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Goals
Compare interpolation, weighted least squares and hyperinterpolation on
the Cubed Sphere grid.

Get an efficient scheme for spherical approximation using spherical
harmonics.

Cubed Sphere grid
Equiangular Cubed Sphere
with step π

2N , CSN ⊂ S2

Fig. CSN (white dots) is obtained by

projection of a meshed circumscribed

cube (N = 3).

Spherical harmonics
Space of spherical harmonics with degree ≤ D,

YD = Span{Y m
n , |m| ≤ n ≤ D}

f ∈ YD admits a unique expansion

f = [Y m
n (·)]|m|≤n≤D f̂ =

∑
|m|≤n≤D f̂

m
n Y m

n

Fourier-like coefficients:

f̂ = [f̂ mn ]|m|≤n≤D ∈ R(D+1)2

Vandermonde matrix on the Cubed Sphere

AD
N = [Y m

n (x)] x∈CSN
|m|≤n≤D

∈ R(6N2+2)×(D+1)2

Data approximation
Find f ∈ YD such that f (x) ≈ y(x), x ∈ CSN.

Data: y = [y(x)]x∈CSN
∈ R6N2+2

Unknown: f ∈ YD, with Fourier coefficients f̂ ∈ R(D+1)2

Matrix writing: find f̂ ∈ R(D+1)2
such that AD

N f̂ ≈ y

Application: F : S2 → R is approximated by f from y = F |CSN

Lexicographical interpolation

inf
f ∈Y4N−1

f |CSN
=y

(‖f̂4N−1‖, ‖f̂4N−2‖, . . . , ‖f̂0‖), with f̂n := [f̂ mn ]|m|≤n ∈ R2n+1 (LI)

For D = 4N − 1, there are spherical harmonics f ∈ YD which interpolate y ;
among those spherical harmonics, one selects the one which minimizes
(‖f̂D‖, ‖f̂D−1‖, . . . , ‖f̂0‖) for the lexicographical ordering in RD+1 [2, Chapter
6]. In practice, the numerical degree is D = 3N and the computation is based
on an orthogonal factorization of A3N

N under a suitable echelon form, as in [1].

Weighted least squares

inf
f ∈Y2N−1

∑
x∈CSN

ω(x)|f (x)− y(x)|2, with ω : CSN → (0,+∞) (WLS)

We assume that ω is the interpolatory quadrature weight from [3]. The choice
D = 2N − 1 is a numerical guarantee that the problem has a unique solution
and a low condition number [4]. The normal equation associated to (WLS) is

(A2N−1
N )ᵀΩA2N−1

N f̂ = (A2N−1
N )ᵀΩ y , with Ω = diag(ω(x), x ∈ CSN). (?)

Hyperinterpolation

f ∈ Y2N−1, with f̂ = (A2N−1
N )ᵀΩ y (HI)

In this way, f̂ mn ≈
∫
S2 F (x)Y m

n (x) dσ if y = F |CSN
and the quadrature rule ω is

accurate enough, as in [5]. The approximation (HI) can be understood as the
zero-th order term of a Neumann series corresponding to (?).

Approximation of test functions
F1(x) = 1uᵀx+0.1>0

F2(x) = uᵀx+0.1
1.1 F1(x)

F3(x) = F2(x)3

F4(x) = eu
ᵀx−e−1
e1−e−1

Fig. Four zonal functions, with axis u = 1√
14

(1, 2, 3), and with various

smoothness properties. (The grid CS4 is superposed on the plot.)

Numerical results

Fig. Comparison of (LI), (WLS) and (HI) on the four test functions.

Properties of the normal matrix

(A2N−1
N )ᵀΩA2N−1

N = I− EN
EN is block diagonal (12 blocks)

EN is symmetric, sparse and “small”
N 1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

Sparsity score (%) 0 0 0 0 6.5 5.1 6.9 5.9 7.1 6.3 7.2 6.6 6.8 6.8 6.6

Spectral radius 4e-16 7e-16 2e-15 2e-15 2e-2 9e-3 8e-3 9e-3 7e-3 7e-3 4e-3 4e-3 3e-3 1e-3 9e-4

Tab. Sparsity score (with threshold 10−14), and spectral radius of EN.

Convergence of the Neumann series for (WLS)

Fig. Approximation by a k-th order Neumann series: spectral radius of
[(A2N−1

N )ᵀΩA2N−1
N ]−1− (I + EN + · · ·+ (EN)k) (thresholded at 10−17).

Theorem (Optimal quadrature rule on low resolution grids)
Let 1 ≤ N ≤ 4. There is exactly one grid function ω : CSN → R that defines
an optimal quadrature rule with respect to the degree of accuracy. It has the
octahedral symmetry, degree 4N − 1, and is given as follows.

Algebraic expression of optimal quadrature weights

N x1 x2 x3 ω(x1, x2, x3)

1 1√
3

1√
3

1√
3

π
2

1√
3

1√
3

1√
3

9π
70

2 1√
2

1√
2

0 16π
105

1 0 0 4π
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3

1√
3

1√
3
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3 1√
2+t2

1√
2+t2

t√
2+t2

61π
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3π
√

3
560

1√
1+2t2

t√
1+2t2
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61π
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with t = 2−
√

3

N x1 x2 x3 ω(x1, x2, x3)
1√
3

1√
3
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3

729π
20020
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2+s2
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2+s2
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2+s2

2053π
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√
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4 1√
1+2s2

s√
1+2s2

s√
1+2s2

2053π
51480 + 183π

√
2

80080
1√
2

1√
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1√
1+s2

s√
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0 2048π
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1 0 0 736π
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with s =
√

2− 1

Tab. Weights of the theorem, computed by integration of a
Lagrange-kind basis from [2, Lemma 6.1].

Conclusion and discussion
(LI), (WLS) and (HI) look similar for the non-smooth functions Fi , i ≤ 3.

(LI) and (WLS) look similar for the very smooth function F4, and they
outperform (HI) for 5 ≤ N ≤ 25.

For 1 ≤ N ≤ 4, (WLS) reduces to (HI), because the chosen weight has
the degree of accuracy 4N − 1 (it is the optimal one).

More generally, (WLS) can be solved efficiently by a few iterations of
suitable iterative solvers, due to the structure of the normal matrix.

For instance, compromises between (HI) and (WLS) have been achieved
using truncated Neumann series.

Perspectives include the use of fast spherical transforms [6] to reduce the
computational cost.
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