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Rethinking Self-Attention for Multispectral
Object Detection

Sijie Hu, Fabien Bonardi, Samia Bouchafa, Helmut Prendinger, Désiré Sidibé

Abstract—Data from different modalities, such as infrared
and visible images, can offer complementary information, and
integrating such information can significantly enhance the capa-
bilities of a system to perceive and recognize its surroundings.
Thus, multi-modal object detection has widespread applications,
particularly in challenging weather conditions like low-light
scenarios. The core of multi-modal fusion lies in developing
a reasonable fusion strategy, which can fully exploit the com-
plementary features of different modalities while preventing
a significant increase in model complexity. To this end, this
paper proposes a novel lightweight cross-fusion module named
Channel-Patch Cross Fusion (CPCF), which leverages Channel-
wise Cross-Attention (CCA), Patch-wise Cross-Attention (PCA)
and Adaptive Gating (AG) to encourage mutual rectification
among different modalities. This process simultaneously ex-
plores commonalities across modalities while maintaining the
uniqueness of each modality. Furthermore, we design a versatile
intermediate fusion framework that can leverage CPCF to
enhance the performance of multi-modal object detection. The
proposed method is extensively evaluated on multiple public
multi-modal datasets, namely FLIR, LLVIP, and DroneVehicle.
The experiments indicate that our method yields consistent
performance gains across various benchmarks and can be ex-
tended to different types of detectors, further demonstrating
its robustness and generalizability. Our codes are available at
https://github.com/Superjie13/CPCF_Multispectral.

Index Terms—Multispectral, Attention, Intermediate fusion,
Object detection, Deep learning.

I. INTRODUCTION

BJECT detection involves extracting items of interest

from input data and locating their positions, which
has a wide range of applications in different areas, such
as autonomous driving [1], security surveillance [2], and
disaster relief [3]. In recent years, numerous advanced ob-
ject detection methods have emerged [4]-[0], demonstrating
outstanding performance on various tasks with color images,
i.e., RGB, as inputs [7]. However, real-world scenarios are
often dynamically changing, making it highly challenging to
collect enough data to detect all objects in a scene using only
the color modality. For instance, the image quality captured
by RGB cameras at night typically deteriorates significantly,
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substantially reducing the accuracy and robustness of detection
results.

On the other hand, due to the stability in imaging under
different lighting conditions, thermal infrared cameras are
frequently employed in low-light situations to enhance the
system’s ability to capture scene information. For instance,
thermal images can be used to provide full-time geometric
characteristics of objects, e.g., shape and contour, while color
images are capable of providing rich texture information when
light is sufficient. Therefore, an effective fusion strategy is
needed to fully exploit the complementary features among
different modalities. In this context, according to the location
of fusion occurrence, multi-modal fusion can be categorized
into early fusion, late fusion, and intermediate fusion [8].
Specifically, early fusion directly concatenates multi-modal
data into a unified multi-channel input, which is then fed
into a general object detection framework. Conversely, late
fusion independently processes data from different modalities
and integrates the outputs at the point of decision-making by
an additional fusion operation. Between early and late fusion,
intermediate fusion incrementally merges features of different
modalities through a flexible structure design, allowing the
features to maintain their independence while interacting.
Although intermediate fusion presents advantages, devising
efficient fusion modules that can accurately combine diverse
features while preserving the integrity of the original data re-
mains a substantial challenge. In response to this, various stud-
ies [9]-[12] have sought to uncover latent correlations among
different modalities using attention mechanisms. Particularly,
some recent works [9], [10], [13], [14] have leveraged self-
attention [15] to fuse multi-modal features achieving encour-
aging results. However, the extensive computation required by
these fusion modules significantly constrains their potential in
multi-modal fusion.

In this paper, we reconsider self-attention within the context
of multi-modal visual data fusion, with a particular focus on
uncovering the complementary traits among different modal-
ities by simplifying the computation of self-attention across
their contexts. To do so, we deduce attention maps across two
distinct dimensions: channel and spatial [16]. Furthermore,
we believe mutual calibration of modal features serves as
an effective way to explore complementarity across multiple
modalities. To this end, we propose a lightweight cross-
attention fusion module, termed channel-patch cross fusion
(CPCF), which is composed of a channel-wise cross-attention
(CCA), a patch-wise cross-attention (PCA) and an adaptive
gating (GA) unit. Specifically, we employ parametric-free
operations such as average pooling and max pooling to model
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Fig. 1. Overview of CPCF-based Object Detection Framework. The upper part is the general multi-modal backbone, the lower part is the detection related
components. CPCF denotes the proposed channel-patch cross fusion module, CSA and PSA denote the proposed channel-wise and patch-wise cross-attention

modules, and G denotes the proposed adaptive gating unit.

the characteristics of each modality and incorporate cross-
attention to reconstruct complementary awareness across dif-
ferent modalities in terms of channels and spatial dimensions,
thus ensuring the complementarity of different modalities
while maintaining their independence. Note that due to our
efficient design, the extra complexity and parameters intro-
duced by our CPCF are negligible. In addition, we argue that
the representation of information in the channel and spatial
dimensions changes as forward propagation is performed.
Thus, we design an adaptive gating unit to enable the fusion
module to adapt to these changes effectively. To showcase
the efficacy of CPCF, we create a general intermediate fusion
framework, as depicted in Figure 1, which can be extended
to various detectors. Then, we conduct extensive experiments
on the standard multispectral dataset named FLIR [17] and
LLVIP [18] and a more challenging oriented object detection
dataset called DroneVehicle [9]. Our results demonstrate that
our proposed approach can remarkably improve the perfor-
mance of object detection without significantly increasing the
complexity of the model.

The contributions of this paper are summarized as follows:

e« We propose a lightweight channel-patch cross fusion
(CPCF) module to construct cross-modal features in both
channel and spatial dimensions, during which the CPCF
module adaptively leverages the properties specific to one
modality to calibrate the features of another, thus effec-
tively modeling the complementary properties between
modalities and optimizing the representability of features
in the data stream.

o We design an intermediate fusion framework based on
CPCF, which can be flexibly integrated into various object
detection methods to efficiently leverage multi-modal
cues to boost the performance of models.

o We conduct extensive experiments and analyses on dif-
ferent types of multi-modal datasets and obtain optimal
results. Simultaneously, we validate the generalization

ability of our method on different detectors, which further
shows its robustness and versatility.

The rest of this paper is organized as follows: Section II
reviews the existing works related to our method. The overall
framework is presented in Section III with the details of
each component. The experimental setup and the results are
presented and discussed in Section IV. Finally, Section V ends
this paper with a conclusion and discussion.

II. RELATED WORKS
A. Unimodal Object Detection

Unimodal object detection typically employs RGB images
as input, which can be categorized into two- and single-stage
approaches. Two-stage approaches divide object detection into
two distinct phases, i.e., the regional proposal phase and the
target classification and bounding box regression phases. As a
trailblazing effort, RCNN [19] leverages the selective search
algorithm [20] to generate numerous potential regions, then
employs SVM and a regressor for classification and bounding
box prediction tasks. Next, FastRCNN [21] and FasterRCNN
[5] upgrade this idea within a deep learning framework,
further improving training efficiency and model performance.
On the other hand, single-stage object detection frameworks,
represented by YOLO [22], directly predict the category and
location of objects in a single forward propagation, eliminating
the need for a region proposal stage, thereby greatly enhancing
the detection speed. Especially, some variants [23]-[25] of
YOLO are gradually catching up with the two-stage detector in
terms of detection accuracy while maintaining high operating
speed. Recently, YOLOX [4] has transformed the YOLO
detector into an anchor-free style, further enhancing processing
speed.

Moreover, in some special scenarios, such as remote sensing
images, traditional axis-aligned bounding boxes cannot accu-
rately describe the state of objects. For this reason, oriented
object detectors [26], [27] are designed to align the bounding
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boxes with the orientation of the targets. These detectors
rely on existing object detection frameworks and predict the
direction of bounding boxes through additional modules. For
instance, S2A-Net [28] introduces a feature alignment module
and an oriented detection module for mitigating the misalign-
ment between oriented anchors and axis-aligned convolutional
features. Then, the PSC [29] utilizes an additional phase shift
encoder to achieve an accurate prediction of the orientation.

In this work, we implement our method within different
detectors and conduct extensive experiments on different types
of datasets to tackle multi-modal object detection tasks under
various scenarios.

B. Multispectral Object Detection

Multispectral object detection is a vibrant research field
in the computer vision community. It typically blends multi-
modal data through early fusion, late fusion, or intermediate
fusion strategies. In early fusion, RGB and IR images are
concatenated at pixel level to form a 4-channel input, and
then features are extracted with a regular object detection
framework [30]. However, early fusion forgets modality-
specific properties during feature forward propagation, which
can lead to suboptimal results [12], [31]. Conversely, late
fusion [32] process each modality independently through
separate models and the results are merged at the decision
level [33]. Yet, assembling multiple detectors results in more
false positive cases and slower detection speeds [34]. On
the other hand, intermediate fusion lies between the two, in
which features from different modalities interact with each
other while still preserving their individuality [9], [1 1], [34]-
[36]. For instance, GFD-SSD [35] employs two encoders to
handle RGB and thermal images and utilizes a gating unit to
merge features from the intermediate layers. UA-CMDet [9]
leverages uncertainty-awareness to reduce the detection bias
caused by high-uncertainty objects. Moreover, MBNet [37]
focuses on the grasp of differential modality and illumination
to alleviate both the modality and feature imbalance in the
dual-modality network. Inspired by the attention mechanism,
GAFF [11] and ECISNet [36] leverage spatial attention to
learn the adaptive weighting and fusion of different modalities.
Besides, ICAFusion [13] and CAT [14] utilize transformer
blocks [15] to learn global feature correlations across modali-
ties, which, although yielding promising results, also introduce
a significant computational burden. Recently, CMAFF [38] and
CSAA [34] reengineer the fusion module, reducing the com-
putational complexity of the fusion process while emphasizing
the complementary nature of modalities.

In this work, inspired by self-attention [15], we calculate
cross-attention separately from both channel and spatial di-
mensions and leverage the learnable gating units to adaptively
integrate different attention at different levels rather than
treating them equally.

III. METHODS

In this section, we propose a lightweight cross-fusion
module named CPCF, which can efficiently build long-range
dependencies from one modality to another in both channel

and spatial axes. Building upon CPCF, we further design
a general intermediate fusion object detection framework to
effectively exploit multi-modal information. In the following,
we will detail the proposed intermediate fusion framework and
the associated modules.

A. Framework Overview

As shown in Figure 1, the overall multi-modal object
detection framework is composed of two parts. The first part is
a general multi-modal backbone, an intermediate fusion-based
feature extractor for refining and fusing multi-modal infor-
mation. The second part is the detection related components,
which provide modules, such as skip connections and detection
heads, for different types of detectors. Typically, the multi-
modal backbone originates from prevalent single-modality
backbones, such as ResNet [39] and CSPDarknet [40], which
are composed of several convolution stages, enabling a more
efficient and comprehensive encoding of information from
inputs. As illustrated in the upper half of Figure 1, we employ
a symmetrical structure to separately process information from
different modalities. Meanwhile, the proposed CPCF module
is deployed subsequent to each convolution stage to calculate
the awareness across different modalities and recalibrating the
multi-modal features. Afterward, the calibrated features are
propagated to the components specific to the object detection
tasks, as shown in the lower right of Figure 1. Taking YOLOX
[4] as an example, the fused features from different CPCF
modules are aggregated via a feature pyramid module to
multiple object detection heads for multi-scale prediction. In
addition, for the two-stage detector, like RCNN [19], a region
proposal module is operated to receive the outputs from the
last CPCF module.

B. Multi-modal Cross-Attention

While different visual modalities carry complementary in-
formation valuable for perception tasks, they also contain
a considerable amount of redundant data and noise, factors
that can potentially influence the efficiency of data analysis
and interpretation. In this context, we propose a multi-modal
cross-attention mechanism that calibrates one modality with
the features of another. This structure amplifies the comple-
mentary characteristics between modalities while diminishing
redundant information, thereby fostering a more effective
and integrated multi-modal representation. We argue that the
feature representation of a modality can be reflected in both
channel and spatial dimensions. Thus, we create channel-wise
cross-attention (CCA) and patch-wise cross-attention modules
(PCA) to establish both channel and spatial relationships
among different modalities, enabling cross-modality feature
recalibration and ensuring a more coherent and effective multi-
modal data integration.

1) Channel-wise Cross-Attention: In a feature map, a
channel is usually treated as a feature detector [16], thus
channel-wise cross-attention (CCA) is designed to highlight
beneficial channels across different modalities and suppress
noise-included ones. To this purpose, CCA considers feature
channels of two modalities parallelly and associates different
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Fig. 2. Architecture of Channel-wise Cross-Attention. SA denotes the variant of the self-attention block used in our CCA module, diff means subtraction
operation to compute the differential signals of two modalities, B and C represent the input batch and channel.

attention weights to different channels. The overall architecture
of CCA is shwon in Figure 2.

Inspired by differential amplifier circuits where differential-
mode signals are amplified while suppressing common-mode
signals [37], [38], we seek to utilize differential modality
features to highlight the characteristics of each modality
and conceal redundancies contained in multi-modal features.
Specifically, given the intermediate feature maps frgp €
REXHXW and fr € REXHXW f two modalities, average-
pooling (AP) and max-pooling (MP) are applied to compress
spatial information, followed by a series of subtraction oper-
ation to obtain the cross-modal differential signals. These are
then concatenated into compact expressions ng B € REx4

and fg e RE*4 as expressed as follows:
farfr = |AP(frap) — AP(fr),
f%f]; = IMP(fraB) — MP(fr)|,

ffics = Concat ([AP(frap), MP (fras), ity fiif])
f§ = Concat ([AP(f1), MP(f1), fii5, f1i77]) - 0

Self-attention [15] encodes the inputs into a set of vectors,
i.e., Query (Q), Key (K), and Value (V), and computes the
attention map via a matrix multiplication QK 7. After that,
the output of self-attention is obtained by another matrix
multiplication between the attention map and V, which can
be described as follows:

QKT
VDy,
1

where D is a scaling factor. In this manner, the module
can construct global attention across tokens.

On the other hand, the compressed channel features are
expressed in vector form, making them inherently compatible
with self-attention. Thereby, we leverage self-attention to
construct long-range dependencies of each channel. To do
so, we regard each channel as a token and project them into
vectors designated as Q € RE*!, K € RE*! and V € RE*!
through a straightforward linear transformation:

34 =SA(Q,K,V) = softmax ( > V. Q)

Q = f)CgWQa
K = f{Wk, 3)
V= f$Wy,

where W € R, Wi € RY!, and Wy € R**! are weight
matrices of linear transformation, and the subscript X is either
RGB or Thermal. When computing self-attention, we swap the
@ vector of the two modalities rather than directly using them
for the attention calculation, thus forming cross-attention. As
illustrated in the SA module in Figure 2, considering that the
computational cost of self-attention is quadratic in the vector’s
length, two linear transformations are employed to compress
vectors K and V to reduce the computational burden. The
cross-attention scores S$A; € RO and SG4 € RO*! can
be formulated as follows:

SSés = SA(Qr, Kren. Vrea),
STQA = SA(QRGB7 KT7 VT)

Finally, the attention scores from different modalities are
normalized to the range [0, 1] through a sigmoid function, and

“4)

the channel-wise recalibrated features f555 and fEC can be
described as:
s =0 (S548) ® fras, 5)

1Y =0 (5S¢4 ® fr,

where o(-) indicates the sigmoid function, and ® indicates
element-wise multiplication.

2) Patch-wise Cross-Attention: Contrary to the aforemen-
tioned CCA, which attempts to establish long-range attention
across channels, patch-wise cross-attention (PCA) aims to
model inter-patch connections of different modalities and
leverage this information to calibrate the multi-modal features
across spatial dimension. To achieve this goal, given the inter-
mediate feature maps frap € REXH*W and fr € ROXHXW
and patch size h x w, we first apply patch average pooling
(PAP) and patch max pooling operations (PMP) to condense
local information and reduce the spatial resolution of the
features. Then, following the same approach as described
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Fig. 3. Architecture of Patch-wise Cross-Attention. SA means the self-attention, and diff denotes the subtraction operation, as in Figure 2.

in Section III-B1, we obtain compact expressions along the
spatial dimension. The procedure can be precisely described
as:

fﬂ?fp = |PAP(frar) — PAP(fr)|,

fits" = |PMP(frap) — PMP(fr)],

fiap = Concat ([PAP(frep), PMP(fraB), fiiff - fiits
fii = Concat ([PAP(fr), PMP(fr), fii7 ], faifi"])

where fSop € ROVX4 and f€ € RO*N*4 denote the
compact RGB and Thermal features, N = hw denotes patch
numbers.

Next, we utilize two separate linear transformation blocks
to encode fS.p and f& into their corresponding @ € RV*C,
K € RV*C and V € RV*C vectors, and the cross-attention
scores S§4, € RVX! and SE4 € RV*! can be computed
through Equation 4. Finally, the patch-wise recalibrated fea-
tures fEE S and fEY can be formulated as:

fiEs = o (UPS (Sk&p)) © fras,
7P = o (UPS (S§4)) ® fr,
where UPS(-) denotes up-sampling the size of attention scores

to the input resolution. The details of PCA are depicted in
Figure 3.

(7

C. Channel-Patch Cross Fusion

The architecture of channel-patch cross fusion (CPCF) is
shown in the lower left of Figure 1. In CPCF, we integrate
the proposed CCA and PCA into the fusion process, thus
allowing for the effective utilization of multi-modal cues and
enhancing the representative capability of the fused features.
However, treating channel and spatial attention equally during
this process may lead to suboptimal results. The feature extrac-
tion process is characterized by the continuous compression
of spatial resolution and expansion of channel dimensions.
Throughout this process, the quantity of information across
different dimensions does not remain constant. In response to

TABLE I
DATASET SETUP. HBB/OBB REFER TO HORIZONTAL/ORIENTED
BOUNDING BOX, RESPECTIVELY.

Setup FLIR LLVIP DroneVehicle
Class Num. 3 1 5
Modality RGB&Thermal RGB&IR RGB&IR
Box Type HBB HBB OBB
Img Size (original) 640 x 512 1280 x 1024 640 x 512
]) > Img Size (train) 640 x 512 640 x 512 640 x 512
Epoches 13 13 36
Leraning Rate 2e-3 2e-3 2.5e-3
Batch Size 8 8 2
Train/Val/Test (pairs)  4139/1013/-  12025/-/3463 17990/1469/8980

this situation, we design an adaptive gating (AG) unit that dy-
namically allocates weights to different attention mechanisms,
which allows a more responsive and adaptive fusion. More
specifically, two learnable scaling factors, denoted as «; and
g, are defined to dynamically adjust the weights of CCA and
PCA during training. Then, the corresponding weights s; and
S can be computed as:

o(a1/T)
o(ar/T) + o(a/T)’
1- S1,

S1

®)

52

where the o(-) denotes the sigmoid function, T" is a tempera-
ture coefficient used to smooth the scaling weights.
In summary, given the input feature maps frgp and fr and

recalibrated feature mE}ps fggB, :?R, 553, and fjlf R the
fused features are obtained as:
F CR PR
s = frRap+s1- fr 4+ 52 fr ©)
F CR PR
fr**¢=fr+s1- frep t+ 52 frGB-

IV. EXPERIMENTS

In this section, we initially perform experiments on two
general-purpose object detection benchmarks, specifically
FLIR [17] and LLVIP [18], to assess the efficacy of our pro-
posed methods. Subsequently, we extend our testing to a more
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART MULTISPECTRAL METHODS AND OUR BASELINES ON FLIR VALIDATION SET BY MAP IN PERCENTAGE.

Method Backbone Fusion Modality mAP50T mAP757T mAP 1T  Param. (M)J
Fcos [0] ResNet50 - RGB 59.3 20.2 26.7 32.12
Fcos [6] ResNet50 - Thermal 69.4 28.3 33.7 32.12
YOLOVS [41] Darknet53 - RGB 65.2 21.9 29.3 7.03
YOLOVS [41] Darknet53 - Thermal 78.9 329 39.2 7.03
YOLOX [4] Darknet53 - RGB 62.8 222 28.9 8.94
YOLOX [4] Darknet53 - Thermal 76.4 36.3 40.2 8.94
Multi-modal methods
GAFF [11] ResNet18 GAFF RGB-T 72.9 32.9 37.5 23.75
CFT [42] CFB CFT RGB-T 78.7 35.5 40.2 206.03
YOLOFusion [38]  Darknet53 CMAFF RGB-T 76.6 - 39.8 12.52
UA-CMDet [9] Darknet53 UA-CM RGB-T 78.6 - - -
CSAA [34] ResNet50 CSAA RGB-T 79.2 374 41.3 -
ICAFusion [13] Darknet53 DMFF RGB-T 79.2 36.9 41.4 120.21
Our baselines
FcosCAT ResNet50  Concatenate RGB-T 68.0 25.5 32.1 32.13
FcosSUM ResNet50 MLSum RGB-T 70.4 28.9 34.5 55.63
YOLOV5CAT Darknet53  Concatenate RGB-T 77.0 31.5 38.1 7.03
YOLOvV5SUM Darknet53 MLSum RGB-T 79.2 34.6 40.2 11.2
YOLOXCAT Darknet53  Concatenate RGB-T 77.4 36.9 41.0 8.94
YOLOXSUM Darknet53 MLSum RGB-T 76.7 37.7 41.2 13.15
Our implementation with CPCF
FcosCPCF ResNet50 CPCF RGB-T 73.4 32.0 37.0 61.28
YOLOV5CPCF Darknet53 CPCF RGB-T 81.6 37.0 41.8 12.67
YOLOXCPCF Darknet53 CPCF RGB-T 82.1 41.2 44.6 14.61

challenging DroneVehicle [9] dataset, which targets oriented
object detection. Finally, we illustrate a series of studies to
ablate different components and analyze the effectiveness of
our designs.

A. Datasets

FLIR: The FLIR dataset is a benchmark extensively used
for evaluating multispectral object detection, comprising a
substantial number of paired RGB and thermal images. In
our experiments, we utilize the aligned-FLIR dataset [17],
wherein RGB-Thermal image pairs are correctly aligned. This
dataset features 5142 image pairs, spanning three object cat-
egories: ‘person’, ’car’, and ’bicycle’, gathered from daytime
to nighttime. Among these, 4139 pairs are for training, while
the remaining 1013 pairs are allocated for testing.

LLVIP: The LLVIP [18] is a recently introduced, large-
scale dataset explicitly designed for pedestrian detection in
visible-infrared contexts. It contains 15488 image pairs, with
12,025 pairs for training and 3,463 pairs for testing. A notable
characteristic of this dataset is that a majority of the images are
captured under extremely low light conditions. Furthermore,
all images within the dataset are stringently aligned in terms
of time and space.

DroneVehicle: The DroneVehicle dataset [9] is a newly
released multi-modal benchmark specifically designed for ori-
ented vehicle detection from a drone’s perspective. It encom-
passes five distinct vehicle categories, namely ’car’, ’truck’,
’bus’, 'van’, and ’freight car’. This dataset comprises 28,439
RGB-Infrared image pairs that capture a variety of settings,
including urban roads, residential areas, and parking lots,
from day to night with a resolution of 640x512. The dataset
is composed of 17,990 image pairs for training, 1,469 for
validation, and 8980 pairs reserved for testing.

B. Implementation Details

Utilizing the proposed CPCF, we design an intermediate
fusion architecture that can be seamlessly integrated into
a range of object detection frameworks. For the practical
implementation, we build our model based on a popular object
detection codebase MMDetection [43], and train our models
on a single NVIDIA RTX3090 GPU. In all experiments,
we initialize the backbone networks using the weights pre-
trained on COCO [7] for general-purpose object detection.
For oriented object detection tasks, the backbone networks
are initialized with weights pre-trained on the ImageNet [44].
To train the models, we employ the SGD optimizer with an
initial learning rate of 2e-3 and a momentum of 0.9. For data
augmentation, we apply random flipping and scale the images
to a resolution of 640x512. In the case of the FLIR dataset, we
additionally leverage the Mosaic data augmentation technique
[4] to further enrich the data for methods within the YOLO
family. Subsequently, all models are trained in 13 epochs with
a batch size of 8. For the DroneVehicle dataset, we set the
batch size to 2 and train the model for 36 epochs. The setups
of different datasets are shown in Table I. For all experiments,
the hyper-parameter 7' mentioned in Equation 8 is set to 1.0,
and the patch size h x w in PCA is set to 8 x 10.

Baselines: To comprehensively evaluate our method, we
first implement two fusion strategies, namely Concatenate
and Multi-level Sum (MLSum), for multi-modal data fusion.
Specifically, Concatenate means that we concatenate RGB and
thermal images along the channel dimension, exemplifying an
early fusion method. While MLSum represents an intermediate
fusion method, maintaining the same structure as depicted
in Figure 1, we substitute the CPCF with a summation
operation at each stage. Furthermore, we take into account
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TABLE 11T
COMPARISON WITH THE STATE-OF-THE-ART MULTISPECTRAL METHODS
AND OUR BASELINES ON LLVIP TESTING SET BY MAP IN PERCENTAGE.

Method Backbone Fusion Modality mAP50T mAP75T mAP 1
Fcos [6] ResNet50 - RGB 86.8 45.2 46.5
Fcos [6] ResNet50 - Thermal  94.2 62.1 57.4
YOLOVS [41] Darknet53 - RGB 88.0 47.8 48.0
YOLOVS [41] Darknet53 - Thermal  94.7 62.4 58.2
YOLOX [4]  Darknet53 - RGB 89.3 48.3 48.6
YOLOX [4] Darknet53 - Thermal  94.4 67.3 60.6
Multi-modal methods
ECISNet [36] ResNet50 ECIS RGB-T 95.7 - -
UA-CMDet [9] Darknet53 UA-CM  RGB-T 96.3 - -
CSAA [34] ResNet50  CSAA RGB-T 94.3 66.6 59.2
CFT [42] CFB CFT RGB-T 97.5 72.9 63.6
Our baselines
FcosCAT ResNet50 Concatenate RGB-T 94.5 61.6 57.9
FcosSUM ResNet50 MLSum  RGB-T 95.1 64.8 58.5
YOLOVS5CAT Darknet53 Concatenate RGB-T 95.1 62.7 58.2
YOLOV5SUM Darknet53 MLSum  RGB-T 95.6 65.8 59.4
YOLOXCAT Darknet53 Concatenate RGB-T 93.4 65.8 58.1
YOLOXSUM Darknet53 MLSum  RGB-T 93.4 69.0 61.0
Our implementation with CPCF

FcosCPCF ResNet50 CPCF RGB-T 96.0 69.5 60.6
YOLOVS5CPCF Darknet53  CPCF RGB-T 96.1 70.1 62.0
YOLOXCPCF Darknet53  CPCF RGB-T 96.4 75.4 65.0

detectors that utilize either RGB or thermal inputs, serving
as unimodal baselines for comparison. Note that our design
pertains only to the encoding part of the model, which allows
us to evaluate our method across various detectors such as
Fcos [6], YOLOX [4], and S2A-Net [28]. For each detector, we
conduct experiments based on the aforementioned baselines to
assess the generalization capability of our proposals.

C. Evaluation Metrics

In our evaluation, we adopt three standard COCO metrics
[7], namely mean Average Precision (mAP), mAP5q, and
mAP75, to quantify the effectiveness of the proposed method.
During this process, the Intersection over Union (IoU) is
employed as a criterion to classify positive and negative
samples. More concretely, a detected instance is deemed a
positive sample only when the IoU between the predicted
bounding box and the ground truth bounding box surpasses a
designated threshold, denoted as 7. Consequently, for mAP5,
and mAP75, the threshold 7 is set at 0.5 and 0.75, respectively.
The mAP, on the other hand, is computed with the threshold
7 ranging from 0.5 to 0.95 in increments of 0.05.

D. Comparative Studies

1) Quantitative Results: We compare the proposed fusion
methods with our baselines and other state-of-the-art methods
on FLIR, LLVIP, and DroneVehicle datasets. The experimental
results on the FLIR dataset are illustrated in Table II. Note
that Fcos [6], YOLOVS [41], and YOLOX [41] are initially
designed for RGB-based object detection, while GAFF [11],
CFT [42], YOLOFusion [38], and UA-CMDet [9] are multi-
modal-based object detection methods. Then, we extend the
unimodal methods to multi-modal based on Concatenate and

MLSum and present them as our multi-modal baselines, de-
tailed in Section IV-B. The results show that multi-modal-
based methods significantly outperform unimodal-based meth-
ods, illustrating that the model can obtain more task-relevant
cues from the multi-modal inputs. In addition, our proposed
CPCF achieves remarkable performance gains on different
detectors, and our methods surpass our baselines and other
state-of-the-art methods by a large margin. For example, our
YOLOXCPCF outperforms RGB and thermal-based YOLOX
by 19.3% and 5.7% on mAPs5. Also, compared to our multi-
modal baselines, the method exceeds the Concatenate and
MLSum-based fusion methods by 4.7% and 5.4% on mAPs5,
3.6% and 3.4% on mAP, which shows the advancement
and efficiency of our CPCF. Notably, in our multi-modal
baselines, the methods based on MLSum outperform those
based on concatenation on nearly all metrics. This further
illustrates that compared to directly concatenating inputs from
different modalities, using an intermediate fusion strategy is
more effective in extracting multi-modal information, thereby
enhancing the performance of the model. We also observe
the consistent performance boosts across various detector
types, demonstrating not only the efficacy of our method but
also its robust capacity for generalization. In addition, our
YOLOVS5CPCF and YOLOXCPCF also outperform existing
multi-modal methods.

Table III presents the results of our methods and the
competing methods on the LLVIP dataset. As can be seen,
our methods achieve superior performance than our baselines
and other existing methods. Moreover, compared to unimodal
methods, it is evident that multi-modal methods significantly
improve the regression accuracy of bounding boxes. For in-
stance, our YOLOXCPCF shows a marked increase on the
mAP~75; metric, improving by 26.6% over YOLOX (RGB)
and 7.6% over YOLOX (Thermal). Similarly, we obtain a
consistent performance improvement even with other types of
detectors.

Different from FLIR and LLVIP datasets, DroneVehicle
is a more challenging large-scale dataset targeting oriented
object detection in low-light conditions. We compare our
methods with the state-of-the-art oriented object detectors on
the DroneVehicle dataset and report the experimental results
in Table IV. Specifically, we modify the detection heads to
support oriented detection on standard object detectors, such
as FasterRCNN [5] and RetinaNet [45]. Moreover, for state-
of-the-art oriented object detection methods, such as S2A-
Net [28], and PSC [29], we adapt their feature extraction
structures to accommodate multi-modal inputs. It can be
seen that the multi-modal-based methods are considerably
better than the unimodal-based methods. For instance, our
S2A-NetCPCF demonstrates a significant improvement over
methods based on RGB or thermal images, with the mAP5
increases of 12.3% and 3.9%, respectively. In addition, our
multi-modal baselines achieve competitive results compared to
existing multi-modal-based state-of-the-art methods, and the
model results are further enhanced with the benefit of our
proposed CPCF strategy. All the experiments conducted on
these datasets validate the versatility of our approach across
different types of detectors and its generalizability in various
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Concatenate

MLSum

CPCF

Fig. 4. Qualitative comparison of four baselines and our proposed method
on FLIR validation set. Only bounding boxes with a confidence greater than
0.7 are displayed.

scenarios.

2) Qualitative Results: In Figure 4, we compare the de-
tection results of our proposed CPCF with different base-
lines on the FLIR wvalidation set. In the experiment, we
use YOLOX [4] as the base detector to generate single-
modality detection results, i.e., RGB-Only and Thermal-Only.
Then, for multi-modal fusion, we generated detection results
based on Concatenate and MLSum, refer to Section IV-B.
As shown in the second and third rows of the figure, the
RGB images provide rich texture information under clear
weather conditions, while thermal images offer more object
clues under low-light conditions. It can be seen that the
results generated utilizing RGB images are superior to those
generated by thermal images under clear weather conditions,
which could be attributed to the lack of texture information
in thermal images making it difficult to distinguish different
individuals in dense objects. This phenomenon is reversed
under low-light conditions, illustrating the complementarity
between RGB and thermal images. On the other hand, multi-
modal methods attempt to leverage this complementarity. As
can be seen from the fourth and fifth rows, multi-modal
methods clearly outperform unimodal ones. More specifically,
a simple concatenation of RGB and thermal images at the
input stage can combine information from different modalities
to a certain extent, but it falls short when detecting targets
that are unclear in appearance or partially obscured. The

GT

RGB-Only

Concatenate

MLSum

CPCF

Fig. 5. Qualitative comparison of four baselines and our proposed method on
DroneVehicle validation set. Only bounding boxes with a confidence greater
than 0.7 are displayed.

use of intermediate fusion strategies can alleviate this issue,
but still struggles to handle complex scenarios. CPCEF, by
employing channel and spatially correlated attention during
the intermediate fusion process, effectively utilizes clues from
different modalities, achieving the best detection results, as
shown in the last row.

Figure 5 illustrates the detection results on the DroneVehicle
validation set. We use S2A-Net [28] as our foundational
oriented object detection framework. As can be seen, although
our multi-modal baseline improves detection results, it still
falls short in detecting obscured or densely clustered objects.
For instance, the baseline methods lose the obscured vehicle
in the first column scenario and fail to identify the densely
packed objects in the upper right corner of the scene in the
last column. In contrast, our proposed method demonstrates
stable results under these scenarios, further attesting to the
effectiveness of our approach.

3) Ablation Study: In this section, we conduct ablation
experiments on the FLIR dataset for a detailed analysis of
our designs. The CPCF consists of three modules: channel-
wise cross-attention (CCA), patch-wise cross-attention (PCA),
and adaptive gating (AG) unit. As presented in Table V, we
use YOLOX as a case study and progressively incorporate
these modules into the model to investigate their individual
contributions to the overall performance. Specifically, we
employ YOLOXSUM as our multi-modal baseline for a fair
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TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART MULTISPECTRAL METHODS
AND OUR BASELINES ON DRONEVEHICLE TESTING SET BY MAP IN

TABLE VI
COMPARISON OF MLP-BASED AND OUR SELF-ATTETNION-BASED
CROSS-ATTENTION (CA) ON FILR, LLVIP, AND DRONEVEHICLE

PERCENTAGE. DATASETS.
Method Modality Fusion mAP50T mAP75T mAP 1 Method Dataset CA mAP50T mAP757T mAP 1 Param. (M)]
FasterRCNN [5] RGB - 63.0 28.6 31.4 YOLOX FLIR MLP-Based  79.7 38.9 423 6.50
FasterRCNN [5] Thermal - 71.9 49.6 43.6 CPCF Ours 82.1 41.2 44.6 1.03
RetinaNet [45] RGB - 58.0 26.9 29.5 YOLOX LLVIP MLP-Based 94.8 71.7 62.8 6.50
RetinaNet [45] Thermal - 66.6 48.2 41.4 CPCF Ours 96.4 75.4 65.0 1.03
SZA-Net [28] RGB - 64.1 29.4 32.3 S2A-Net Drone MLP-Based 78.0 57.1 48.8 6.50
S2A-Net [28] Thermal - 74.4 52.5 459 CPCF Vehicle Ours 79.2 57.9 49.7 1.03
PSC [29] RGB - 66.9 32.0 33.8
PSC [29] Thermal - 75.3 54.8 46.9
Multi-modal methods can further optimize fusion efficiency according to changes of
UA-CMDet [9] RGB-T UA-CM 63.3 - - . . . . . . .
ECISNet [36] RGB-T ECIS 76.0 i i 1nf0rmat10n in chan.nel and spatial dlmensqu, thereby dealing
Our baselines with complex multi-modal data more effectively.
FasterRCNNCAT RGB-T Concatenate  74.1 49.5 444
FasterRCNNSUM  RGB-T MLSum 74.7 52.0 45.7 E. Attention Analysis
RetinaNetCAT RGB-T Concatenate 69.7 49.3 43.1
RetinaNetSUM RGB-T  MLSum 70.1 51.0 43.8 To further illustrate the effectiveness of the proposed cross-
S?A-NetCAT RGB-T Concatenate  75.7 532 46.6 attention mechanism, we employ MLP-based channel and
$?A-NetSUM RGB-T ~ MLSum  76.1 558 478 spatial attention to replace our CCA and PCA modules.
PSCCAT RGBT Concatenate 7.6 34 472 Notably, the MLP, which squeezes concatenated feature maps
PSCSUM RGB-T MLSum 77.3 58.0 48.8 K > ’ i K i . i
Our implementation with CPCF into attention maps [16], is widely used in various attention
FasterRCNNCPCE RGB-T  CPCF 76.1 528 466 mechanisms, such as [36], [38]. As shown in Table VI,
RetinaNetCPCF~ RGB-T CPCF 72.9 53.01 457 our proposed self-attention-based CCA and PCA significantly
PSCCPCE RGB-T  CPCF 778 581 494 outperform the MLP-based attention mechanisms on different
S”A-NetlCPCE RGB-T CPCE .2 7.9 49.7 datasets. Moreover, we also quantify the parameters of a single
standalone cross-attention module, which takes a feature map
TABLE V of size 128 x 168 with 512 channels as input. As shown

ABLATION STUDY OF THE COMPONENTS OF OUR CPCF oN FLIR
DATASET. @ AND o INDICATE ACTIVATED AND INACTIVATED
COMPONENTS, RESPECTIVELY.

Method CCA PCA AG| mAP5;T mAP75T  mAP T
YOLOXSUM | o o o 76.7 377 412

YOLOXCCA | o o o |80.7 (+4.0) 38.6 (+0.9) 43.0 (+1.8)
YOLOXPCA | o e o |80.8 (+4.1) 39.8 (+2.1) 43.1 (+1.9)
YOLOXCPCF| o e o |8L1 (+4.4) 39.9 (+2.2) 43.4 (+2.2)
YOLOXCPCF| o o o |821(+5.4) 412 (+3.5) 44.6 (+3.4)

comparison, as shown in the first row of the table. We
then replace the summation operation in YOLOXSUM with
CCA and PCA respectively. The results from the second and
third rows show that the model’s performance in terms of
mAP improved by 1.8% and 1.9% with the application of
CCA and PCA, respectively. Finally, to illustrate the role of
AG, we conduct experiments using fixed weights of 0.5 and
dynamic weights produced by AG and obtain performance
boosts of 2.2% and 3.4%, respectively, as shown in the last
two rows of the table. The results reveal that compared to
manually setting fixed weights, employing AG can greatly
enhance the model’s performance. This further suggests that
different weights should be assigned to different attention
mechanisms at various stages of the model to adapt to the
changes in information volume in the channel and spatial
dimensions. Therefore, we conclude that the introduction of
CCA and PCA can provide more efficient feature extraction
capabilities for intermediate fusion from both channel and
spatial dimensions, thereby enhancing model performance.
Moreover, the dynamic weight allocation mechanism of AG

in the last column of the table, compared to the MLP-based
cross-attention, our method saves approximately 85% of the
parameters, proving its higher efficiency.

In an ideal scenario, an effective channel attention mech-
anism should allocate different weights to various channels
based on the amount of information within each channel. Our
method concentrates valuable information into a subset of
channels and better recognizes these channels with the CCA
module, thereby suppressing redundant information while al-
locating more attention to channels with more information. In
Figure 6, we compare the information entropy of different
feature channels at different stages depicted in Figure 1.
Specifically, we first rank the channels in the feature map
according to the channel attention scores, and then calculate
the information entropy of the top 16 feature channels and
the bottom 16 feature channels, termed top_k and bottom_k,
respectively. In the figure, the green distribution describes
the information entropy of top_k, while the gray corresponds
to bottom_k. We observe that, in the MLP-based channel
attention, the information entropy distribution of top_k and
bottom_k is strikingly similar. This suggests that the amount
of information in top_k and bottom_k is consistent. Therefore,
when the attention score of bottom_k is very low, many chan-
nels containing valuable information might be suppressed. On
the other hand, it is evident that in our method, top_k always
contains more information. Particularly in the final stage, as
illustrated in the column of L5, the discrepancy between the
information distribution of top_k and bottom_k in high-level
semantic feature maps is further amplified, demonstrating the
effectiveness of our CCA in channel awareness.
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Fig. 6. Comparison of information entropy distributions of top and bottom 16 channels of RGB and Thermal feature maps at different levels. T denotes
MLP-based cross-attention. L1-5 represent 5 CPCFs in Figure 1. Green and gray distributions correspond to top_k and bottom_k feature channels, respectively.

RGB-T L1 L2

L3 L4 L5

T

Spatial Attention

PCA (Ours)

Fig. 7. Comparison of spatial attentions of RGB and Thermal feature maps at different levels. 1 denotes MLP-based cross-attention. L1-5 represent 5 CPCFs

in Figure 1.

Additionally, Figure 7 demonstrates the spatial attention
maps in different attention blocks. It is noticeable that, com-
pared to MLP-based spatial attention, the attention maps of
different modalities produced by our PCA complement each
other to a certain extent., which indicates that our method is
able to utilize the complementarity between modalities more
efficiently while forming spatial awareness.

E. Speed and Parameter Analysis

To further assess the practicality of our proposed fusion
method, we choose the widely used single-stage detectors
YOLOvVS and YOLOX as benchmarks and conduct tests to
measure the execution speed of our method. In Table VII, we
report the total number of learnable parameters, the number of
floating-point operations (FLOPs), and the runtime. All models
in the experiments are implemented based on MMDetection
[43], and running on a laptop equipped with an RTX2080

GPU. It can be observed that multi-modal methods show
a decrease in speed compared to unimodal methods. For
instance, the runtime of YOLOv5SUM and YOLOXSUM
increased by approximately 4ms compared to the single-
modality counterparts. This is due to the fact that intermediate
fusion introduces additional feature extraction branches, lead-
ing to an increase in computational complexity. Additionally,
the use of our lightweight fusion module results in a minor
increase in runtime. Specifically, CCA adds approximately
3ms, while PCA contributes an extra Sms. When combining
both CCA and PCA, i.e., our CPCF, the runtime increases
by around 10ms. Furthermore, compared to our multi-modal
baseline, our fusion strategy adds virtually no extra parameters
or floating-point operations. In addition, in the last column of
Table II, we list the number of parameters for different models.
It is evident that our method manages to achieve state-of-the-
art performance while ensuring the model remains lightweight.
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TABLE VII
COMPARISION OF MODEL PARAMETERS AND FLOPS AND RUNTIME.

Detector Modality Param. (M) FLOPs (G)] Runtime (ms)]
YOLOVS RGB/T 7.03 (-4.17) 6.35(-4.17) 20.3 (-3.2)
YOLOv5SUM  RGB-T 11.20 (£0.0) 10.52 (£0.0) 23.5 (40.0)
YOLOvV5CCA  RGB-T 11.26 (+0.06) 10.53 (+0.01) 27.1 (+3.6)
YOLOvV5PCA  RGB-T 12.60 (+1.40) 10.60 (+0.08) 29.1 (+5.6)
YOLOvV5CPCF  RGB-T  12.66 (+1.46) 10.61 (+0.09) 35.1 (+11.6)
YOLOX RGB/T 894 (-4.21) 10.66 (-4.38) 11.6 (-4.3)
YOLOXSUM  RGB-T 13.15 (£0.0) 15.04 (£0.0) 15.9 (40.0)
YOLOXCCA RGB-T 13.22 (+0.07) 15.05 (+0.01) 18.9 (+3.0)
YOLOXPCA RGB-T 14.55 (+1.40) 15.12 (+0.08) 21.5 (+5.6)
YOLOXCPCF RGB-T 14.61 (+1.46) 15.13 (+0.09) 26.7 (+10.8)

V. CONCLUSION

In this work, we present a lightweight multi-modal cross-
fusion method termed CPCF for visible-infrared object detec-
tion, which consists of channel-wise cross-attention (CCA),
patch-wise cross-attention (PCA), and an adaptive gating (GA)
unit. The CCA and PCA are designed to refine valuable
cues from the channel and spatial dimensions, respectively,
and operate the features of one modality to calibrate an-
other, thereby better integrating the information of different
modalities. Moreover, we argue that the useful multi-modal
information contained within channel and spatial dimensions
can vary during the forward propagation process. To account
for this, we design the AG unit to adaptively adjust the
attention weights in the channel and spatial dimensions. Sub-
sequently, based on the CPCF, we design a universal interme-
diate fusion architecture that allows for extension to various
types of detectors, facilitating the harnessing of multi-modal
information to enhance the model’s performance. Finally,
we conduct extensive experiments with various object detec-
tion frameworks on standard and oriented object detection
datasets. The results demonstrate that our method is able to
effectively capture information from different modalities and
consistently outperform other advanced multi-modal methods.
Additionally, thanks to its lightweight design, our method
can be incorporated into lightweight object detection models,
enabling real-time object detection.

In the future, it will be worthwhile to further optimize
fusion algorithms to enhance the efficiency of model integra-
tion and explore the application of CPCF on different types
of modality data, such as Depth maps. Moreover, applying
CPCF to different computer vision tasks, such as semantic
segmentation, to further investigate its generalizability across
more architectures is another promising avenue of research.
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