibility in "linear form".

=> Search for functions ¢(x) such as o =dg

Definition: Integrable vector subspace

A vector subspace is said to be integrable when it admits a
base of the form: {d¢,,...,dg,}

o Example 2.10: Test the integrability of H, for the mobile cart

- Computation of dw (Poincaré Lemma):
dw = cos x3dx3z ANdxy + sinxz dx; Adx, # 0 => H, is notintegrable
- then computation of dw A w (Frobenius Theorem) :
dw A w = [cos x3dxs Adxy + sinx; dxs Adx,]| A[sinxs dx, — cos x5 dx,]

=dx3/\dx2/\dx1¢0

Thus by Frobenius Theorem application:
doANw=dxz3ANdx, ANdx; # 0 = H, isnotintegrable.

Master EPICO M2 Nonlinear Systems and Mathematics Preliminaries 2.17

Example 2.11: ACCESSIBILITY: INTEGRABILITY of Hk (exercise)

Let the following system:
x2(1—u)
X = [x3 ]
XU

[s it accessible?
if yes, can the Hy be integrated?
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CHAPTER 3
INPUT/OUTPUT LINEARIZATION 1
BY STATE FEEDBACK AND STATIC DECOUPLING

3.1 Introduction
3.1.1 System Structure, relative degree

Definition: relative degree

The relative degree r of a system output is the smallest order of derivation (temporal)
showing explicitly a control input.

Remark:

in the case of linear systems, the relative degree r is the order of the system

Exercise: relative degree computation

X1 =Xz X=U Yy=X2 —X1 Y=X— X1 =U—X;

u explicitely appears » the relative degree of the outputy is r=1.
1[Glu92] Chapter 3
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3.1.2 Introductive examples

Example 3.1 Monovariable Case  Let system (X = —x°+u
ly=x
With a nonlinear control u = x? + v, then the closed loop system is written:
X=v
= linear system with a new control v.

Y(s

% is a linear system = exact input/output linearization
Interest: no approximation, allows then to use the whole linear theory for

_ 1
example with v = — = [y — y,-] : pole placement + output reference !

Check the Input/Output relationship?

11G1u92] Chapter 3.
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Example 3.2 Multivariable case, /nput/Output Coupling

X1 ==Xy + Uy
X, = —2Xx, + Uy
V1= X1
Y2 = X2

U, have an effect on x4 and thus y,
U, have an effect on x; and x5, and thus y; and y,.

Which control can provide input/output decoupling?

There is a Input/ Output Coupling (non-symmetrical) :

PROBLEM to solve: In a general non-linear (multivariable) framework, how to calculate a
static compensator that will give an exact input-output linearization of the system?

Definition: Static Feedback
u=Fx)+Gx)v
e Linearcase: u=Fx+Gv
¢ In closed loop : dim ( System + Controler ) = dim ( System )
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How to linearize? 2 complementary tools

1) Reversible static feedback:

u=F(x)+ G(x)v withG an invertible square matrix

2) Transformation of state coordinates:

z = ¢(x), locally invertible i.e. out of singularities

Example 3.3 . See the following monovariable NLS

X1 = X3

X, = sin(x3)
X3 =1Uu

Yy =X

An idea for a solution, i.e. to obtain an Input-Output linearization, a
solution approach is to examine the Input-Output structure (relative
degree, ...) by Inversion Analysis.
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=> Problem formulation: Input/QOutput Linearization of a NLS

Given a non-linear system, to find if possible :

- a state feedback u = F(x) + G(x)v

- a bijective coordinates transformation of state variables z = ¢ (x)

such that after feedback and coordinates transformation, the NL System can be

written:

z1=Az;+Bv linear dynamics

Zy = f5(21,23) + g2(2z1,22). v zero dynamics (linear or nonlinear)

y=Cz

with z = (z1,2,), v = (V1,V3).

and the pair (A,B) is controllable, the pair (C,A) is observable, with :
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- Monovariable case:
0 1 0 0
A= ,B = ,C=[1 0 .. O
. o c=1 ]
Ixr
0 0 1
Rxr rx1
- Multivariable case:
Yi=2,15 Y2 = 2yt
Aqq 0
A= A1z , B=[B; B, ]
0
0 1 0
with A11 = 1 ) eeny Bl =
0 0/
ri¥r
where r;is the relative degree of the output y;, etc.
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- After coordinate transformation and static feedback the 1/0 relations are:
Vi (r) = Vi, Vp () = Vp: p decoupled integrator chains of length r; 1

- Z2 corresponds to the zero dynamics:
Generalization of the notion of zeros in linear

(sometimes pay attention to the stability of the zero dynamics)

- The transfer is then written % =C(sI —A)"'B

- In addition, a complementary linear loop allows to place the poles of the transfer:
This then allows the application of robust linear controllers for example, (exemple 1.1)
e Limitations of the problem:
- Loss of "commandability” (accessibility, singularities)
- the zero dynamics Z, can be unstable (not always critical)

- Equivalent in linear to "hide poles"” (=> dynamic looping, stability)

1[Isi89] Normal form
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3.2 Input Output Linearization

3.2.1 Single output case (dimy=p=1)

Theorem?
The input/output linearization of a NL single-input single-output system admits a solution

S the relative degree of y is finite, ie  dr(y) =7r <n.

Proof:

- Sufficient condition:

If dr(y) :=r =n then y™ = F'(x) + ' (x)u: = v

And u = —G'"Y(x)F'(x) + G'"1(x)v isalinearizing input/output control
with z; = [y,...,yT V]
and Zz, : arbitrary function of x such as z = ¢ (x) is locally invertible.

- Necessary condition: otherwise no input ! (the output cannot be controlled).

1 [1si89] Chapter 4 and [Mar95] section 4.2
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Example 3.4 Let system: X1 =Xy

x2=u
Y =X, — X

* YEX X FU—X
= the relative degree r of the outputis: r =1

e Goal:y:= v thus
1) u==x,+v
2) Coordinates transformation:
ZL=Y =Xy — X1 DZL =V
Zy = Xy DZ,=U=X,+ V=2, +V
, 1=V
Finally: {212 =z, + v : zero dynamics (? stability)

e The canonical form is well found:

A=[0], B=[1], C=[1 0l f2(2) = 23, g2(2) = 1.
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Note: Therefore pay attention to the zero dvnamics.

a) A solution: change the output

Example 3.5 :

Example 3.4 with

J=x,tx, V=%t =xtuy=i,+tu=u+u

Y(s) _ s+
UG s (stable zero)
To obtain a pure integrator = u = —x, + v,

Choose Z1 = X1 + Xo, Zyp =Xy 2 X1 =21 — Zy

then { Z=v
Z, = —Z, + v: stable now!

To keep the tracking of yref as Yy =X, +x; =y +2x; =y + 2(z; — z)
= )_’ref =X+ X1 = Yrer t 2x4
b)It is not always significant

Example : A control to constant speed = the position increases!
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Application to trajectory tracking

Given that : {x =f(x)+gx)u
y = h(x) and a differentiable reference trajectory y,. f(t).

Find u such that: y,..¢(t) — ¥(t) > 0 whent — oo.

o Mono output case: Letthe errore = Y, (t) — y(x)

Solveinu : e™ + ZZ;%) lke(k) = 0 with the A € R the closed loop tuning parameters.

Yrer P (8) + X5 Aee @ (@) = y @ (x,u): = a(x) + b(x)u

1
) YT —a(x) + Yrer M (t) + Z lke(k)(t)]
k

e(t) is asymptotically stable : e(t) - 0 when t — oo according to the choice of the 4.
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Example 3.6 a perturbed linear system : the constant flux DC motor

Constant flux (as the permanent magnetic flux), the rotor scheme is:

i(t) L R

Electric equationv = R i + LZ—i+ e with e = K,,,, o ie. LZ—;. =—Ri—K,y w +v
Mechanical equation]i—at) =Tm - f,o-T) with Tm = K,,, i and Tl aload torque.

With x; = @w,x, = i,u = v and the output y = x;, the state model of the DC motor can be
read as:

{3&1 =ax, +bx, +cT
.7&2 =dx2+ex1 +fu, y =X1
It is a disturbed SISO linear state model. The disturbance is the load torque.

? Analysis of the system : Relative degree, perturbation ?
Pole placement, Trajectory tracking ....
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Exercise a perturbed nonlinear system : the serial DC motor

; i(t
v =({R;+R)i+ (;[,S+J[.r)E +e o ©
dt
/7
e=Ko0Q=KKiQ * /N Rs
Ls
a2 K@i 02— C, = KK¢i? w2 =T,
— 1 — S — = 1= — LS
] eT: fo l f fo i v(t) 3,6, T,
R: Lr, e(t)
Thus
aqo .
I a7 = KK’ —f,Q-T,
di
(Ls + L) gz = —(Rs + Ry)i = KK i+ u
a2_KK o f,, 1g
dt ] ] T
di _ Rs+R,. KK, 1
@ LT Lrnetran
? Analysis of the system : Relative degree, perturbation ?
Pole placement, Trajectory tracking ....
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3.2.2 Multi-outputs case (MIMO) (dimy=p>1
yl(rl)
If (ry,-+,7, are the relative degrees, then P =A4p(x) + By(x)u=v
yp(rp

Theorem (Sufficient Condition):!
Input/Output linearization via static state feedback admits a solution if

90\, 3 )
a(ul, LU m)

rang =rang B, =p

Proof: SC A linearizing Input/Output control = u = By1(x)[—A(X) + V]

Remark: a decoupled system can be obtained after feeback.

1[1si89] Chapter 5
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NC Counter-example to necessity
X u
1 ! X1
X, | = [X3 + U et y = [_'X,' ]
. 2
X3 Uz
Vi =u =1 =1

}72=x3+u1 =>T'2=1

a(y1<r1),___,yp(rp))

a(ul,...,um)

rang = rang H g] =1<p

and yet the system is linear in input-output !
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3.3 New problem: the static decoupling and Input/Output linearization, multivariable case
Goal :Find - astate feedback u = F(x)+ G(x)v

- a bijective change of state variables z = ¢ (x)
such that after feedback and transformation the NL system can be written :
zy =A.zy + B.v  Linear dynamics
Zy = f2(21,22) + g2(21,23). v
y=_C.z; with

z = (24,2,),v = (vq,V,), pair(4, B) est controllable, pair (C, A) is observable,

with  y; =214,..., Y2 = Zysr41,..

[A11 0

A= A1z . B=[B, B, .]
L0
0 1 0 0

with A;; = 1 B; = lol where r;is the relative degree of y;, etc

L0 0l 1

¥

I'1*l
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Theorem:
(3,5, )

0(Uq,Um)

The NL System can be decoupled by static Feddback < rang =p

Definition: Decoupling matrix
(3 TD,...y,"P)

a(ul,...,um)
After feedback, we get p independent Input/Output subsystems that are easy to
linearize

The Jacobian Matrix is called "decoupling matrix" (:=B,(x))

Sketch of proof:

- Sufficient condition: the p decoupled systems can be obtained by feedback.

- Necessary condition: otherwise, the accessibility of the "Input/Output” dynamics

after feedback is not satisfied (fall of the rank of B,).
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e Remark 1:

If the theorem is satisfied (Bo(x) inversible), the system can be written:

yl(rl)
: =Ag(x) + Bp(x)u =v

yp (rp)

and u = By ' (x)[~A4o(x) + v] => p decoupled integrator chains of length r;

e Remark?2 :
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2.1 Coordinates transformation: z; 1 = y1, .. , Z1 41 = Y2, -

2.2 The p+1 dynamic is unobservable (noted the zero dynamics)

3.17

2.3 We obtain controllable linear subsystems of relative degree identical to those before

feedback (because we have used a static state feedback).
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Example 3.7 Mobile Cart (Exercise)

We consider a mobile cart (rear drive wheels, front "crazy" wheels).

Let u, the longitudinal speed,
U, the angular speed,

X1 and X, the coordinates of the center
of the rear wheels.

X3 the rotation angle wrt the center of
the rear wheels.

The model equation is:

X ="

X1 = Uy COS X3
.7.(.'2 = Uuq sin X3
X3 = U,

2 study cases: a) outputs

Y1 =X1, Y2 = X3
b) outputs

Vi =X1, Y2 = X3
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Example 3.7 Mobile Cart with Yy, = Xq,

- no solution by static compensator

- ? dynamic compensator: for example, Uy = X4, X4 = V1, Uy = Uy

with v4 : longitudinal acceleration

Yo = X, (caseb)

v

=> extended system dynamics = system dynamics + compensator dynamics

X1 = cos(x3)xy
Xy = sin (x3)x,
X3 =V
Xg =V

Compute v = a(x) + f(x)w such that (yq, w;) et (y,, wy) are decoupled.

- Calculate the decoupling matrix
- Linearization Input/Output: v, &

‘ First: Input-Output Inversion
Y1 = cos(x3)xy,
Y2 = sin(x3)x,
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V1 = —v,sin(x3)xy + vicos(x3): = wy
Vo = vlsin(xg) + UzX4COS(X3) =W,
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Example 3.7 continuation Mobile cart (case b)

0y, ® 0y, @

. . 0y @y, ov, v, COSX3 —X4Sinx;
Decoupling matrix: —————— = =1 _.
9(v1,v2) 9y, @ 9y, @ SINX3  X4C0SX3
6171 6172

Its determinant is x,(# 0) = row matrix 2

So we can decouple.
Then, v; = wy cos x3 + w, Sin x5
—Wq Sinx3 + w, cos X3

U, =
X4
We choose zy 1 = X1,21 5 = X4 COS X3,213 = X3, Z1 4 = X4 SiN(X3).

Note : no zero dynamics.
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3.4 Application of static decoupling to trajectory tracking !
Given that : x=f(x)+gx)u
y = h(x) and a differentiable reference trajectory yref(t).

Find u such that: y,.¢(t) —y(t) > 0 whent — oo

e Single output case (reminder) : Let the error e = ypo¢(t) — y(x)

Solveinu: e™ + Z’,;%) Ae( = 0 with the 4, € R the closed loop tuning parameters.

Yrer () + 2 e () = y P (x,u) = a(x) + b(x)u

1
) u= -0 + DO + ) Ae® (D)
b(x) 4
e(t) is asymptotically stable : e(t) - 0 when t — oo according to the choice of the Ay
e Multi outputs case: after decoupling and linearization, we have p single-output systems:
Y @) = vi(t)
e Remark: if the NSC of the theorem "Static Decoupling” is satisfied, one can:

a) Decouple, b) linearize and c) make trajectory tracking " in a single feedback!
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e Example 3.8 DC motor, with a separately excited flux stator coil

b,

L

Electrical scheme of a separately excited flux DC Motor

Electrical equations:

ug= Ryig+ LS5, w4y = Ry by + L, S0+ KOQ=Ry iy + L, 5+ KKfi, 02 *
Mechanical equation: ]%?= K@i, — f,2 —T1=KKyis i — f,2 =T

*The stator flux is assumed to be proportional to the stator current : @ = Kff.s
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aqo .
]E:KKJH_L, Lr_fVQ_TI

diy _

Lg T — Rgis+ us

er_t. =—R; i, — KK;i;Q2 +u,

Or

di- _  R,, KK, 1
- I, i, I i;02 +L—I_ur
withxy = x, =ig,x3 =10, ,U; = Uy, Uy = U,

the DC motor with controllable stator flux
is a nonlinear MIMO model:

) KK f 1
X1 :foz x3_Tvx1_7Tz
jCz = — % Xy +Liu5
S S
. R, 1
X3 = — L—IX3 _L—fxlx:g +L—U.r
r T T
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or
X1=axyx3+bx;+cT
Xp=dx;+eu
X3 =fx3+gx1xy +huy

The outputs to control could be y; = xy,y, = K; x,.

(y, is the rotor flux)

Is the system decouplable?

- Calculate the decoupling matrix
- If decouplable, compute v = a(x) + S (x)w such that (y;, w,) et (y,, w,) are decoupled.
- Linearization Input/Output: v, ¢, Trajectory tracking ...
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3.5 Application to AC machines

Example 3.9 Currents controlled Induction motor

Here the inputs are the two currents: u; = i5q,U; = Igq
The induction motor reduced model is then

X1 =MXy Uy —CXq

Xy = —a Xy, +a Mg ug

X3=px;+a IZ—S; U, with x; = Q,x, = @,4,x3 = p (rotor flux angle).
R _ PMsr

a = ,y m
JLr

_f o _ :
- C=Tp= pole pair number

Case 1 y1=x1=[2, y2=x2=@rd

Case2 y;=x3= Qy,=x3=p

[s the induction motor controlled by stator currents is decouplable by static feedback ?

Exercice 3.10 Synchronous motor

Exercice 3.11 Induction motor
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CHAPTER 4
SYSTEMS INVERSION AND
DYNAMIC DECOUPLING !

4.1 Introduction to system inversion

Let the system:
E{X=f@}hﬁ@u
y = h(x)

find, if possible, the inverse system:
g FGny)
u=H(zyy- )

such that (u(t), y(t)) a solution of 2 is also a solution of 271 and vice versa.

Method: Differentiation of outputs + algebraic elimination of input variables u.

1[Glu9z)
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Example 4.11: Current in dipoles

e Let u be the voltage across a resistor R through which the current flows y.
Then

) {y = % u and 2~1: u = Ry hence the control ...

e Now let's take a resistor Rand an inductance L in series (u voltage, x current)

. R 1
X=——-x+-u
J L L a proper system.
{ y=Xx

Y71: u=Ly+Ry the inverse system is not proper (depends on the
derivative of y).

By this inversion analysis, this is the information on the system structure that is
researched

Definition: Dynamic compensator Dynamic
{z’ =F(x,z) + G(x,2)v v Compensat(}r ™ System/x Ly
z
u=H(x,zv) | ‘ I
X

In closed loop
Dim of (system + compensator ) = system dimension + compensator dimension

1Glu9s]
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4.2 Inversion algorithm!: to find p independent 1/0 equations.
Step 1

-Computey =22 [£(x) + g(0)u] = a3 (x) + By (D)
-Letpy: = rank [B1(x)]

- Choose p;independent rows of B;such that the py first rows of ;are independent (swap
the order of the outputs if necessary).

Important notation: it is defined:y: = here j,contains the p;independent

V1
equations. Step 1
)’1 = ai(x) + ,Bl(x)u
91 = @;(x) + B1(x)u  with therank of B; = p; *

- Eliminate u between the }71 and y;\lz
3’1 = @ (x) + B ()u
3’1(95 3’1)

Remark : {dx, df/l} = basis of {dx, dy}

*Vocabulary: The system has p, zeros at infinity of order 1 (step 1).

1[Glu92] page 27 and annex 4.
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Step 2
d .
- Compute PP V1

X aj}l 3 6}71
= 25 it [f (x) + g(x)u]

Yy = az(x, 3;71»);}1) + .Bz(x: 3;’1)11

p1()
B2(*)

-If p, < p swap if necessary, the order of the outputs to obtain:

-Letp, = rang [ = p1, total number of independent equations in step 2.

Yi: = KZ] dim§, = p, —p1, dimy, =p —p,,
2
Y2 = (1) + B2(Du wi _ B1()
&r%UMMumﬁ mﬂmo ]
and S, = L1(-)B1(-) + Lo (-)B2 ().

- After elimination of u we obtain ;2 = );}2 (x, )71, 571, 372)
after this step, there remain p — p, dependent equations.

Vocabulary: The system has p, — p, zeros at infinity of order 2 (ie.n;)
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Summary in step 2 of the independent equations found :

}?1 = d;(x) + B:l(x)u~ .
V2 = a2(x,1,¥1) + B2(x, ¥1)u

Step k+1
A~ k A k ~ ~
yk( ) = yk( )(x;yll...!yk(k))

- a5 (K,
Compute ik

95 = @ger () + Brear (D
- So:
[ A0 ]
Pr+1 = rank Bk() = Pk
Bre1 ()
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- (k+])
- Decompose )A/k(kﬂ) into | Yk+l with }7k+1(k+1) having pri+q1 — pr independent
equations.

- Eliminate u:

}’k+1(z+1) = &k+1(k‘) + ﬁk+1(')u
~ +1 ~ +1 < ~
P = 9 V@Y, o, T )

dim Y11 =D — Pr+1

Vocabulary :the system has py4q — Py zeros at infinity (of order k+1)

Result at step k+1: the independent input-output equations retained are:

};’1: = @, (x) + f1(X)u
< (k+1)

Vi+1 = Q10 V1, V1) + Brear (691, )u
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The inversion algorithm yields to compute:

P1 S P2 S S Py = Ppgr = p Limit with p<sm p<p

o Vocabulary:
- p is the rank of the system
- the orders of derivative of the highest outputs in the equations considered
independent are called "essential orders" (n;,) i.e. they are the minimal orders that it is
necessary to reach in the inversion to have independent differential relations Input-Output
(necessary and sufficient condition for the decoupling problem).

o Remark?2:
- The inversion of the system will allow the Input-Output Decoupling control by dynamic
compensator
- Inthe case of a linear system, p is the rank of the transfer matrix.
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4.3 Conclusion: decoupling by dynamic state compensator via Inversion algorithm

Theorem:
The dynamic decoupling admits a solution 4 p the rank of the system is equal to p.

Note: the essential order m is the largest derivation order of y; in the inversion equations.

Construction of the dynamic compensator: the inversion algorithm gives the equations

78 = a6,y + B, yu

We solve in u the following equations:

(nie) _ (ni+j-1) _ ,
yi =yt =2z 1 <] < ngeemy
The dynamic compensator is then: Zi1 = Zjp

Zi'nie_ni =V L= 1, .. p
u=H(x,zj,v;)

Remark 3: generalizes the rank of the transfer matrix of a linear system
Notation: if rank=p, then the SNL is right invertible, if rank=m, then the SNL is left invertible.
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Example 4.2: Unicycle 1

The system is described by the following equations:

X1 = U;c05(x3) Vi =X
Xy = uysin(xz)
X3 = U, Y2 = X3

e Equations of the inversion algorithm:
Y1 = Y1 = U1C0SX3

y, = tan(x3)y; + (1 + tan?x3)y,u, STOP
=>MN1, = 2, Ny = 2 ordre minimal de découplage

e Construction of the dynamic compensator:

. . . Z11
We solveinu: =v Z11 =V u, =
V1 1 11 1 1~ Cosxs
. __ vy—tan(x3)vy
Y2 =713 Uy =~ —
le(l‘l'tan x3)
i u
2 Dynamic Sust V1
v., — Compensator ystem
2 /X Y2
[z u,

1[Glu92] page 51

Master EPICO M2 Chap 4. System Inversion and Dynamic Decoupling 4.9

Exercice 4.1 Induction motor controlled by currents (reduced model)

The inputs are the two currents Uy = I5q, Uy = Igq

with x; = Q,x, = @,4,x3 = p, the induction motor reduced model is:
Xy =mx, U, —CXq
X, = —ax, +a Mg uy

. Mg, Rr PMgy fv .
— —or —_ — - = = = T T
X3 =pxqt+a x U, a=_-,m==r5c=7p pole pair numbe

Yi=Xx1 = Oy, =x3=p (case 2)

Is the induction motor controlled by stator currents is decouplable by static feedback?

If not, is a dynamic feedback is possible ? If yes, what is the minimun size of the Decoupling
Compensator ?

Inversion Step 1 Vi=mXxy,U, —Cx; = 14 =1 (relative degree of y,)

Yy, =pxs+ta % u, = 1, =1(relative degreeof y,)
2

0 mx,
Br(x) = !O a &] = rang B, =1
X2

‘ Static feedback cannot be used for decoupling control
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Example 4.3. Car (Exercise)

The system is described by the following

equations:
X = X1 = U4€0S X3 Vi = Xq
Y = Xy = UqSIin X3 \
0= X3 =ujuy/l Y2 = X2 Xz

with u, car speed (= F(t))
and u, = tan .

Note: it is a non-affine system!
Coordinates inputs change ? y (0

[s it possible to decouple and Input-
Output linearize this system?

Figure : Car ([Mar99].)
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Inversion Step 1

Compute the relative degree of each output:

yi=uco0s x3 1 =1
Vo = U Sin x3 1, =1, -—— n, =1

Choose 7§, =vy,ety, =y,
rang f; =1

Step 2: we differentiate y; = y, — J, explicitely depends of u, — STOP

e So the equations of the inversion algorithm are:
Y1 = Y1 = U1C0Sx3

. .. (1+tan?x3)y,>
= tan x4 + —mmu
Y2 =M1 3 [ cos x5 2

-—) N =2

Nye = 2,Ny, = 2 the minimal orders for input-output decoupling.

Y n;=3,) n,=4% mm)dimoftheDC=1

- Construction of the dynamic compensator: we solveinu ....
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CHAPITRE 5
INPUT STATE LINEARIZATION « FLATNESS »!

5.1 Remainder: Limits of input-output linearization
e The unobservable part of the closed loop system may be unstable

e Corresponds to hiding zeros by poles (for linear systems)

561 = Xy
Example 5.1:  Note X: X =1u } e _ % (of degree 1)

Us)_ S
y=X27X1

Input Output linearization:
X Inversion = y=u—x, = UuU=x,+v = Yy=v

2 en BF
X1 = Xy with Zy =X, + vV —x, = vV — observable
Xy =X, V> {21 =Y =Xz — X1 =iz, =z, + v = unobservable unstable
Y =X, —Xq Zy =X Yy =2

[Ara94] Chapitre 4
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o Alternative :
Search for a fictitious output noted y with minimal phase (stable zeros)

Remarks:
- If there is only one input (m=1) and the relative degree of y = n, then the
Input-Output linearization obviously involves the complete Input-State
linearization.

- If m>1, Zle 1; = n, and the decoupling matrix is invertible, then the whole
state can be linearized by feedback

X=@ (y'y‘.__,y(n—l))

Then It exists ¢ et 1 such that: . )
u=1/)(y,y,---,y )

(Flatness)
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5.2 Problem 1 Input State Linearization by static state feedback

Problem 1 Input State Linearization by static state feedback
Given x = f(x) + g(x)u,x € R™",u € R™,
Find if possible :
u=a(x)+ px)v, PL(x)squareinvertible and coordinates z = @(x)
such that the closed loop system is written
z = Az + Bv with (4,B) controllable.

Theorem :1
The Input-State linearization by static feedback admits a solution
= Hy,=0
Hintegrable Vk >1

The Hk's have been defined in the chapter on the accessibility of nonlinear systems. Their
integrability is verified with the Frobenius theorem.

1[Ara94] Chapitre 4 page 39
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- Proof:Case m=1
- Sufficient condition, if H,, = 0 no autonomous elements then
dimH; =n, dimH, =n—1, dimH; =n—-2, dimH,=n—k+1,
dimH, =1, dimH,,; =dimH, =0
Integrability of H,,: H, = span{dp(x)}
The « output » Y = ¢(X) has a relative degree = n
[ o) ]
d
R AC)
New state variables: z=®(x) = :

n-1

d
S (%)
Solve equation
Y™ =M u) = a() +b@u=v > u=-b"(¥)a@) + b (x)v

- Necessary condition:
If H,, # 0 then an autonomous nonlinear element can exist.
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X3
Example 5.2 : With X: x = [x32]
u
e H, = span{dx;,dx,}
H; w = a;dx; + aydx, w =*+(a; + 2a,x3)dx;
= a, +2a,x3 =0 asolution: a,=-1, a; =2x3
H; = span{2x3;dx; — dx,} which is not integrable (Frobenius theorem):
= No Input-State linearization for this system.

e H,=0 (=H,) = Xisaccessible but not Input-State linearizable by static feedback.

Example 5.3 (m=1):

X1X
x,% + ; 2 0
. 2 . .
X = X3 +(0|u Search for an output with a relative degree = 3
0 1
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Example 5.4 (m=_2): Mobil cart

cos(xzy 0 u
. 1
X = [ sinx; 0] [uz], f(x) =0,
0 1

Xz

Computation of H, = g(x)*

Xi
H, = span{(sinx3)dx, — (cosx3)dx,}
H; = {0}
= The system is accessible.
Is it Input State linearizable by static feedback?
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Problem 2 Input State Linearization by dynamic feedback

Problem 2:
With x = f(x) + g(x)u, x € R",u€R™,

n=F@mn)+G6xnv

uw=axn +pamr! K

Find a dynamic feedback: {

and z=¢@(x,1), z€ R"" ¥ such that z = Az + Bv with (4,B) controlable.

e Goal: search for m outputs y (called flat outputs) such that the system is invertible (thus
decoupable by dynamic feedback) and dim (sp{dx} N sp {dy, s dy(k)}) =n
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Canonic basis of Hy:
H, D H, D+ D Hy, 2 Hyyyq = 0 with k* ={maxk: Hy # 0}
Let Hy, = sp{wy.},
and Hy = (Hyyq + Hiqq) @ sp{wy} with @ direct sum, i.e.

(Hi41 + His1) N spfwy} = sp{0}

The Input State linearization by dynamic feedback requires the search for integrable forms
generating the Hk.

Theorem:
If {a)l,...,a)k} is integrable then there is a solution to the Input-State linearization by
dynamic feedback.

Rq 1. There is no constructive Necessary and Sufficient Condition to the total linearization
problem by dynamic feedback.

Rq 2 The constraint can be relaxed a little if a non-controllable dynamic is linear !
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Example 5.5: Mobile Cart

cos(xzy 0 u
x=| sinx; 0 [ui]' f(x) =0,
0 1

This system is not Input-State linearizable by static feedback.

[s it linearizable by dynamic feedback?

Reminder:

It is known that there is a dynamic feedbcak which realizes a "total" linearization of

the outputs  y; = x4 ;y, = x5.

We can therefore associate to the unicycle the model "increased"” by the addition of an

integrator in front of the input ul!
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Examples of systems that can be Input-State linearized
(from SIAM News, 1995!)

—>

In addition, there is also a catalog of systems that cannot
be linearized, for example

- the "ball and beam" system

- the pendulum of variable length

- Car with 2 trailers and axis of rotation
- the double inverted pendulum
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5.9
System Picture Flat Output
Mahile robot, Rear wheel
car prasilionn
- Furetiom af hitch
Carwith | trailer m anglefposition

Car with ¥ .
Irailers, @-‘G—% Last trai Ir.{ .
special hitching wheel position
Hopping robot Position of end
i \g of leg
Ducted fan é Center of
PVTOL / f oscillation
'
Ducted fan with Quasi-center of
ideal stand oseillation
Planar rigid qb. Sy
body chain nﬂ" oscillation,
¥ last rigid body

Planar satellite H:\d);!"ixed[u:inl
with actuated s fmenr
robatic arm functions of

Joant angles
Simplificd Position of the
planar crane \Y Toad
Rigid body with Axisymmelric
S'symmetry and center of
'rml"' ﬁ.“;, oscillation

OTCEs in

Towed cable Pogition of end
system of cable

Tabla 1. Partial catalog of differentially flat mechanical systermns.
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CHAPTER 6
NON LINEAR SYSTEMS
OBSERVABILITY !

6.1 Introduction

Definition: Observability
It is the property to reconstruct the state from the measured output,
the input and their temporal derivatives.

C
e Remark: For linear, the observability can be verified by the criterion: rank C:A =n.
CA;l_l
The observability of linear systems is therefore :
- independent of the input
- characterized by the possibility to express x as a function of y and its time
derivatives at an order lower than n-1.

1[Ple95] Chapter 3
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Tyvpical examples of the observability of nonlinear systems:

Example 6.11:

Let the system: x =10

y=x?

This system is not "observable" because one cannot distinguish the

sign of with only the knowledge of y.
We needs complementary information as x € R*...

Example 6.2: Letthe system X, = x5; X, = x3/x;

Y =X (n=2)
0 ify=0
We can write x, = IY otherwise

To distinguish the sign of x,, one also needs the knowledge of j = y(™ 1
(to be compared to the linear case).

1[Ple95] Chapter 3 p.27
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Example 6.3: Let the system :

561 = XU
X, =0 The system is observable for u # 0
y=x

=> observability is dependent on the input unlike
the linear case

- Conclusion. The observability of nonlinear systems is a generic notion:
there may be singularities in the state or in the input that may cause observability to be
locally lost.

Remark: if the input is not permanently singular, then the notion of input persistence is
introduced (observability is obtained in "average”) [Bes96].
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6.2 Formal characterization of generic observability for nonlinear systems

Notation: X = spang{dx}
U= spanK{du(j),j > 0}
Y! = spang{dy’,0 <j < i}
Y =U;» Y!

Definition. Observability filtration?
0cOyc...c 0O c..
with Op:=Xn{¥Y*¥+U)et0_; =0

The limit of this filtration: O, = X N (Y + U) is called "observability space".

- Remark?!: For the linear case: 0, = spang{Cdx, CAdx, ..., CA* " 1dx}

1 [P1e95] Chapter 3 p.28 and [Glu97]
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Definition1
o; = dim( 0;_1/0;_,) := number of observability indices &; that are greater than or equal to %

The list of observability indices 4; is then defined by:
k; = card{aj = i} i.e. the number of g; = i.
with ky >k, >...> k,

Theorem? A system is generically observable & dim 0, = n

Example 6.4. Check the observability of the system:

X1 = XU
X, =0
y=Xx1

1[Glu97] Tr.13, 2[Ple95] Chapter 3 p.28
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Example 6.4 Solution
X1 =X3.u X5 =0 Yy =X
Calculation of output derivatives:
Y =X thusdy = dx;
Yy=X =X,.U dy = x,.du +u.dx,

X = spang{dx,,dx,}, U= spang{du,di,...}
Y0 = spang{dx,}, Y = spang{dxy, x,.du + u.dx,}

0o = X N{Y° + U} = spang{dx,, dx,} N spang{dx,,du,du,...}
= spang{dx,}
0, = spang{dx,,dx,} N spang{dx,, dx,, du,di,...} = spang{dx;, dx,}
On =0, =X dim = 2,the system is generically observable

01 = dim{OO/{O}} = 1 = an observability index = 1

o, = dim{0,/0,} = 1 = an observability index > 2
Conclusion: k1 =2 (only one output here!)
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Example 6.5. Mobile cart (MIMO).

We consider a mobile cart.

Note u, the longitudinal speed, u, the angular speed, x; and x, the coordinates of the
center of the rear wheels.

2

X

X

The system equation is:
X, = U C0SX3
. . [x1]
X, = UqSinx =
2 1 3 V= x,
x3 = u,z

Master EPICO, ECN, Chap. 6. Nonlinear Systems Observability 6.7

Example 6.5 solution: Mobile cart, Characterization of the observability

Y1 =%, Y1 =% = cos(x3)uy, Yy = X1 = —sin(x3)ugu; + cos(x3)uy,
Yo = Xz, Yz = X = sin(x3)uy, _
Vo = X, = X3 cos(x3)uq + Uy sin(x3) = cos(x3)uuy + sin(x3)uy

X = spang{dx,, dx,, dxs;}
U =spany {duy, du,,...} YO = spany{dx,, dx,},
Y1 = spang{dx,,dx,, d[cos(x3)u ], d[sin( x3)u,]}
0o =X N{Y° + U} = spang{dx,,dx,}
0, = X n{Y' + U} = spany{dx,, dx,, dx3}
Oy = 0;=dim O,, = dim 0; = 3 = The system is observable.
o7 = dim(0y/0_1) = 2 = 2 observability indices > 1
0, = dim(0,/0,) = 1= 1 observability indice = 2

O-3=O

Conclusion: the system is generically observable, with an observability index k;=2and an
observability index k»=1 (decreasing order by convention).

Remark: the association of the observability indices to the outputs is not always unique.
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6.3 Practical characterization of generic observability for nonlinear systems

Reminder For linear system, the observability can be verified by the criterion:
C

rank C:A =n.
CA;L—l

For nonlinear systems, the characterization of generic observability can also be seen as the
generalization of the linear criterion:

a (y'y:"-;y(n_l))
a(x)

rank l

- A "canonical" form based on observability can be defined. It allows the decomposition
of the system into subsystems whose dimensions are equal to the observability indices
(obviously linked to the choice of the observability indices).
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- Exemple 6.6: Mobile cart practical characterization of generic observability

Remainder

Y1 =X1, Y1 = X3 = cos(x3)uy, Y1 = X = —sin(x3)uu, + cos(x3)iy,
Y2 = Xg, Yo = Xz = Sin(x3)uy,

Vi, = &y = X3 cos(X3)Uy + Uy sin(x3) = cos(x3)uquy + sin( x3)u,

a(y'y""‘y(n_l))
Thus l 200 =>
I ST X3
1 0 0
0 1 0
V1 0 0 —sin(x3)uy
0 O cos (x3)uy

Note: There is an observability singularity for u; = 0!

High order derivatives have
to be analysed!

Generically (outside the singularity), the observability indices can be chosen as:

{k1 ko} ={2,1}
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6.4 « Canonical » form of observability

We can then define a state coordinate transformation:

z=(z"(x,u),...,2," (x, ﬂ))T where it = {u,1,...,u(®"2)},

withfor1l <i <p:

z=Az+ Z(z,u,u,...,u(n_z)) =

y=Cz=

Master EPICO, ECN, Chap. 6. Nonlinear Systems Observability

0
0 C,
0 0
0 0

C,

Zi =
yi(ki_l)

Yi
Vi

0

the matrices 4, and the vectors (; (1 < i < p) are defined by:

o

For 1 < i < p, the functions y;, are defined by:
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We obtain:

‘A, 0 0 .. O] 71(z,u,u,...
0 A2 0 .. 0 lz(zauzua---
0 0 0 Z+ Z_’;(Z,ll,fl,.,.
O 0 Ap_ Zp(zauau)'-'

0]
0
0
Cp— with
0
0
: and C;=[1 0 -+ Olixg,
1
0, xk;
0
0
h D (x (2, )

,u(ﬂ—z) ) ]
,un=2))

’u(n—2))

u2))

6.11
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The system description

A, 0 0 . 0] |a@w.ut?)
0 Ay, 0 .. 0 75 (zu,u,...,u"2)
z=0 0 0 |z+| 13(zu,0,...,u2)
_0 o ... .. Ap_ Zp(z,u,u,...,u(“‘”)

is called the canonical observability form.

Each nonlinear function h; (ki)(x(z, 1)) is a function of z and of the first n-1 derivatives of u.
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Example 6.7: Mobile cart

Note u, the longitudinal speed, u, the angular speed, x; and x, the coordinates
of the center of the rear wheels.

X

Xq
The model equation is:
X1 = Uq COS X3
Xy = Uq SINX y—[xl]
2 = U 3 =
. ’ Xy
X3 = Uy

Observability indices: k; =2, k, =1

Reminder: k; is not necessarily associated to the output 1 (idem condition of
rank).

=> writing in canonical form:
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Example 6.7 following: Observability canonical form for the mobil cart (k;=2, k>=1)

Z11 =Y1= X1

. Z12 212
Zip = Y1 = U4C0S X3 = COSX3 = —, X3 = Ar cos(—)
Uy Uq
221 =Y2 =%
Z11 = V1 = 212
. . . . Z12 Uq
le == —Slnx3.u2.u1 + COSX3.u1 = —Sln ATCOS — uZ.ul + le_
Ug Uq
. . . Z12
Zyq = Sinxz.uq = sin|Arcos |{— || uy
Uq
0 1 o i
7, = . Z12 212 . e
Z1 [0 ol %1 * | —sin [arcos (—)] U Uy +—Uy i
Uq Uq
. . Z12
Zy = 0% 2y +sin|arcos|— ) |uy
Uq
Master EPICO, ECN, Chap. 6. Nonlinear Systems Observability 6.15
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CHAPTER 7
OBSERVERS FOR NONLINEAR SYSTEMS

OUTLINE

e CHAPTER 7 PART 1 INTRODUCTION TO OBSERVERS FOR NONLINEAR SYSTEM

e CHAPTER 7 PART 2 OBSERVER DESIGN BY LINEARIZATION VIA GENERAL INPUT-
OUTPUT INJECTION

e CHAPTER 7 PART 3 OBSERVER DESIGN BY TRANSFORMATION INTO AN AFFINE SYSTEM

Chap 7 Observers for nonlinear systems Part 1 7.1.1
CHAPTER 7 PART 1
INTRODUCTION TO OBSERVERS FOR
NONLINEAR SYSTEMS

7.1 Introduction
Linear case: Observability = observer Type Luenberger.
Time-variant case : x = A(t)x + Bu

Observability = Deterministic extended Kalman type observer
= Variable gain observer given by solving a Ricatti equation

Nonlinear case: the observability property does not imply the "design" of an observer.

Chap 7 Observers for nonlinear systems Part 1 7.1.2



Position of the problem:

Given X x = f(x,u), y = h(x)
(1)

- Determine X such that X — X is not a solved problem for nonlinear systems in general.

- Moreover, the separation principle does not exist for NLS (=> no "Observer-Controller
superposition" without stability check!)

7.2 Different solutions for establishing Observers

- Luenberger type observer modulo injection of known quantities

- Observers for state affine systems (Deterministic extended Kalman type with a Riccati
differential equation)

- Observers with large gains

- Observers for interconnected systems

- Sliding mode observers (with discontinuous feedback) for triangular systems.

- Observers with finite time convergence, ....

Chap 7 Observers for nonlinear systems Part 1 7.1.3

7.2.1 Luenberger type observers modulo a generalized input injection [Lue64]

Reminder for the linear case: Luenberger type observer (pole placement of the
dynamics of the deviation (¢ =(A -KC)e) :

{3?=A9?+Bu+K(y—§/)
y=Cz

Generalization:
If a nonlinear system (1) can be written in the form (2) by a (nonlinear) change of state and
output coordinates and modulo an input-output injection ¢,

{=Al+o(u), §=C¢ (2)

then a "Luenberger like” observer can be written:

{=Al+ow+KC((-{), y=C¢

Problem 1 to solve:

Is there a transformation such that the NLS x = f(x) + g(x)u, can by change of state
and/or output coordinates, and modulo an input-output injection ¢, be "linearized" i.e.
be written: { = A{ + @(y,u), § = C{?

Chap 7 Observers for nonlinear systems Part 1 7.1.4



7.2.2 Observers for state affine systems [Ham90]

If a nonlinear system (1) is written in the form:

{=Awy){+ol,uw), §=C

then under certain conditions (depending on u) a "Kalman like" observer can be written :

(=AW +ow =S CT(C{-7), y=C7
S=—-0S—AWw,y)TS —SA(u,y) + CTC
So>0etIA>0 tel que
||f— (” < Alexp(—rtt), > 0.

Problem 2 to solve:

Is there a transformation such that x = f(x) + g(x)u can be written by change of
state coordinates and output modulo an input-output injection:

{=A(,w).{ + oy, u), ¥ =C { (AState Affine System) ?

Chap 7 Observers for nonlinear systems Part 1 7.1.5

7.2.1 High Gain Observers [Esf92]

If the transformations defined above (problem 1 and 2) do not exist, a solution is possible
for the uniformly observable system (no singularity of the observation because of the
inputs). The writing of the system in the canonical observability form with z = ¢ (x):

Yi
Yi
Zi = i ~ . (1) _
Al 0 0O .. O W Zl(Z,U,u,...,u )
(k1) : (n-2)
L Yi i 0 A, 0 .. O 2 (z,u,1,...,u )
Z:A.Z+Z(Z,u,u,...,u(n_2)): 0 0 .. .. 0 |z+ p(zuu,..,u"?)
¢G o0 0 .. 0| 0O 0 .. .. Apj ;(p(z,u,u,...,u(n‘z))
O & o0 ... O ) -
y = C_Z = 0 0 cee oo O Z
| O O .. .. Cp_

allows the writing of a High Gain Observer if the system can be written (monovariable case):
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z=Az+@(z)+¥(z)u, y=~Cz  withA canonical observability matrix,
¥ (21)

11”2,.(21; Zy) (

C=[1,0,.,0]and ¥(2) = triangular structure with respect to z)

- with the functions ¢(z)et W(z) globally Lipschitz with respect to z,

- and the inputs u are measurable and bounded.

A High Gain Observer is then written:

2=A2+@@2)+¥)u — 0 Azt STICT(C2—y), §=Cz
with 8 > 0 a setting parameter, S is the unique solution of the algebraic Lyapunov
equation
S+ATS+ SA= CTCand

Ag = diag(l,%,e—lp e 073_1). The observed state is then £ = @71(2)

In the original coordinates, the observer can also be written :

: D (R)\
£=FR) +g®)u— 6 ( a(g)) 451 STICT(R(R) — ).

Chap 7 Observers for nonlinear systems Part 1 7.1.7
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Nonlinear Observers. Part 2: OBSERVER DESIGN By
LINEARISATION VIA GENERAL INPUT-OUTPUT INJECTION

OUTLINE
- Reminders and problem introduction

- Nonlinear systems assumptions

- Observability - Rank condition

- Observers

- Problems to solve

— State of the art - Objective - Ways

- A definition of the Input-output Injection
- Linearization via generalized input-output injection
- Linearization via generalized input-output injection with ouput derivatives

- Extensions, Conclusions and Prospects

7
Nonlinear observers. Part 2. 7.2 1

Assumptions

Nonlinear Systems Model :

X = f(x,u)

y = h(x) @)

The state is x € M, the input u € R™and the outputy € RP.
M is a dense open subset of R™

f(.,.) and h(x) are analytics over M ; u(t) is admissible.

The body of the meromorphic functions in {x, u, u, -+, u®, g = 0} is
noted K. A space generated on this body is noted Spang

Nonlinear observers. Part 2. 7.2.2.



Observability - Rank condition - Observer

Example 1 Let the system:

.X.'1= Xy U, 5(,'2=0,y = X1

——>x1=Y,X;=Yy/u

Introduce the Generic Observability Space: O with
0= Xn+0
where U= Spang {du(?,qg >0}, Y= Spang {djf9,s >0}, X = Span g{dx}.

Definition 1 System (1) is generically observable if and only if dim O= n.

‘ — Rank condition of generic Observability\

Definition 2 An asymptotic Observer of system (1) is a system in the form:

z=f Z,y, U
e @
X= h(z,y,u)
Such that:
- lle@®l=1x"(t) — x() Il 0whent— «
- If,fort = ty, X(tg) = x(ty), then for every t = to,
we have X(7) = x(?).
Nonlinear observers. Part 2. 7.2.3.

Observability - Rank condition - Observer

Goal: to determine an output coordinates transformation y = 7'(y) and a
generalized state cordinates transformation { = ¢(x, u, u, - -+, =) such that
the systelm (1) is equivalent to:

{=AC + o(vuit, -, ulq)) 3)
j=1C¢

Hypothesis|: 4 and C are in observability canonical form.

An observer for (3) is:
(= A¢+ o(ruiy -, u@)+ K € (¢-0)
— Exponential convergence function of K.

— Observed State of system (1) is computed by

= ¢ ui -+, ud™h).
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State of the art - Objective - Means

- Exact linearization

— Geometric approach: [Kre83], [Kre85], [Xia89], ...
— Algebric approach: [ Kel87], [Pro93], [Glu96], ...

- Approximate Linearisation : [Bes83], [Zei87], ...

To obtain a streamlined and unified solution for the exact linearisation problem
via a generalized input-output injection.

- To study the structure of the input-output differential equations of nonlinear
system — Realisation problem.

- By means of the differential systems theory.

Nonlinear observers. Part 2. 7.2.5,

Linearization of MISO systems by generalized state transformation
and generalized input-output injection: Example

Hypothesis: initial problem with p = 1, and no output coordinates
transformation
Example 2 Let the nonlinear system:
.7.C1= X2 uz, .X:2= O,y = X4 (4)
The input-output differential equation is: y(z) =2 y% If the system is locally

equivalent to:

C.lz G+ iy, u, u, ii)

Co = (v, u, 1, i)
y = &, then y® = gogl) + @o with a solution:

2y uZz i

Q1= Tu Q2 =2y (57—
- NSC for the existence of a generalized state coordinates
transformation
- Design of an observer
- Errors dynamics
- Coordinates transformation
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MISO systems linearisation by generalized state transformation
and generalized input-output injection: Algorithm

‘System input-output differential equation (1) ‘ :

y® =Py, y,..,.y@ Dy, .., u@D)
|G.I.LO.LA.m. algorithm |
Let Po := P and @o(y, u, 1, - -+, u®) := 0. For k =1 to n, let define:

Pi = Pi—1— [pi—1(y, u, 11, = =+, u)]0=F+D)

The differential form wx is defined by:
m
Ok = G Z ueter 4
j=1

- Ifdox Ndu Ada A -+ A du@ £ 0, then the problem has no solution.
- IFdox Adu Adie p - - A du@= =0, then the function @ is solution of:

Pk m 09k 4 (q)_

¢n()/, u, lit,"',u(‘f))Z Pn

Note : q =0 = dwir N dut=? = dw.

Nonlinear observers. Part 2. 7.2.7

MISO systems linearisation by generalized state transformation
and generalized input-output injection: NSC

Theorem 1 (IEEE TAC) [Glu96] Nonlinear system (1) (with p=1) is
locally equivalent to system (3) by { = ¢(x, u, 2z, - - -, uD) and T'(y) =y if and
only if:

dorNdu ANdig A -+ Adu@D =0

forl <k =<n.

Application | : Flexible joint robot with the measurement of the arm position.

ROBOT
ARM

FLEXIBLE
JOINT

— X1 arm position, x» arm speed,
— x3 motor position, x4 motor speed.

Nonlinear observers. Part 2. 7.2.8



MISO systems linearisation by generalized state transformation
and generalized input-output injection: Application

Flexible joint robot model. ‘

561=x2
mgl k f
Xo=— —SINXq{ -—(X1-X -— X
2 Il 1 ]l( 1 3) J 2
X3=X4

Equivalent system (¢ = 0) ‘ :

; i f;

¢1 :52—(]_t+ﬁ)y

3 mgl . k k | fif:

C@=Cg- siny—(+7+725)y

; . ]{m JuUm
. mgl .
(3=0-F ——siny———(fi + fo) y
]m ]l ]l]m
: k mgl . k
=-— —=5siny———1Uu
4 T Sy S gE G
Yy =4

via the state space coordinates transformation :

Nonlinear observers. Part 2. 7.2.9

MISO systems linearisation by generalized state transformation
and generalized input-output injection: Application

via the state space coordinates transformation

fi | fo K f2 kK | fife
= [x4,x S4B xq,— X2+ X+ (—+ 22 xy,
¢ k[ L 2:(11+1m)k vy Xt 2+(]m+]1] ) %1
—X — X — X — [ X
1 4+111mf2 sty X2t szmf1 1l

— An observer with a linear error dynamics can be designed.

|Simulation results |

0.2 T T T T T T T 12
L 1
0. =
o
[ g 08
S 2
§ 0 S 06
<
z =
7 Z 04
0.1 g
£ =
£ 202
702 z |
< 2 0
=}
§—0A3 2
< S -02
-04
‘ ‘ L 06 R R
0 2 4 6 8 10 12 14 16 18 2 0 2 4 6 8 10 12 14 16 18 20
-05 Time (s) . Time (s)
Error between real and estimated arm position Error between real and estimated motor position (rad)
(rad)
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MISO systems linearisation by generalized state transformation,
output transformation and generalized input-output injection

Hypothesis : Initial problem with p = 1.

Objective : to enlarge the class of the linearisable systems.

Example 3 Let the nonlinear system

561=x2

vo— A2 2

xz—x2+ X1 X2
Yy =X

The NSC of Theorem 3 is not satisfied — This system is not linearisable.

The NSC of Theorem 3 is satisfied with § = e~ — This system is linearisable.
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MISO systems linearisation by generalized state transformation,
output transformation and generalized input-output injection: N.C and N.S.C

Theorem 2 (Respondek) [Kre85] If nonlinear system (1) (with p=1) is

locally equivalent to system (3) with { = ¢(x, u, 2, - - -, u?~V) and with y=T0),
then:

a%p
If this condition is satisfied then 7'(y) verifies:

dr 02P d=T

=0

. +
dy dyoyn=v " 42

IN.S.C|- By applying Theorem 3 to system (1) with the new output 7 .

Theorem 3 (IEEE TAC) [Glu96] Nonlinear system (1) (with p=1) is
locally equivalent to system (3) by { = ¢(x, u, 2, - - -, u4~ V) and y = T(y) if and
only if :

dax NduAda A -+ A du@D =0

forl <k <n.

with 0« a differential form deducted from the G.1.O.A.m. algorithm applied to
system (1) with the new output.
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MISO systems linearisation by generalized state transformation,
output transformation and generalized input-output injection: Application

Serial DC Motor. Measured Motor Current [Chi94].

. Ry + Ry

x; = —kix1x, —Txl +u y=x;
X'Z = _kzxz - x3 +%K x%

56'3 - 0

— x1 inductor flux, x» motor speed,
— x3 load torque/inertia assumed to be constant.

System equivalent to (qg=0)
=0+ O +Whkeiny 74

. k
(=43 +72 () +w) — kg x2(y)
63 =0

with output coordinates transformation J = In y and state coordinates
transformation { = [Inx1, —k1 xo + ko Inxy, k1 x3]7.

— Design of an observer with linear dynamics errors.
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MISO systems linearisation by generalized state transformation,
output transformation and generalized input-output injection: Application

|Simulation results |

@
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MIMO systems linearisation by generalized state transformation
and generalized input-output injection

Hypothesis : Initial problem for any p, and no output transformation.

Problem : the input-output (I/O) differential equations are coupled.

Example 4 let the nonlinear system:

X1=X2 Yi= X1
X2 =X2 X3
X3=X1 Y2 = X3

The I/0O differential equations (with observability indices k1 =2, k= = 1) are:

YR =p1ye =y, v =

If this system is linearisable, then :

)’?) = (Pg) + @ = (0()/52)’ ) ygl) = P2

- The I/0 differential equation associated to y; is coupled
to the I/0 differential equation associated to y-.

- Use independant variables yi(j ), Jj<k;
A solution: @11 = ¥1Y2, Q12 = = Y{, P21 = V1.
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MIMO systems linearisation by generalized state transformation
and generalized input-output injection: C.N.

I/O differential equation associated to each output: ‘

( (kq—1) (kp—l)’ Wit

ki . . —
¥; ) = Pi(¥1, V1, 0 ¥y s Vo Vp o s Vi L uti=1)

)

Theorem 4 If nonlinear system (1) is locally equivalent to system (3) with
{=¢x, u u, -, u ) and T(y) =y, then:

oP;

oP;
=0 —is
au,((“’“‘”

il =0 8
PG ®)

J
for o = ki (1 =i < p), for any output y; (1 = < p) with an observability index
greater than &; and for any input ux (1 < k& < m).

Proof. If the system (1) is linearisable, then for any output y; (1 < i < p), the
I/O differential equation is of the form:

Yy = U )y

2

- Necessary condition.
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MIMO systems linearisation by generalized state transformation
and generalized input-output injection: Algorithm

Algorithm G.I.O.LA. |
Fori=1to p, P° := P; and gio(y, u, - -, u@?) := 0.
Fork=1to ki P¥ = Pk=1 — [pu—a(v, u, 1, - - -, u@d)]Cki=k+1)

The number of outputs whose observability index is strictly greater than k; — k is

noted d The differential form a) is defined by:

K k
k _ d; oP; 6P (QL)
w; = ZJ 15, (k — =0 dY; +Z] 1 (k k+ql)d

m Ifd¥ < p then:

—1If wl‘/\dyd +1 o+ Ndy, Adu AduA - A dulP=0, then @y is
solution of Z] 1 aq)”‘d i+ X (32) du(q‘)— wffor 1<k <k —1
. ki
P, Vuu, - ':u(ql)) =P

— Otherwise, the system is not linearisable.
m—Ifdf = p, then if dwX A du A duA -+ - A dul@=D= 0, then g is solution of:
i 99, (ai)_
]1akd yj + 20 (q}‘l)du wffor 1Sk <k, —1

. k
(piki(yl uu, - 'u(ql)) =P
— Otherwise, the system is not linearisable.

Nonlinear observers. Part 2. 7.217

MIMO systems linearisation by generalized state transformation
and generalized input-output iniection: N.S.C.

Theorem 5 [P1e96] The nonlinear system (1) is locally equivalent to system (3)

with = ¢(x, u, 2, - - -, @) and T(y) = y if and only if the condition (8) of
Theorem 4 is satisfied and:

- dof ANdy gk, Ao Adypy Adu A di A A du@Y =0, if dF<p,
- dwf AduNdi A A du@) =0, if dF=p,

withl <=i<p, 1 <k <k and ¢ =Max{qy, ", gp}.

Example 5 Let the nonlinear system:

X1=X2 V1= X1
X o = Xo X3
X3ZX1 V2 = X3

The Input-Output diﬂerential equations are: Y@ =y1 y» ) =y

Cha = yadyi - da)ll Ady2=0 - @u=Yy1 ¥y
- Output y: : 0?=—2yidy1 —dw2=0 = @12 = Y3
- output y» : wi = dyi - dwi= 0 - @21 =y

The necessary and sufficient condition is satisfied.
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MIMO systems linearisation by generalized state transformation,
output transformation and generalized input-output injection: C.N.S.

Hypothesis: Initial problem.

Output Transformation results: [ Kre85].
Theorem 4 and 5 are applied to system (1) with the new outputs .
m P, the input-output differential equation associated to each output y.
(1=i=p).

[ cT)l’-‘a differential form derived from the algorithm G.I.O.I.A. applied to system (1) with
the new output coordinates.

Theorem 6 The nonlinear system (1) is locally equivalent to system (3) by

. _ - . .. 0P; dP;

=@, u,u, -+, u@ V) and § = T(y) if and only if ;(;0 = Wxiq) =0
J

foro = ki (1 =i < p), forany output y; (1 <j < p) with an observability index

greater than 4; and for all input ux (1 < k < m), and:

m dG¥Ady e, Ao Ady,Adufdi Ao A du@ = 0, if d¥< p,

u d&v)ic A du A di I\"'/\du(qi_l):O, 1fdi(<p,
withl <i<p,1 <k <k and ¢ =Max{qy, -, gp}.
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MIMO systems linearisation by generalized state transformation,
output transformation and generalized input-output injection: Application

Application | Stepper motor - Speed observer ([Chi93])

Motor model
X1 =Xz =X
X2 = —Kix3-sin(Nx1) + K3z - x4+ cos(Npx1) — Ky - x2
)(':3:—K1-x3+K2')C2'Sin(NrX1)+u1 Y2 = X3
X4=—Ki x4 — Kz x2"cos(Nx1) + uz Y3 = X4

with x; rotor position, x2 rotor speed, x3 and x4 phasis currents.

System equivalent to (g = 0) ‘ :

?1: (o— K41
{o=—Ksy1-sin(N, - y1) + K3 - 2 - cos(Ny - 1)
C3=—Kiy2tun
C4=—Ki-ystus
with output coordinates transformation

~ KZ KZ . T
y=[yuy2+ N_COS(Nryl)v}’3 U sin(N,y1)]

r r
and state coordinates transformation
K Ky .
{ = [x4,x3 + KyXy4, 21 + N—jcos(er4),x2 + N—ism(erzx) I

— Design of an observer with linear errors dynamics.
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GENERALISED PROBLEM

Goal: To determine a generalized state coordinates transformation

{=¢(x, u,u, -, u?) such that the system (1) (with p = 1) is equivalent to:

i1 = &
Co = (3
C:s = (o1
CS"'I = Q+2+¢S+1(y)_)}) ..';y(S)’ u, 1"[; .'.)u(q))
: . , . 9
Core = Gag T @iy, -, 0O w0, - -+, ul®) ©
C.n—l = Cn + gon—l(y,y; oo ;y(S)’ u, l"l: T, u(q))
C’n = §0n(y;y;”',y(s);uyu,”';u(q))
y =4
An observer for (9) is:
é: -4 - C’:+(p()/, .. .’y(S), u, "',u(q))—i-K' C(C_C:)
— Use of outputs derivatives: Diop-Grizzle-Moraal-Stefanopoulou (1994).
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Linearisation by generalized Input-Output injection with outputs
derivatives: Example

Hypothesis: Generalized problem.

Objective: Propose a solution using a limited number of output derivatives,
taking maximum advantage of the system’s structure.

Example 6 Let the nonlinear system:
X1=2Xo2 Yy =X1
Xo = X3
X 3 = X2 Sinx» + X3 +X21+ X1 X2

Input-Output differential equation y(3) =y siny +j+y2+y p

— The NSC of theorem 1 is not satisfied.

- Use of an output derivative: if the system is locally equivalent to:

=G y=a
C.z =t e0))
C3=p3(0,Y)

The Input-Output differential equation is: |3 = % + ¢q

A solution of the problem is: ¢ =y @3=yp-siny+)2+y y
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Linearisation by generalized Input-Output injection with outputs

derivatives: Algorithm

‘Input-Output differential equation of system (1) ‘

y(n) = P(y,y', Ce ’y(n—1)’ u e, u(n—1))

/G.I.O.I.A.d. Algorithm|

Note Py := P and ¢os(y, ¥, =+, y®, u, u, - -+, uD) := 0. For k =s+1 to n, define:
Pi = Pi—1— [0e—1(3, ¥, =+, YO, w11, -+, uD)](=kD

The differential form wx is defined by:

m
0Py 0P
=" _qv® Tk 4y@
W = dy(n—k+s) dy™ + Z kD duj
j=1"7j

-IfdoxANdy Ady A--- AdyC™D Adu Adah - -+ A duled # 0, there is no

solution to the problem.

-Ifdox Ady Ady A AdYyCTD Adu Adu A - A dulTD =0, then
o, Y, v w0 e+, u@) is solution of:

Son Ik 4. (@) _
ay(s) dy(s) + Z;n=1 au(.Q) du] = Wg fors+1<k<n- 1,
]

o, Y, VO, u@) = P,
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Linearisation by generalized Input-Output injection with outputs
derivatives: C.N.S.

Theorem 7 [P1e96] Nonlinear system (1) is locally equivalent to system (9) by
{=¢(x, u,u, -, uV) if and only if:

dokNdy Ady A - AdyED Adu Adee A -+ - A dut=D =0

fors+l<k=mnandv=Max(s—2,g—1).

Application:| Flexible joint robot - measured motor position [Ple94].

‘Flexible joint robot model. ‘

5('1: Xy
. mgl . k
Xp=— T sinxg - — (- x3) - L Xy
J1 Ji I
X3= X4
. k fz u
X4= —(X1-%3) - = Xgt —
Jm Jm Jm

<

Il

=
w
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Linearisation by generalized Input-Output injection with outputs
derivatives: Application

System equivalent to (s = 2,q = 0) ‘
- fi, [
(1=¢ —(]_1+]_2)y
: KK nn 1
=0G-(—+—+t==)y+—
=GOt )Y g,

k fi
=(—— +
{3 =204 i (fitf)y Y

u

>k . _kmgl . Im o 2o _u
= gl T RSG5

Yy =4

with the [state coordinates transformation | :

k k
¢ =[x3, x4 +(ﬁ+f_2) X3, — X1 + 4 X4+ (—+
Ji  Im Jm i T

fife
Jum

) X3,

k
k(24 22+ = x4 foxa) |7

— Design of an observer with linear errors dynamics.
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Linearisation by generalized Input-Output injection with outputs
derivatives: Application

Sliding Modes Control with a sinusoidal reference + encoder noise measurement.

0.06 - 0.03
005 |
T 0.02
£
0.04 | 5
= = 001
E 3 -
003 s
2 s o
8 ° _
2002 £
£ £ oot
2001 3
z °
5 S 002
S o -
3 c
H o
%—0.01 E -
g g om
&-0.02 -
J 0.04

9% 2 4 6 8 10 12 14 16 18 0050 2 4 6 8 10 12 14 16 18

Time (s) Time (s)
Error between the estimated position and Error between the estimated position and
the real position of the arm (rad). the real position of the motor (rad).
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Summary - Extensions "Linearisation” by generalized
input-output injection

System Approach Applications
Geometric DC Shunt motor
. [Kre83, Kre8s5, Serial DC motor: [Chigg,
¢ =AC+ 90k, u) Marg1, Xia89] | Plegs],
Algebraic Stepper motor: [Chig3].
[Gluge, Flexible joint robot:
Ham88, [Pleg4].
Lop97,
Plegs]
Geometric
. . Wil77, . .
C =AC+ o, u,u) [Ke18777] %310110g1]ca1 system:
: Wil77],
Algebraic Bilinear system: [Prog3].
[Prog3]
. \ Algebraic: Numerical
(=AC+ o0, u- - )”(W)r‘ [Plegs] Differentiation:
_ [Diog4]
. o Alg[eft’)lr alc] Numerical
¢ =AC+ (0()’) LY , €97 Differentiation:[Dio94]
o, u (w))
Nonlinear observers. Part 2. 7.227
Conclusions

- Approach based on the structural study of nonlinear systems.
- Using the theory of exterior differential systems.
Supplements

- Generalization of the theory to MIMO systems without calculating I/O
equations([Lop97]

- State affine Case ([Lop98, Sou03, Sou07]

Inverse pendulum

= AW, u){+ ¢(y, u) | Algebraic [Besg6, [Besg6]
Hamg2, Hamoo, Distillation column
Lopg8] [Vieo4]
Prospects

- Necessary and sufficient condition for the existence of a transformation of
output coordinates using an algebraic approach.

- Non-additive input-output injection linearization study

Nonlinear observers. Part 2. 7.2.28



Chapter 7 part 3

Observer design by Transformation into an Affine System

Outline

I Introduction
II State of the art
III Problem statement
IV Transformation

NLS <—> SAS (State Affine System)
V Application to the Inverse Pendulum
VI Conclusions, other results

Nonlinear Observers Chap 7 Part. 3 7.3.1

Introduction,  Objectives

* To expand the class of observers for non-linear systems

= Focus on the applicability of solutions: algorithms and symbolic calculation

* Implementation on experimental site (pendulum)

Nonlinear Observers Chap 7 Part. 3 7.3.2



Observer

Input Output
u 1 Z : X >

*State Feedback
* Filtering

* Diagnostics
e Sensor limitation ...

S

Nonlinear Observers Chap 7 Part. 3 7.3.3

II State of the art: Observer Class for NLS

References Systems Hypothesis Solutions
Bornard,et al[Bor88] z=A(y,u) + d(y,u) ¢ Observability e Exponential local
Hammouri De Léon y=Cz ® u -persistent observers

[Ham90] e High gains
Hammouri, Busawon Observable for all u ¢ Globally e SC
[Ham93] X =AX + 0(x) + ¢(x)u Stabilisable ® Exp local Obs.
y =Cx *  @(x),p(x) Lipschitz = ® High gains
MIMO
Gauthier, Kupka X =Ax+ u(Bx+b) e Accessible
[Gau92] y=Cx e Asymptotic observers.
Observable Dissip. MIMO o High gains
Marques [Mar93] | x =f(x) +g(x)u y 8})s§r\l/abi]13ij[1).f o Asymptotic Observers
[ ]
y =h(x) obal stability ) e High gains
MIMO Dissipative * 3 Lyapunov function

Nonlinear Observers Chap 7 Part. 3 7.34




Possible techniques
Linearisation Modulo one Injection

. 5 =4S+ @ (y,u), * Krener, Respondek [Kre85]
Z ) * Xia, Gao [Xia89]

* Plestan, Glumineau [P1e97]
L
y =C¢

Affine's Modulo Injection system (SAS)
* Bornard, ef al [Bor88]

e Hammouri. De T.eon [Ham911

. z =A(y, u)z +o(y, u), * Hammouri, Gauthier [Ham92]
Z A vy =Cz * Tornambé¢ [Tor93]
* Besancon, Bornard [Bes96]

Nonlinear Observers Chap 7 Part. 3

QOutline

I Introduction

IT State of the art

III | Problem statement

IV Transformation
NLS € SAS (State Affine System )

[IT Application to Inverse Pendulum

IV Conclusions, other results.

Nonlinear Observers Chap 7 Part. 3
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Problem Statement
SNL <> SAS?

Is there a transformation T(): > ZA such that
Z : xX=flxu) (Observable Vu)
y — h(X)

is equivalent to: (SAS)

z

y

A(y, u)z+¢(y, u),

ZA Cz

Nonlinear Observers Chap 7 Part. 3

If 370:>3-3, then with 3 = (y,u)

Z =A0)z+0(9),
y =Cz

2A

A Kalman like observer can be designed (Hammouri, DeLeon, [Ham91]):

A Z=-A(9) Z +9(9) —RLcTC (Z- 7)

2

A
R =—0OR - AT(9)R RA(9)+C'C

such that:

| et 2 < A exp™

Nonlinear Observers Chap 7 Part. 3
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Applications examples

* Synchronous generator: de Léon M., Acha Daza
[Leon98]

7 =A(nu)z +0 (yu) * Inverse pendulum : Besangon, Bornard [Bes96]
A ANAL I Chemical reactor: Guillaume, Rouchon [Gui97 ], Viel

y =Cz [Vie94]

* Hydraulic process diagnostics: Kabor¢, Hammouri,
Othman [Kab97]

Nonlinear Observers Chap 7 Part. 3 7.3.9

QOutline

I Introduction
II State of the art
III Problem statement

IV Transformation

NLS €2 SAS (State Affine System )

V Application to Inverse Pendulum

VI Conclusions, other results.
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Affine system, MISO case (m>1,p=1)

>

x =f(x,u)

Pe):Y > D4

y =h(X)

v
where xeRY,

we R, veR, observable V U

0 A;(u) 0 0 o1 (7 w) ]
Z 0 0 A,(yu) .. 0 P2y, u)
Arz=]: s : : Z+ L
0 0 0 Ap (v, 10) Pn-1(y, 1)
0 0 0 0 L o, (y,u) |
y=0z=2
Nonlinear Observers Chap 7 Part. 3 7.3.11
Preliminary example
1/0 differential equation
. v® _
z, = A,(y,w)z,+¢,(y,u), ¥ \A1+q>1 (p1A1+A1q)2
iz - ‘pz(" ll), F2 Fl FO
— Cz= - A
A = where “1 :A_i
=>vP = 5 A VW48 A VU+AA, 0.0, A LPy)
. y 1’ u 1 B e S o (g |
&yt y® OA DA
d du = ~dy ~d
W = ov0% y+ oyou u oy y + g

® 1s computed from the I/O differential equation.

® intégrable —> 3 A, (y,2)

(First step)

Second step: to check the existence of functions ®,; (3.2,

Nonlinear Observers Chap 7 Part. 3 7.3.12



Algorithm: MISO case

> k=1,...,.n—1 ComputationofAl,...,An —k

yes

o intégrable-

1 (step)

substitution of the Ai in the I/0 equation |

> r:=1,..,n, Jlimination of ¢r—1

esearch of()r :
@ intégrable?

@‘ ~TSynthesis ofd , |<

—— s No solution

l

Nonlinear Observers Chap 7 Part. 3 7.3.13

Conclusions

0 Equivalence SNL to SAS
O MISO
[ I/O Differential equation approach
0 Necessary and Sufficient Conditions
0 Constructive method
0  Synthesis of a "Kalman like* observer

Nonlinear Observers Chap 7 Part. 3 7.3.14



QOutline

I Introduction
II State of the art
IIT Problem statement

IV Transformation
NLS €<= SAS (State Affine System )

V' Application to Inverse Pendulum
* SAS transformation
*  Pendulum control
* Results : Simulation and experiments

VI Conclusions, other results.

Nonlinear Observers Chap 7 Part. 3 7.3.15

Inverse pendulum or Crane

M+m mlcos@ | 7 0 milsin@0 |7 0 F
.|+ £ =
ml cos 6 ml* 0 0 0 o —mgl sin& 0
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Simulation Scheme: Inverse Pendulum observer

INVERSE PENDULUM (OR CRANE) CONTROL and OBSERVER

G—L] >
L . Clock To Workspace1 x1 ref »| Mux |+ »
! —
Initialisation | — > -
PENDULUM GRANE |
| 2B
file Ci_LO P>etat x1 etat-1 [~
P{etat -x2 B in 1
—— Pletat x3 etat-2
~ et ux #1
- otat:3 > fr-| B
Signal P |dot ref |} in_2 > Mux phi
| ddot ref u2 ottt > —[ EI
Reference CONTROL PENDULUM : i > fw
P 1 71 b N omega
Yin_2
— Pin 3 Mux > EI
Z2
P(in 4 poursuite ERROR
OBSERVER
Control Obs
Nonlinear Observers Chap 7 Part. 3 7.3.17
Simulation
Inverse Pendulum observer
mE- =T T Fooo T HE 3
af- — - 4
w
R af- ERT _
-=
z
k]
B 4f- ERRA _
|
42 L i
]
i |
i & o
-N4F 2t ER— i
s | s
o 1z 3+« 5 ¢ | o 1 = a1 « 5 &
t t
Angle position error Speed angle error
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Simulation
Inverse Pendulum observer

a
1]
L]

=]
=

b

5

Pogiion angdairarezle 2 =axtimeaxirad)
=
N

L
[

Wib=re= anqulair= redls =t =stimess rad i)

b
i
i

N | ESFIVIR RUTI PR S NVSH i P TR

o 1 Z a 4 5 L] T
t t

Position trajectory Speed trajectory
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-0 - .

=0 ..--.........é._.-_........_:...._........_'......._._....E........--....é........_._..é............_

T | SRRSO N SN NN PP PSP P

L

Control with state estimation
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Experimental Validation in Crane Mode
Angular position

Estimated angle

Observation error of the angle

Nonlinear Observers Chap 7 Part. 3 7.3.21

Experimental Validation in Crane Mode
Angular Speed

Estimated angle

Nonlinear Observers Chap 7 Part. 3 7.3.22



General conclusions

Observer for a class of NLS

O

Equivalence NLS 3 SAS
Necessary and sufficient Conditions

Constructive method

O O 0o O

Application to a real system

Nonlinear Observers Chap 7 Part. 3 7.3.23

Other available results

0 NLS €& SAS Transformation in the MIMO Case

Direct approach (without calculation of the 1/0 equations)
General matrix A(y,u) and generalised injection (derivatives of
y and u if necessary)

Stability: Controller - Observer (Lyapunov)

O o o 0O

Nonlinear Observers Chap 7 Part. 3 7.3.24



CHAPTER 8
INTRODUCTION TO STABILITY OF
NONLINEAR SYSTEMS

Purpose: Introduction to two robust controls of nonlinear systems:
- Sliding mode control
- Backstepping control

Common points of these two techniques :
- Deterministic approach

- Stabilization by controlled Lyapunov functions

Outline :
- Chap. 8 Definitions and examples of Lyapunov stability
- Chap. 9 Sliding Modes control
- Chap. 10 Backstepping control
Master EPICO M2 Chap.8 Introduction to Stability of NLS 8.1

8. Notion of stability and Stabilization of Nonlinear Systems (NLS) [Zin89]
8.1 Preliminary definitions
NLS equilibrium point :

For x = f(x) + g(x)u — any point (Xo,u,) solution of x = 0.

Remark 1 In general we talk about the equilibrium points of the autonomic system
:x=f(x)

Example 8.1 : the pendulum has two points of equilibrium, 8=0° or 180° (stable or unstable ?)

Definition 1. Stability (in the sense of Lyapunov) The equilibrium point x, is said to be stable if
VR>07r>0:||x(0)]| <r=|x(®)| <R, Vt>O0.

Definition 2. Asymptotic stability (in the Lyapunov sense)

The equilibrium point x,, is said to be asymptotically stable if

Fr > 0: ||lx(0)|| <r =|x(@®)|| 0 when t >0,

Master EPICO M2 Chap.8 Introduction to Stability of NLS 8.2



Sufficient conditions for stability around an equilibrium point

Using linearization by first order approximation of the SNL around the equilibrium point:

. . ) .
(x=fC) > =[3] _ nor i=an.

:xO

Theorem 1. Stability by means of the first order approximation (around a point)
1) Ifthe linearized system is asymptotically stable (the eigenvalues of A have real part < 0)
then the SNL is asymptotically stable.
2) Ifthe linearized system is unstable ( at least one eigenvalue of A with real part > 0) then
the SNL is unstable
3) Ifthe linearized system is marginally stable

(one real part eigenvalue = 0), then we cannot conclude on the stability of the SNL.

1D x=+x+x?forx=0 (2 cases)

Exercices Calculation of the stability of { )k =kx®, k>0 for x=0

Master EPICO M2 Chap.8 Introduction to Stability of NLS 8.3

8.2 Study of the equilibrium for NLS by using Lyapunov functions

Definition 3. A continuously differentiable function V' (x) is called a Lyapunov function if
V(0) =0
V(x) >0 V x # 0 (positive definite)

V(x) <0 V x # 0 (negative semidefinite).

Theorem 2. Lyapunov Stability
For an NLS with an equilibrium point at 0, if there is a function V (x) such that:
V() =0
andfor x #0, V(0) >0and V(x) <0
then the equilibrium point is asymptotically stable.

Remark 2. Stability in the sense of Lyapunov is a mathematical translation of the fact that if

the total energy of a system (linear or not, stationary or not) dissipates continuously then this

system tends to return to an equilibrium state.

Master EPICO M2 Chap.8 Introduction to Stability of NLS 8.4



Remark 3. There is not only one function that can be Lyapunov!
Example of conservatism of Lyapunov functions:

. g 24
For the system : {Cl X1 (xzz )
Xy = _xz(xl + 1)

2 2
xi +x
Let the candidate Lyapunov function V; (x4, x,) = %, then its time derivative

Vi(xq, %) = x2x% — 2x2 — x2 could be < 0 in a domain of R?,

Example in (1,1) or (2,2)?

x? + 2x2

For the same system, the function V,(xq,x;) = 2 has the time derivative:

Vz (x1,x,) = —2x% — 2x2 thatis < 0inall R?!

The first Lyapunov function V1 is conservative because it gives a pessimistic result on

the stability domain of the system

Master EPICO M2 Chap.8 Introduction to Stability of NLS

Exercises: Stability of NL systems

Ex1
x=—x3

Ex 2

x = —x?

Master EPICO M2 Chap.8 Introduction to Stability of NLS
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8.3 Reminders on deterministic controls.

Exact Input/Output linearization problem + pole placement
y':=y is the output of the system after feedback

So in closed loop:

Trajectory tracking problem i.e. exact linearization of the error dynamics
Y' = Yyef — ¥ is now the output.

So in closed loop:
y

Master EPICO M2 Chap.8 Introduction to Stability of NLS

ROBUST CONTROL OF NON-
LINEAR SYSTEMS

APPLICATION TO ELECTRIC DRIVES

Contents :
- Chap.9 Sliding Modes Control
- Chap. 10 Backstepping Control

Master EPICO M2 Chap.8 Introduction to Stability of NLS
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CHAPTER9
SLIDING MODES CONTROL

9.1 Sliding Modes Control of order 1: Seminal works and principle
- Historic framework: control of systems with discontinuous inputs:

- A. G. Phillipov Differential equations with discontinuous right-hand sides, 1960
(Russian), 1988 (English), SPRINGER, Mathematics and its applications.
- Vadim Utkin, Variable structure systems with sliding modes, IEEE Transactions on
Automatic Control, May 1977.

- Principle. Suppose that the nonlinear system to be controlled is written in the form:

{ x=fx)+gx).u

withx e R", u e R™,y€R.
y = h(x) Y

EPICO M2 Chap. 9 Sliding Modes Control 9.1

The control by sliding modes finds its justification by using the notion of stability according to
Lyapunov. The stability is determined using a differentiable function I(x) from A to R* so-

called Lyapunov function ("picture” of the system energy) which satisfies the following

conditions:
{V(x) >0pour x#0, V(0O)=0 (1)
Vi, u) <0 ou<0 (2)

V(x) is positive definite (1), and V (x, u) is negative semidefinite (or definite) (2).
This function will be determined from a "pseudo-output” of the system S(x) called sliding
variable because in closed loop, the system will be forced to slide on the equation surface

S(x) =0.

A particular choice of pseudo-output S(z x)
With the trajectory to be followed y,.f(t), define:

_ ®
S, %) = XiZg Aie (Vrep () — ¥(2))
with A._; =1 and r the relative degree of the output y.
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First-order sliding mode control purpose:

To bring the dynamics of the system onto the surface .S (¢ x) =0 and make them slide on it. The

convergence dynamics of the error is ensured by the choice of the coefficients Ai.By taking the
candidate function of Lyapunov V(t,x) = %S 2 then V =SS

with
._65 asax_as aS

=35t 3: 9t~ +a[f(x) + g(x).u]
=50, t) +S,(x).u

U :_51(x) ot 1. = Up
e Sy (x) " Sy (x)

By choosing u = u,, + v,
where ue,is the so-called equivalent control (a linearizing control of the pseudo output S!), then
after this first feedback :

V = Su,.

To force V < 0 for S=0, it is sufficient to design u,, = —k.Signe(S), with k > 0.

EPICO M2 Chap. 9 Sliding Modes Control 9.3

This last part of the control u,, = —k.Signe(S), k > 0 (of discontinuous type) forces the
system dynamics to converge towards the surface, even if the system parameters are not
perfectly identified, and/or if the system varies slowly over time, and/or if a bounded
perturbation acts according to certain conditions (such as an action at the same level as the

control i.e. "matching condition"). The dynamics of the looped system is shown in Figure 1:

We obtain a dynamic equation of the error which is "forced" to S=0 by u, and which is

autonomous for u, =0.

un S(x) g ()

—|:>+_ g e Yref ™Y
Co—

u, = —k.Signe(S), k>0

Figure. 1. Dynamics error after SM feedback

EPICO M2 Chap. 9 Sliding Modes Control 9.4



9.2 Chattering phenomenon.

Due to disturbances or poorly known or varying system parameters, the "closed loop
system" does not slide perfectly over the surface, it leaves it. The discontinuous control returns
it to the surface.

=> Switching phenomenon around the surface (chattering).

Figure 2. Switching phenomenon around the surface (chattering).

This can be detrimental to some actuators. To limit this problem, one solution is to use softened

sign functions.

EPICO M2 Chap. 9 Sliding Modes Control 9.5

Softened sign functions: examples.

The basic softened sign functions are:

Standard sign Sign’ Sign"'

+1] ‘ +1I — +1 [ :

Figure 3. Softened sign functions

Remark: for digital practical implementation (real sliding mode), the frequency of switching is

limited by the sampling period of the controller.

More complex “sign” functions are also available :

EPICO M2 Chap. 9 Sliding Modes Control 9.6



(a) Lol d'interpolation de puissance (b) Foenction pseudo-signe

tanhis/ &)

Figure 4. Softened sign functions " (following)

EPICO M2 Chap. 9 Sliding Modes Control 9.7

9.3 Example 1 : Sliding Mode Control design (monovariable case)

X1 = XX
J'Cz=u
y =X

EPICO M2 Chap. 9 Sliding Modes Control 9.8



9.4 Uncertain case, robustness analysis.
Reminder§ = 2+ 22 = 24 B f(x) + g(0).u] 1= 5(x,6) + S, (x).u
If S;(x,t),S,(x) poorly known, let's pose:

S1(x,t)i=S1,0x,t) + A4S, (x, t) et Sy(x):= Sy (x) + A4S, (x).
with AS; (x,t) the S; uncertainties and with  |4S5;(x, t)| << |S;,(x, t)|
and AS,(x) the S, uncertainties and with |45,(x)| << |S,,(x)|.

then S = S;,,(x,t) + 45, (x,t) + (S (%) + A4S, (x))u
Sin KSigne(S)

andwithu=-——-———- = §=4;, — (4, + 1)K sign(S)
SZn SZn

where [4;] = |4S;(x) — AS,(x)Sy,, (%) /S20 (%)
[4z] = 1485 (x)/S2n ()| << 1
By choosing S = a — bsign(5),
a Sufficient Condition to have S < 0is b > |q|

= choiceof K =  SM robustness.

EPICO M2 Chap. 9 Sliding Modes Control 9.9

9.5 Sliding Mode Control: Multivariable Case
If the system X to control has p outputs = p switching surfaces of relative order 1.

If ¥ hasm ( 2p) inputs, then

0] =[3] + [o] rel + [o] e

:=A(t,x) + B(x)u
=>» Non-linear static decoupling problem

=> Is Matrix B (x) invertible?

=> If yes, then the "equivalent control” is a decoupling and linearizing control.
S, (t,x) [uln]
Spy(t, )] [Uon

=> If not, is dynamic decoupling possible?

EPICO M2 Chap. 9 Sliding Modes Control 9.10



Example 2. a Multivariable case: unicycle
X1 = (cosxz)u; y1 = x

X, = (sinxz)u; y, = x,
X3 = Uy

Exercise 1

X1 =x%+u; +4,, y; =x; withA;, A, unknown bounded uncertainties.

.’)'C2=x1+u2+A2, y2=x2

EPICO M2 Chap. 9 Sliding Modes Control 9.11

Particular Sliding Surface === internal variable limitation.

Example: Direct Current motor.

EPICO M2 Chap. 9 Sliding Modes Control 9.12



9.6 Application to the Permanent Magnet Synchronous Motor

The Sliding Modes Control of Order 1 is applied to the permanent magnet synchronous motor:
From the equations of the machine, after successive application of the Concordia and Park
transformations, we obtain the model of the permanent magnet synchronous machine of the
form:

x=f(x)+ gy,

i 0
P . . 0 0-
0 |5 ((Lg = Lg)ig + @f)ig —~| [00
g ]((d Cl)d f)q ] 00 v _Cl
.| = Rs . Lq . +110 [d]_|__
Ilzd _L_dld‘l‘pL_dqu L—dl ‘/q ]
a () L R L
—p—fQ—p—ind——siq L0 L
- Lq Lq Lq -

C, is the load torque and is considered as an unmeasurable disturbance.

Outputs to control: 6 — 6,.¢, iz — 0 (linearization of the motor torque by elimination of the

magnetic salient effect (Lq # Lg).

EPICO M2 Chap. 9 Sliding Modes Control 9.13

Design of the sliding modes control of order 1.

From the state equations and considering the motor without load (C; = 0).

First output: rotor position of relative degree 3

Note e, = 0,..y — 6. The surface is defined by S,, = 4y. e, + 1;. €, + &, to which is associated the

candidate function of Lyapunov ¥, = !

= 555. By time differentiation of this function:

V, =8p.8, = S,.(S1 + S2. V)
_ . . fv p . . fv
S1 = —2g. (2 = brep) + Aybres + (7 - 1) [7 [(La = Lo)ig + ¢f]-iq — 70]
14%

with +2[(La ~ Lg) id+gaf].<Lf!2+pL—quQid +f—:iq)

q
Sy = —ﬁ [(La = Lg)ia + ¢r]

di .
The term ﬁ appearing in the calculation of S, has been neglected as weak, but it could be

formally taken into account by using the analytic equation.
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The control V;; to be taken is then V, = ug .4 + v, where:

S

Ugeqg = — =
q’eq

S2

u
Vgn = —S—Z with u, = —KqSigne(S,), Kq > 0.

This control implies V, = —K, S, Signe(S,) < 0.

Second output objective: set i; to O i.e. linearization of the torque by suppressing the salience

effects (igrer=0). Its relative degree is 1:

We define the surface S; = —i; associated with the candidate Lyapunov function

Let's compute V;:

Y . . L Rs . p-Lq . 1
Vi_Si-Si WlthSi—E.ld—E. .lq—a.Vd.
Then define V; = ugeq + Vg p, with
EPICO M2 Chap. 9 Sliding Modes Control 9.15

{ud'eq = RS' id — qu.Q iq
Van = —Lqu, avec u, = —K;Signe(S;), K4z > 0.

And after feedback, we finally get for the synchronous machine a Lyapunov function V =
such that:
V =—K,S, Signe(S,) — Ky S; Signe(S;) <0.

Practical implementation of SM of order 1
- Chattering: softening the Sign function

- Robustness tests with respect to parametric variations.

EPICO M2 Chap. 9 Sliding Modes Control 9.16



9.7 Speed and flux control of an asynchronous machine (Induction machine) *
For an asynchronous machine the af§ two-phase model is:
X = f(X) + gu + E where x = [-Q: DPrar (prﬁ: isaf; isﬁ]T, u = [usou uSﬁ]T,

and ¢ is a perturbation (load torque, ... ).

f1(x) [ (pMsr/]Lr)((praisﬁ - (prﬁisa) — (/D2 ] . . ;
[fz (x)] _(Rr/Lr)¢ra - pﬂq)rﬂ + (Rr/Lr)MSTiSCf 0 0 B ()l/]
f(x) = fg(x) = +p~Q§0r(x - (RT/LT)(prﬁ + (Rr/Lr)MsrisB , g = 0 0 | &= 0
i@ [(Msr/LsL)((Rr /L) Pra — PRYrp) — Visa 1/ols 0 | 0]
fs(x) . 0 1als 0
_(Msr/GLer)((Rr/Lr)(prﬁ - pg¢ra) - VLSB-

R, et R, are the stator and rotor resistances. Ly and L, are the stator and rotor inductances. M,
is the mutual inductance between stator and rotor. ] is the inertia of the system (motor + load),
p is the number of pole pairs, f, is the coefficient of viscous friction and T; is the load torque. The

parameters o (coefficient of dispersion) and y are defined by:

o Mg,2 _ Ly?Rg+Mg %Ry

o:=1-— ) R m—

LgLy oLgLy

* Sliding Modes Control of the Induction Motor: a Benchmark Experimental Test, A. Glumineau, L. C. De Souza Marques,

and R. Boisliveau, Book Sliding Mode Control in Engineering, Ed. Marcel Dekker, 2002, ISBN ISBN 0-8247-0671-4 .
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Sliding Mode Control Design

The outputs to control are y; = Q the rotor speed and y, = @2 = @,,% + (prﬁz the flux
squared. Note that for y; and y,the relative degrees are 2. With respect to the previous SM
control introduction, the selected sliding surfaces are defined by:

So = Qrer =1 — b Wirer — V1) = Lrep — 2 — 1;(2yef — 2) for the speed tracking

St = Gzrer = ¥2) = bOzrer = ¥2) = (02,0 — 9%) = 12 (92, — ©?) for the flux tracking

So we can write the dynamics of the pseudo-output S, (x,t) as:

SO = -Qref — V1 ll(ﬂref - -Q)
[f the load torque is not taken into account by considering it as an unknown disturbance, the

{So(x: u,t) = -éref - fl(xr u) — ll(ﬂref — ()

equation takes the form
1= 501 (%, 1) + Sp21 (X)) Usq + So22(X)Ugp
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With the same technique, we obtain for the dynamics of the pseudo-output Sg(x, t):

Srwt) = 9% = 2Praf2(61) + (L(0))? + @rpfa(x,1) + (f3(2))%)
~1(9%10p = 2(Prafo(X) + Prpf3(X)))

Se(x, U, t): = Spq (%, ) + Spa1 () Usg + Sp22(X)Ugp-
Thus the control is written as :
u = [“a] _ [5021(x) Sozz(x)]_l [_ [Sozz(x, t)] ~ [k1 * signe(so)”
Sk

Usp 21(x)  Sp2(x) Sra2(x,t) ky * signe(Sg)

where the k; are the switching gains.
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9.8 Sliding Modes Control of order 2 (Twisting Algorithm principle)
9.8.1 Goal
e Reduce the switching of the control in case of Sliding Modes Control of order 1
(Chattering)

e Improve sliding accuracy (i.e. to limit the switching zone around the sliding surface).

9.8.2 Way

. : . - @ .
To obtain by feedback S = 0and S =0 with S(x,t) = X/ A;. (yref —y) * where Yrer is the

reference trajectory (i.e. S is a speudo output of relative degree one).

Let the candidate Lyapunov function V (x,t) = %S 2+ %S 2,

V(0) =0,
To have an asymptotic stability the Lyapunov conditions are: V(ix,t)>0,x+#0 .
Vix, t,u) <0,x #0

Its time derivative is

Vix,t,u) =S.S+S5.5=5.(S+5).
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In a first step, the control u can be calculated as for Sliding Modes of order 1:
S=50t)+S,(x,t).u

U= Ugq T+ Vp.

with u,, is a new control to finally reach:

S1(x,t) Un

Thus, Ugqg = 5, 000) an = 5000
as av

S->0 ,— -0 ie. —<0.
dt dt

After applying the control u, it is obtained:
S=u,andS = u,

ie. V=u,(S+1u,).

Or in equivalent ways the stabilization of the closed loop system is obtained by:
S+u, <0if u, >0

S+u, >0if u, <0.

9.21
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In the first order Sliding Modes method, u,, is a discontinuous function of type
u, = —k.Signe(S).

Here, it is considered a discontinuity on u,, with a limitation of u, to 1:
if |lu,| <1andS.u, >0, with a, > |S|

u, = —ay Signe(S)
if lu,| <1andS.u, <0,witha,, <|S|

U, = —a,, Signe(S)
U, = — u, ifu,| >1

This control allows to satisfy the condition V(x,u) < 0.

The choice of these two positive constants «,, and «, define the trajectory of convergence

towards the surfaces
S=0etS =0.

9.22

EPICO M2 Chap. 9 Sliding Modes Control



9.8.3 Phase plane

dS/dt = u,
Whatever the quadrant, 4
I./(x, u) <0
Olm Om
oM & Olm
$>0 $<0

Figure 5. Phase Plane for SM of order 2

An alternative to the calculation of the equivalent control is possible with the original Twisting
Algorithm.
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9.8.4 Original Twisting Algorithm (Levant Int. Journal of Control, 1993)

The control is:

—u lul > 1
u =< —aySigne(S) lul <1, S.v,>0, ayz=]|S|
—a,, Signe(S) |lul<1, S.v,<0, 0<a,<]|S|

with the two positive constants «,, and a,, that must check the following constraints :

ay >y >0
41y
a —
m SO
>CD
a —
M=T
|S|SSO
o<, <|%l<r
Lhwoy—@ >0y ap+@ where < m—|£|— M,

as |, aS .
=+ 2xl <
5+ 54 =0
Remark: the constants «,,, and a,, are thus defined according to the maximum variations of S

and its derivatives, which depends on the trajectories, so the first method is simpler.
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Figure 6. Trajectory in the phase plane: SM of order 1(blue) and order 2 (green) comparison.

Exercise 2. SMoforder 2 x; = x1x;, X, =u, y =x
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9.8.5 Application to the permanent magnet synchronous machine.
From the exposed method for the sliding modes of order 1, it can be defined:

ep = Href -0
Sy =Ao-ep+ 2446, + &
Sy =81 +5,.V,

(5, = —20.(2 = brop) + Ay Bre + (§— /11> . [§ [(La = Lo)-ia + 9] iq -%.a]

A

+7.[(Ld—Lq).ld+(pf].< L, A+ L, Mg +L—:.lq>
p

\Sz = _]._Lq. [(Ld - Lq) id + (,Df]
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Let the candidate function of Lyapunov 1V} = %Sﬁ + %Sﬁ

Let V; control defined by V, = u, .4 + v4, where:

g = — 2
a.eq S,
1

kvq,n g.uqn

—Ugn lugn| > 1
with uq,n = —aMp.Signe(Sp) |uqln| <1, S04, >0, ayp = |Sp|
—myp-Signe(Sy)  |ugn| <1 Spvgn <0, 0<ay, <|S,|
EPICO M2 Chap. 9 Sliding Modes Control 9.27

Identically, in order to control the current i, :

Rs p.-Lg Py 1
. —L—. .Lq—L—
d d

Wy
Let's consider Lyapunov's candidate function V, =V, + %Slz + %Slz

The control V is then V; = uy .4 + v4,, Where:

{ud'eq = RS' id - qu.Q iq

Van = —Lg-Ugn
with
—ud’n |ud,n| >1
ud,n =< —ay;. Signe(S;) |ud,n| <1, Svgn>0, ay =|S]
— @ Signe(S)  |ugn| 1 Sivan <0, 0<ay <IS].
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I1.2. Application

1

3; alphapmp =

Gains : alphami = 3; alphami =1 alphawp

B
88 N
N )
/
\\
/
//
S 28 8 B g 8 3
S _ < 0w

-200

10

Figure 7. tetaref (rad) and teta (rad) wrt time (s)
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Figure 8. Vd (V), Vq (V) wrt time (s)
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Figure 10. Load torque disturbance CL(Nm) wrt time (s)

Figure 9. Vsa (V), Isa (A) wrt time (s)

Comments: Very satisfactory performance in position control. Moreover, chattering is almost
totally eliminated. Controls remain acceptable despite a few peaks in Isa above 10.8 A.

Robustness and disturbance rejection tests
Rejection of load torque disturbances:
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Figure 12. Vsa (V)and Isa (A) wrt time (s)

Figure 11. Angle error (rad, blue) and disturbed angle error (rad, red) wrt time (s).
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Comments: Disturbance rejection is almost perfect; however, there are larger peaks in Isa.
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Robustness tests :

First the resistors are varied by +50% and the inductors by +20%. The result is:

8

‘“%ﬁ
—

2 l /
* y
J — Imperfect model
-6 —— Exact model 1
-8
0 1 2 3 4 5 6 7 8 9 10

Figure 13. Angle error (rad) versus time (s).
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100

50

-50

-100

Figure 14. Vsa (V) and Isa (A) versus time (s).

Comments: This control is very robust even if the errors in the model cause position deviation
peaks to be increased.
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Comparison of order 1 and order 2 sliding modes

For the two methods compared, draw the following 3D parametric curve:
X(t) = Ep(t) := Ep, (position error)
Y(t) = %(position error):= dEp

2
Z(t) = % (position error) := d2Ep

as well as the projections in the Z=0 and X=0 plane.

The curve corresponding to method 1 ( orderl + Sign" ) is drawn in green and that of
method 2 (order2) in red.

The plotted part corresponds to the response to the second ramp.
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Projection in plane (dEp,d2E
sobr® plane (dEp,d2Ep)
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Projection in plane (Ep,dEp)  Projection in plane (Ep,dEp) (zoom (0,0))
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2
Figure 15. Error planes responses: Ep, %(error):dEp and % (error):=d2Ep.
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Conclusion Sliding Mode of order 2 applied to the synchronous machine

[t can be noticed that only a little chattering is present on the controls.
The performance goal is obtained.

9.8.6 Conclusion SM order 2 :

- Finite time pour S, S, robustness and precision without "chattering"!

- What about sliding modes higher than two? (§ = 0, $§=0,§=0,. 7?7
Yes it exists (precision proportional to the order).
Experimental results: Sensorless control of a MAS by higher-order sliding modes
(IFAC08).
- Complementary technique: "Integral Sliding mode": the initial surface "passes”
through the initial conditions of the system and is modified to go to the "objective
surface".
- others development: to automatically compute the gain of the discontinuous

control (real time) i.e. Adaptive Sliding Mode Control.
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CHAPTER 10
ROBUST CONTROL
VIA BACKSTEPPING

Master EPICO Chap. 10 Robust Control via Backstepping Control 10.1

10.1. Introduction to Backstepping Control

Principle: the Backstepping Control is a recursive methodology for the construction of robust
nonlinear control laws from Lyapunov functions. The reference documents on Backstepping are
[KANE92], [KRST95], [SEPU97]; see also [FOSS98].

Goal: To establish Robust Control Laws with respect to the "quality” of the model and / or to the
bad knowledge of the parameters. This method is complementary to the deterministic nonlinear
controls (Linearization, Decoupling Control, Trajectory tracking, ...).

How: The main property of the Backstepping Control is to make the looped systems equivalent
to stable cascading subsystems of order 1 within the meaning of Lyapunov functions.

The control is therefore based on criteria of Lyapunov stability with respect to an equilibrium
point or a reference to follow.

Note 1: This objective can be obtained by controlling only the “bad nonlinearities” i.e. by limiting the
constraints on the control input.

Note 2: The structure of the system must allow this recursive methodology (usually the case): output

controllability condition.
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10.2. Integrator Backstepping Method (basic method)

Consider system X: X1 = f1(x1) + x,
5C2 =Uu
y=x1

The purpose of the control will be to force y to 0 when t — c and to make the equilibrium point

"Globally Asymptotically Stable" or "Globally Exponentially Stable".

The only equilibrium point with y = 0 is: (x4, x,) = (O, —f(O))

corresponding to x; = f(x;) + x, = 0.

Preliminary notation: Change of coordinates:
z=@ (x):=[z,z2]"

where @ is a diffeomorphism (invertible with @ (x) and @ -?(x) differentiable ).
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Integrator Backstepping Algorithm
Step 1.
Note the error z; = x; — 0, and consider a subsystem defined by the first equation:
2y Zy=f(z) +x,

Consider:

e Xx, asthe "control" of this subsystem (a pseudo or virtual control)

e the candidate Lyapunov function V;(z;) = %le then V, = z,z; = (f(z1) + x,)7;.
To stabilize the subsystem X, a sufficient condition is that V; is a Lyapunov function. For this,
just take as a control

X, = —f(z,) — kyz; withk;>0. ThenV,(z;) = — k,z? !

But x, isnotareal control!lItisa “pseudo control”. So we note:
X2q:= a1 = —f(z;) — ky2z; the desired control to stabilize the dynamics of 2
and we note the error z, = x, — x,; between x, and the desired control.

) XZ=Z2+ de=Zz+a1
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Then X, 2, =f(z;) +a;+2zyand V; = (f(z)) + a; + 25)z, = —k 2% + 2,2, @)
with ki the closed loop gain of dynamics 2. The control term is now z, whose dynamics are

Zy =Xy — Xpq = U— Xpq (and 27 7y = f(z1) + x3)

Step 2.
Consider the function V,(z) = V;(z;) + %Zzz (stacked Lyapunov functions).

then with (*)

VZ = Vl + 2222 = —k1212 + Zz(u _de + Zl) and 22 = J'CZ - dl =Uu _X‘Zd

To stabilize the complete system (i.e. V2 is a Lyapunov function), it is sufficient to take as a control

u = 'X‘Zd - Zl - kzZz Wlth k2>0. Then, Vz - —k1Z12 - k2Z22 < O fOI‘ Zl * 0, ZZ * 0-

The z dynamics of the closed loop system are stable: y === (
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Note 3: Computation of x,,4
To avoid temporal derivatives terms in the control, one can express the temporal derivatives

according to the dynamics of the state:

: df (x1) - : of
Asxyq = —f(21) — k121, X9 = — aixll) X1 — kixq = —(%11) + k). [f (x1) + x,].

Note 4: The closed loop system is made up of stable "cascading" subsystems.

Exercise 1: for f(x;) = — x; (linear case), in original coordinates, the integral backstepping

algorithm leads to the following control law:

u = _(2 + klkz + kl + kz)xl - (kl + kz + 1)x2: == _lel - szz

(Poles placement, ...).
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10.3. Backstepping coordinates transformation

The new coordinates are the differences between the references (output or virtual controls)

and their values.

7= (x), [Z] = [xz - f(;cll) - klxl]

x=@1(z), [iﬂ = [ZZ + f(ZZ11) + klzl]

The dynamics written in the new coordinates (z,,z,) are

o e e M EA R R

with K positive definite diagonal matrix and S antisymmetric matrix (S = —ST and z7Sz = 0).
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10.4. Generalization: Backstepping closed loop stability study

With these notations and for n dynamics, the general Lyapunov function Vn is written

1.1

V, = 52z
thus 5= EE 2Tz + = ZT( Kz + Sz)
d d
— (D) =—@)T" = (—Kz+ S2)T = —zTKT + zTST

) 1 1 1
V, = > [—zTKTz + 27STz] — EZTKZ + EZTSZ

with K is diagonal = KT =K, and S = —ST
=V, = —zTKz < 0 with Kdiagonal > 0.

so the equilibrium point of the closed loop system is globally asymptotically stable (GAS).
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10.5. Integral Backstepping and linearizing control.
Initial note: The integral backstepping method is a linearizing control since the objective is to
exactly "compensated” for the nonlinear function f(x;) but this implies:

=>» aperfect knowledge of f(x;)

=> acontrol sensitivity to modeling errors

=>» a maximum energy penalization of the control

Solution: the Backstepping gives the possibility of exploiting the "good" non-linearities ".
Example: consider
flx) = —agx; —aj.xt —az. 1 x; | .x;
where ay, a1 et a; are positive constants,

2 the only destabilizing term in the expression of f(x;)is a;x?.

=> to stabilize the system, it is therefore sufficient to eliminate this term with,

for example: x,; = a’yz% — kyz; witha'; := a;.
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=> the control law is simplified and "minimized": the control is only "used" for stabilization.
=> In addition, it is no longer necessary to perfectly know a, and a,.
=> Moreover, to “desensitize” the command of the knowledge of a1, one can add a stabilizing

nonlinear damping overstating the term a;x7 mmp a'y > Aymex > 5.

mmm)  More robustness.
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10.6. Another solution: Backstepping Control with a nonlinear damping.
For the example above, the destabilizing term a;x? (with a; < @4, ) can be "dominated" by
adding a nonlinear damping term proportional to x3 :
X2q = —[k1 +11(21)]2,
with & >0 and
11(z,) = B12{ avec f; > 0

So, 71 = f(z) + %24 + 2,

= —Qoz; — 012{ — az|z112y — (ky + B12{)21 + 2,

= —(ao + azlzi| + ky)zy — ayz{ — B177 + 7,

The calculation of the Lyapunov function for subsystem 1 gives:

1 2
Vi(zy) = 521

Vi=—(ap+azlzl +k1)212 - a1Z13 - ﬁlzf +z,2,
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The time derivative of the candidate Lyapunov function V,(z) = V;(z;) + %222 is:

Vo =—(ag+ay |z | +ky)z} —a 23 — Byzf + 2,(z, + u — ay)

By taklng u = .7.C2d - kzZz - Z1, with kz > 0 then

v 2 3 4 2
Vo, =—(ap+ay | zy | +kq)zi —ayzi — Py27 — kp 235,
V — 2 _ k 2 _ 2 k 2
2=~y |z | z{ 223 —z1(ag + ky + a2y + PB127).
a%max

— Qoin  implies V, < 0.

Asa, > 0,6; > 0,k, > 0, by choosing the gain k; > 4p
1

Thus the controller does not require the exact knowledge of the parameters of the model ao, a1

and as.
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10.7. Integral Backstepping: mismatched perturbation rejection
In the case where unknown terms bounded and described by piecewise constant functions (or
with weak temporal variations compared to the dynamics of the system) come to disturb the
behavior of the system, it is possible to reject these classes of disturbances.
Principle: Let a system X1 = f1(x1) + g1(x1)x, + by Y =2x
Xy = fo(x1,%2) + g2 (%1, x2)u + by
with b; and b, unknown bounded disturbances that are piecewise constant.
b, is a mismatched perturbation. Only b, is directly "accessible” by the control (matching

condition). The standard calculation of the Backstepping Control gives:

Step1l Let z; =X —Xypep, 21 21 = —Xqpes + f1(x1) + g1(x1)x, + by .
with Xag = g1(x1)7" [ X1ref — f1(x1) —k1z1] and  z; =x;, —xyq
then 2, 2, =—kyz; + g,(x1)2z, + by.
Because of the disturbance b;, the convergence of z; is no longer assured when z, is forced to 0

by step 2 of the Backstepping !
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Solution: add an integral term in z, (i.e an observer of the perturbation)
1 ot 1 ot
Zy = Xy — Xpg +T_-f0 71dT,S0 Xy = Zp + Xpqg _T_-fo z,dT .
i1 i1
) 1 1t
Then 21 71 =——2z1+ g:1(x)[z, — — [ z;dt] + by
Til Til 0

If Backstepping step 2 forces z, to zero, then the integral term makes it possible to reject b; that

is not “directly accessible" by the input (mismatched disturbance).

Step 2
. ) ) 1 ) 1
Xy Zy =Xy — Xyt 1T X +T_i121 + f2(x1,x2) + g2 (%, x)u + b, .

From where a control
t

U= gp(x1,%2) " |Hoqg — 721 — k2o — fr(x1, %) — szfl
T; Tiz Jo
gives the dynamics: Xy Zy=—kyz, — Tifot z,dt + b,
i2
with the integral term which makes it possible to reject b, a disturbance directly "accessible" by

the input (matched disturbance).
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10.8. Conclusion
A robust controller is obtained with the Backstepping approach
- complementary to exact linearization requiring exact knowledge of the model.
- The basic method presented above can be generalized to cascading systems (Nonlinear
block Backstepping) and to systems with bounded unknown nonlinearities (Nonlinear

Damping or Adaptive Backstepping).

Example: Speed control of the induction motor (reduce model)
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10.9. Example: Application to a synchronous machine with permanent magnets (European
CRAFT contract)

The application of the Integrator Backstepping method to the permanent magnet synchronous
motor was carried out in [KRST95], [GLUMI15] in order to control the motor position.

The motor model state equations are established in the dq reference frame linked to the rotor
position:

X =fx) +gxu

. © fo [0 0]

g %((Ld _Lq}gid +‘Df2iq —7v - 7] (1) 0 v,
i | —L—;id +piQiq 7, (l) {VJ
q _ —p(ZQ—pZQid —f;iq |1 0 Z_

with 6 the rotor position; 0 the rotor speed; ig, i, the stator currents in the dq frame, Vg, V,, the
voltage control inputs, Ry the stator resistance, Ly L, the stator inductances, f,,/  the viscous
damping and the inertia of the motor-load system. C; is the unmeasured load torque (i.e. a bounded
unknown disturbance). The reference position path is noted 6.
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Step 1: Note the difference between the position of the motor and its reference:
71 =0 —0.=¢& —ay,withé&; =60 and @y = O+
By differentiation and using the backstepping symbols, we get:

Z; = Sé1 —
‘ =&+ B
Wlth 52 = 51 = Qand El = —do.

Consider the candidate Lyapunov function V; = %le

Then V; = z,.(&, + B,). If &, was a real control input, we would take
. $2 = —w1.2y — f1w; >0
to obtain V; < 0.

Since this is not the case, note @y = —w;.z; — f;and the error z, = §, — @;. Then

Zl == Zz - (l)l.Zl
Vl = _(Ul.Zf + ZI'ZZ
with z, is the virtual control of the first subsystem.
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Step 2:

By differentiation of this second error z,:
Z; = éz —a
Ppr. P .. _h .
= qu +7(Ld — Lq)ldlq — TUQ —ay
=83+ B

with &; = p']ﬂiq and S, = ?(Ld — Lq)idiq - %Q — a; (withoutload torque) (.

Consider the candidate Lyapunov function V, = V; + %222 Then
Vz == _(l)l.Zf + Zz.(zl + 53 + ﬁZ)'
If &; was a real control input, we would take &; = —z; — w,.2, — B,w, > 0 to force V, < 0.

Then we note a, = —z; — w,.Zz, — 3, and the error z3 = {3 — a,. This gives:

Zy = 73— WyZy — 71
V, = —wqz2 — wyz2 + 232,
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Step 3: By differentiation of this third error:

Lq Lq JLq
. . . . p.
with ,83=w —wQ—&Qld—&l —azandK=ﬂ.
J Lq Lq Lg 1 J.Lq

We notice that a real command has appeared (V). Consider the candidate Lyapunov function:
Vs =V, +.2%
Then Vi = —wy.z8 — w,.25 + z3.(2z, + B3 + K.V,). In order to force V3 < 0, it is sufficient to
apply the control:
Vg = %(—Zz — w373 — f3)wz > 0.

Thus, the first three components of the state are controlled by the Backstepping feedback.
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Step 4: The fourth component i; must be stabilized around 0 (minimization of the effects of
reluctance on the torque). Its dynamics are described by the differential equation:

s Rs . p-Lq . 1
Zy = lg = —ald +H.qu +an.

Consider the candidate Lyapunov function: V, = V3 + %ifl. This gives:

. . i R. . p.L . 1 .
V, =V, + iy (—L—;Ld +E=0i, +an)V3 <0.

And V4 = —pLyQi, + Rig — Lyw,igw, > 0, yields V, < 0.

Conclusion
We can write our loop system in the form:

7 wy, 0 0 07 [z 0 1 0 0] [~
Zz‘ _ I 0 w, O 0 ‘ Izz n -1 0 1 0] |2
Z3 0 0 w3 0]z 0 —-1 0 0]|z
Zy 0 0 0 w4l |24 0 0 0 0] L2

which is the form provided by the "Integrator Backstepping" method.
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10.10 Motion Control Benchmark: Experimental results (European Contract CRAFT Auto
Drive)
The controller is tested on three cases of inertia in the framework of the Motion Control Benchmark
(CRAFT Contrat):Load inertia = [ 0 (unloaded drive) ; 5* drive inertia ; 10* drive inertia].
Step 1 with some basic measurements the open loop time constant of the currents (To_id,
To_iq) and the mechanical time constant (T,_0) are approximated.
Step 2 The desired closed loop time constants are then chosen Tei 14, Te_1g, Ter_0 (i.€ the

choices of wq, w,, W3, w,):

ia control iq control |Speed &Position Control

Toia [0.0036's |To_iq|0.004s | To 0 | 70s

rig |[1.11 r_iq 1. r o=r_p|350

Teig 0.004 |Te iq0.004 | Ta o 0.2

w3 250 W4 250 2 15

The tuning is computed with the estimated parameters and applied to case 1 and 2 of the Motion

Benchmark.
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Positions: reference, measure (rad) Speed: reference, measure (rpm)
100 ‘ 5000
Case 1. ~——— TetaRef
. ——— Teta
Inertiaload=0 5 0
0 ‘ time (s) 5000 ‘ time (s)
0 0.5 1 1.5 0 0.5 1 1.5
10 —Currents: Id. Iq (A) 500 Yoltages: V.Vq (V)
5 — Iq 0 MMMMMW | —— Vq
mt w i Ww
O ‘ 1 -500¢
5 ‘ ‘ time (s) -1000 ‘ ‘ time ()
0 0.5 1 1.5 0 0.5 1 1.5
5 Currents: Isa, Isb (A)
I —— Isa
‘ Wi ——— Isb
0 Wﬂw MWWW i
time (s)

0 0.5 .
These measurements show that the max values for currents respect the motor limitations.
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Case 1.
0.1

Position error (rad)

Inertiaload = 0
0.05+

_01 L L L L L

0.1 0.2 03 04 05 06

200

Speed error (rpm)

100

-100+

-200 ! ! ! | |

o “”WW“WWW“WWMWMMMMWWMW WM N WWWWW ]

| | time (s)

0.1 0.2 03 04 05 06

Experimental resu

07 08 09 1 1.1

Its case 2
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Case 2. -
Positions: reference, measure (rad) Speeds: reference, measure (rpm)
Inertia load = 100 ‘ 5000
——— TetaRef
5 * drive inertia Te e
7 eta
50t / \ ot
time (s time (s)
0 © -5000 ‘
0 c ld l A 1.5 0 0.5 1 1.5
t 1 :
10 urrents: q(A) 500 Voltages Yd, Vq (V)
0 L
0
-500
-10 ‘ ‘ -1000
0 0.5 1 1.5 0
Currents: Isa Isb (A)
10 ‘
0 L
time (s)
-10 ‘ ‘
0 0.5 1 1.5
Experimental results case 2
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Case 2.

Inertia load = Position error (rad)

5 * drive inertia

-0.1r

_02 L L L L L L L L
0.1 02 03 04 05 06 07 08 09 1 1.1

Speed error (rpm)
15 ‘ ‘

10+
51

1
Al WMWM W i “\ W’ W‘M W MVM J

_10 L L L L L L L L
0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1 1.1

MWMWM

o

time (s)

Experimental results case 2
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Case 3. Inertia load = 10 * drive inertia.
Step1 Drive and process parameters estimation.
Drive manufacturer Identified
parameters parameters

R (Ph - Ph) 6.5Q [Rs 5.61 Q2

L (Ph - Ph) 30 mH[Ld 18 mH

Is_eff 3.8A Lq 20 mH

Jm 0.37g Phif 0.4 Wb

m?2
J total 4 gm? |fv 0.013 102 kg m?s!
J total 5103 kg m?
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Step 2 Design of Backstepping controller (Case 3. Inertiaload = 10 * drive inertia).

ia control iq control Speed Control | Position Control
To_ia |3.2 ms Toiq |3.56ms  |Te_ 0 |384.6s |To_p [384.6s
r ia 542 r_ig [6.03 r o [38460 |r_p (96150

Toa_ia |0.59ms |Tea_iq [0.59 ms Ta_o |0.01s Ta_p [0.004 s
™3 1700 rad/s |mq4 1700 rad/.s |®» 100 rad/s |wq 250 rad/s
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Case 3.
Inertia load = Positions : reference and measure (rad)
100 T T T T T
10 * drive inertia.
50 8
0 i
50 ‘ , ‘ , ‘ time (s)
0 0.2 0.4 0.6 0.8 1 1.2 14
5000 ‘ Spéed (rpm) ‘
0 /\/ J
-5000 ‘ , ‘ , ‘ _ time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2 " Position error (rad)
0 w |
time (s
_02 | L | L | ( )
0 0.2 0.4 0.6 0.8 1 1.2 14

Experimental results case 3
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Case 3. Inertia load =

10 * drive inertia. Voltages: vq,vd,Eond (V)
1000 ‘ ‘ \ \

500 e

e —
time (s)

_500 ] ] ] I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4

T T

Currents: id, iq '(A) %

Currents isa, |sB (A)

o . 1 mmm ol

5 time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Experimental results case 3: Electrical voltages and currents
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Experimental tests conclusion (CRAFT CONTRACT)

The previous sections results show that the auto-tuning (identification and controller design) is
realised for the Motion Control problem when using a Backstepping Control. Nevertheless, for
some industrial applications, it is necessary for the users (control technician) to have the
possibility to adjust the controllers with a minimum of control theory knowledge. That must be
carried out by using tuning meta-parameters as Faster tuning, Slower tuning, ... . These meta-
parameters are used to modified the closed-loop time response over open-loop time response
ratio given by r_id, r_iq, r_o, r_p.

The initial values of tuning have to be adapted to the performance of hardware: sampling time
computation of the board processor, inverter frequency, noise sensitivity .... This implies the
initial ratio has to be chosen with respect to these constraints. The best result could be obtained
for best initial manufacturing tuning with the knowledge of the controlled motor drive.
Roughly speaking, accurate data is the key of good performance. Thus, the user has to privilege
the knowledge of the motor and load data. If these data are not available, the user has to choose
the most significant plant conditions in order to start the auto-tuning procedure to obtain the

best results.
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Many others results for:
- Permanent Magnet Synchronous

- Induction motor are in the book:

Advances in Industrial Control

Alain Glumineau
Jestis de Ledn Morales

Sensbrless AC

Electric Motor
Control

Robust Advanced Design Techniques and
Applications

AIC @ Springer

Springer

Motor (PMSM, Lgq = Lg)

Engineering : Control

Glumineau, Alain, de Leon Morales, Jesus

Sensorless AC Electric Motor
Control

Robust Advanced Design Techniques and Applications

« Explains how partial system knowledge can be avoided by making electric
motor control robust

« Provides specific detailed treatment of the observability problem for
trajectories of specific hard-to-measure system parameters

« Details genuine experimental results rather than being confined to
simulations

This monograph shows the reader how to avoid the burdens of sensor cast, reduced internal
physical space, and system complexity in the control of AC motors. Many applications fields—
electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit.
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Comparaison of Robust Non linear Controls of AC machines with observers

- Surface Permanents Magnets Synchronous Motor (Ezzat 2011)

Control laws

HOSM Pre Compute Backstepping Homogneous

1103 en

trajectories HOSM
Simplicity of development *HEAK KKK KK * Kk
Simplicity of tuning * ok * Ak *EF A
[teration Time Dspace DS 36 us 16 us 36 us
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- Interior Permanent Magnets Synchronous Motor [HAMI13].

Control laws
Backstepping | HOSM Precalculated traj. | Homogenous HOSM
Experimental results Yes No Yes
Simplicity of tuning xA A x A KA A
Convergence Exponential Finite time Finite time
Computation time by
Iteration 11 us 26 us 16 us
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- Induction Motor [TRAOO0S].
Controls
PI controller (FOC) SM of order 1 Backstepping HOSM order 3 (PT)
Observable area Stable Stable Stable Stable
Unobservable area Stable Stable Stable Stable
Nominal case Convergence Convergence Convergence Convergence
Robustness + 50% kK K K % Kk K ok ok Kk ok K K
Rr
Robustness +10% o *x oA R ok kK
Lr
Robustness + 10% *ox *ox KA Kk A kK
Ls
Computation time 10 + 20* 11+ 20* 12 + 34 ** 35+434**
Control+Observer
us

* Interconnected Observer,

** Adaptive interconnected observer
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