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ABSTRACT 31 

Precision irrigation management and crop water stress assessment rely on accurate estimation 32 

of root zone soil moisture. However, only the top 5 cm soil moisture can be estimated using 33 

the two current passive microwave satellite missions, Soil Moisture and Ocean Salinity 34 

(SMOS) and Soil Moisture Active Passive (SMAP), which operate at L-band (wavelength of 35 

~21 cm). Since the contributing depth of the soil to brightness temperature increases with 36 

observation wavelength, it is expected that a P-band (wavelength of ~40 cm) radiometer could 37 

potentially provide soil moisture information from deeper layers of the soil profile. Moreover, 38 

by combining both L- and P- bands, it is hypothesized that the soil moisture profile can be 39 

estimated even beyond their individual observation depths. The aim of this study was to 40 

demonstrate the potential of combined L-band and P-band radiometer observations to estimate 41 

the soil moisture profile under flat bare soil using a stratified coherent forward model.  42 

Brightness temperature observations at L-band and P-band from a tower based experimental 43 

site across a dry (April 2019) and a wet (March 2020) period, covering different soil moisture 44 

profile shapes, were used in this study. Results from an initial synthetic study showed that the 45 

performance of a combined L-band and P-band approach was better than the performance of 46 

using either band individually, with an average depth over which reliable soil moisture profile 47 

information could be estimated (i.e. with a target root mean square error (RMSE) of less than 48 

0.04 m3/m3) being 20 cm for linear and 15 cm for second-order polynomial functions. Other 49 

functions were also tested but found to have a poorer performance. Applying the method to 50 

the tower-based brightness temperature achieved an average estimation depth of 28 cm (20 51 

cm) and 5 cm (5 cm) during the dry and wet periods respectively when using a second-order 52 

polynomial (linear) function. These findings highlight the opportunity of a satellite mission 53 

with L-band and P-band observations to accurately estimate the soil moisture profile to as deep 54 

as 30cm globally.  55 
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1. Introduction 58 

Soil moisture is a key state variable in the water, energy, and carbon cycles (Falloon et al., 59 

2011; Zhang et al., 2019). While soil moisture accounts for only a small fraction of the 60 

freshwater globally (0.15%), it has an important impact on rainfall-runoff processes (Brocca et 61 

al., 2012), regulates net ecosystem exchange (Chu et al., 2019), constrains food security (Sadri 62 

et al., 2020), and influences land-atmosphere interactions (Yuan et al., 2020). However, many 63 

studies have shown large variability in the spatial and temporal distribution of soil moisture, 64 

especially in the top 20 cm of the soil (Shi et al., 2014), emphasizing the necessity of monitoring 65 

these variations. Moisture in this region of the soil profile limits the plant's photosynthetic 66 

activity and transpiration (Seneviratne et al., 2010; Reich et al., 2018). In addition, information 67 

on the root zone soil moisture is used for irrigation scheduling (Liang et al., 2016), 68 

understanding of plant stress and pesticide management (Malone et al., 2004; Jiang et al., 69 

2021). As compared to estimation of moisture in the shallow layer, root zone soil moisture 70 

estimation is more challenging (Etminan et al., 2020). Accurate spatial and periodic mapping 71 

of this vital variable through direct measurement is almost impossible due to its cost-intensive 72 

and time-consuming measurement, higher spatio-temporal variability, and non-linear 73 

relationship with surface soil moisture (Das and Mohanty, 2006; Sabater et al., 2007; Hu and 74 

Si, 2014; Gao et al., 2019). 75 

Microwave remote sensing techniques have been identified as the most promising approach for 76 

global observation of near-surface soil moisture content (Karthikeyan et al., 2017). 77 

Specifically, passive microwave remote sensing at L-band has been widely adopted with 78 

current remote sensing satellites dedicated to the monitoring of soil moisture, including the 79 

European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS; Kerr et al., 2010) 80 
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and the National Aeronautics and Space Agency (NASA) Soil Moisture Active Passive 81 

(SMAP; Entekhabi et al., 2014) missions. While L-band can observe a deeper layer of soil than 82 

shorter wavelengths, its soil moisture measurement is limited to just a few centimeters of the 83 

soil (Zheng et al., 2019; Shen et al., 2020, 2022a). Therefore, researchers have investigated 84 

different techniques for estimating the root zone soil moisture from surface soil moisture 85 

including multiple regression (Qiu et al., 2010; Mahmood et al., 2012), data assimilation 86 

(Walker et al., 2001; Baldwin et al., 2017), and statistical/empirical methods such as machine 87 

learning (Carranza et al., 2021; Karthikeyan and Mishra, 2021; Xia et al., 2022), principle of 88 

maximum entropy (Mishra et al., 2018; Zhou et al., 2016), and exponential filters (Mishra et 89 

al., 2020). The approach chosen is usually based on the application, level of complexities 90 

involved and the amount of a priori information available. When it comes to applications on a 91 

large scale, the number of inputs needed is of utmost importance, especially in areas where data 92 

is scarce. As a result, approaches that require minimal inputs have gained attention in these 93 

types of applications. Generally, all the models require establishing a relationship between 94 

surface and root-zone soil moisture. However, the relationship between the two is often 95 

nonlinear and becomes weaker with depth, making it challenging to capture using conventional 96 

statistical techniques (Ford et al., 2014).  97 

The multiple regression models are simple and relatively straightforward to interpret, but they 98 

have limitations in handling complex non-linear relationships between input and output 99 

variables. These models are also sensitive to outliers, which means that even a small number 100 

of extreme values can significantly affect the results. Conversely, machine learning algorithms 101 

are well-suited to handle non-linear relationships between inputs and outputs, making them 102 

suitable for modeling complex soil moisture patterns. However, they require large amounts of 103 

training data to produce accurate estimates, which can be difficult to obtain in some cases. 104 

Additionally, some machine learning algorithms can be difficult to interpret, making it 105 
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challenging to understand the physical basis for their predictions and to identify areas for 106 

improvement. There is also a risk of overfitting, where the algorithm becomes too specialized 107 

to the training data and does not generalize well to new data. The principle of maximum entropy 108 

method does not rely on prior information about the profile, but it requires the values of surface 109 

soil moisture, the average moisture content, and the moisture content of the bottom-most layer, 110 

which are difficult to obtain. The exponential filter only requires the time series of surface soil 111 

moisture, which is easily available from microwave sensors, however sensitivity is reduced 112 

during prolonged dry periods and in deeper layers where plant uptake is the main factor 113 

affecting root-zone moisture movement due to the assumption of no transpiration and constant 114 

hydraulic conductivity. 115 

Current regional or global scale root zone soil moisture products such as Soil Moisture Ocean 116 

Salinity (SMOS) level 4 RZSM data, Soil Moisture Active Passive (SMAP) level 4 RZSM 117 

data, the Japanese 55-year Reanalysis (JRA-55), National Centers for Environmental 118 

Prediction (NCEP) Reanalysis version 1 (NCEP R1) and 2 (NCEP R2), the Modern-Era 119 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2), the fifth 120 

generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric 121 

reanalysis (ERA-5), and the Global Land Data Assimilation System (GLDAS) are based on 122 

assimilation of surface soil moisture into land surface models (LSMs) or global hydrological 123 

models (GHMs) (Xu et al., 2021). The Ensemble Kalman Filter is a widely used assimilation 124 

algorithm in land surface models, but its implementation is claimed to be inappropriate because 125 

of non-linear relationships between observations and model states (Clark et al., 2008). 126 

Compared with L-band (1.4 GHz; 5cm sensing depth), P-band (750 MHz) has been shown to 127 

be more sensitive to soil moisture over deeper layers (∼10 cm; Shen et al., 2020). As the L-128 

band and P-band emissions are derived from different depths in the soil (Shen et al., 2020), 129 

there is the potential to derive insights into the depth variation of soil moisture by using the 130 
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two together. Some researchers have used P-band radar alone (Tabatabaeenejad et al., 2013, 131 

2015, 2016, 2017; Sadeghi et al., 2016; Chen et al., 2018; Etminan et al., 2020; Yueh et al., 132 

2020) or combined with L-band radar (Du et al., 2015; Chen et al., 2016, 2017; Azemati et al., 133 

2019; Yi et al., 2019) to estimate root zone soil moisture. While their results have shown the 134 

concept to be promising, they have typically applied constraints, been limited to snapshot 135 

retrieval, and been applied to radar rather than radiometer observations. Moreover, a 136 

comprehensive investigation of the different mathematical functions that might be used to 137 

represent the soil moisture profile is lacking. Importantly, compared with a radiometer, radar 138 

is more sensitive to vegetation and surface roughness (Engman and Chauhan, 1995), and thus 139 

it is possible that multi-frequency L-and P-band radiometer observations could provide more 140 

accurate soil moisture profile estimation than that obtained from radar.  141 

The aim of this research was to study the use of multi-frequency (L- and P-band) radiometry 142 

to estimate the root zone profile for flat bare soil. The forward stratified coherent model of 143 

Njoku and Kong (1977) was applied to calculate brightness temperature (TB) from soil 144 

moisture and temperature profiles. While the coherent and incoherent models have the same 145 

general trend, the former includes phase-interference oscillations (Ulaby and Long, 2014). The 146 

main differences between them relate to the effects of interference, which is a function of 147 

frequency and the steepness of soil moisture profile near the surface (Schmugge and 148 

Choudhury, 1981). When data from regions of rapid sub-surface moisture variations (rapid 149 

drying out or a region having a subsurface water table) are interpreted with depth, the 150 

incoherent models become inaccurate, since coherent reflections are not accounted for. Also, 151 

when there is considerable diurnal surface temperature variation, incoherent models become 152 

inaccurate for longer wavelengths. Thus, the coherent models of Njoku and Kong (1977) and 153 

Wilheit (1978) were introduced and formulated in terms of continuous and discrete varying 154 

dielectric constant within the soil, respectively. Only a small difference was observed between 155 
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the Njoku and Wilheit models (Schmugge and Choudhury, 1981) and so in this research the 156 

Njoku model was used.  157 

The analysis has considered single or dual-frequency, single or dual-polarization, single or 158 

multi-incidence angle, and snapshot or time series retrieval options. Several mathematical 159 

functions have been investigated as representative functions of the soil moisture profile, namely 160 

i) Linear (hereafter Li), ii) Exponential (Exp), iii) Second-order Polynomial (Pn2), iv) 161 

simplified solution of the Richards' Equation (RE), v) Parametrized second-order polynomial 162 

from the simplified solution of the Richards' Equation (PRE), vi) Third-order Polynomial 163 

(Pn3), and vii) Piecewise Linear (PL). 164 

2. Data 165 

As part of the P-band Radiometer Inferred Soil Moisture project (PRISM; 166 

www.prism.monash.edu), a comprehensive tower-based experiment site was established at 167 

Cora Lynn, Victoria, Australia from October 2017 to September 2021 to advance the state of 168 

microwave remote sensing technology readiness (Fig. 1). The tower was instrumented with the 169 

Polarimetric P-band Multi-beam Radiometer (PPMR) and the Polarimetric L-band Multi-beam 170 

Radiometer (PLMR), operating at 0.742-0.752 GHz and 1.400-1.425 GHz, respectively. The 171 

tower was located at the center of 4 quadrants, each with a size of 75 m × 75 m, in order to 172 

observe different land cover conditions but similar soil moisture status (Shen et al., 2020). The 173 

PPMR has a phased array antenna with four beams having 30° beamwidth, distributed at angles 174 

of ±15° and ±45° from the normal to the antenna plane, and the PLMR has six antenna beams 175 

having 15° beamwidth distributed at angles ±7.5°, ±21°, and ±38.5° from the normal to the 176 

antenna plane. These radiometers could not only be rotated in azimuth to look at the different 177 

quadrants but tilted to change the look angles, which was done automatically according to a 178 

predefined schedule. Footprints of PLMR and PPMR for two extreme incidence angles of 30° 179 

and 60° are shown in Fig. 1.  At the middle border of each quadrant ground stations (called 180 
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stations 126, 127, 128 and 136) were installed, equipped with hydra-probes that simultaneously 181 

measured the soil moisture and temperature from the soil surface to 60 cm depth at 5 cm 182 

intervals. Soil texture analysis was also conducted for different locations and depths, providing 183 

an average (standard deviation, depth 5cm, depth 20 cm, depth 50 cm) soil texture of 18.3% (± 184 

3.15%, 18%, 17%, 17%) clay, 13.7% (± 5.89%, 12%, 11%, 20%) sand, and 68% (± 5.12%, 185 

Fig. 1. Location map (a) of the experimental site (b) having a tower (c) at the center of a 

paddock at Cora Lynn, Victoria, Australia. The colored ovals represent the footprints of the 

microwave radiometers. The green dots represent the stations installed at the borders of the 

quadrants Q1 to Q4. 
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71%, 69%, 62%) silt, indicating a silty loam soil. The quadrants were maintained under 186 

different conditions in terms of vegetation type (corn, wheat, grass or bare) and surface 187 

roughness (smooth, furrow and bench furrow with parallel or perpendicular row orientation; 188 

(Shen et al., 2022b)). For simplicity, this research has focused on the flat bare soil condition. 189 

The performance of a multi-frequency optimization approach was investigated using 190 

experimental data of soil moisture and temperature profiles from the soil surface to 60 cm depth 191 

Fig. 2. Evolution time series of (a) soil moisture and (b) soil temperature as a function of depth 

were measured at Cora Lynn station number 126 (period A) and 136 (period B), and (c) 

brightness temperature from PPMR and PLMR at quadrant 2 over Period A (1st - 30th April 

2019) and quadrant 3 over Period B (20th February to 20th March 2020). The twenty black 

arrows show the timing of the soil moisture and temperature profiles used for snapshot and 

time series retrieval in the synthetic study. 
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in 5 cm increments, covering soil moisture conditions ranging from 0.07 to 0.35 m3/m3. Data 192 

from stations 126 and 136 as shown in Fig. 2 (a and b), and tower-based TB as shown in Fig. 193 

2 (c), were used under flat and bare soil conditions for two periods, namely A (1st to 30th April, 194 

2019) and B (20th February to 20th March, 2020). Fig. 2 (a and b) shows the high variability 195 

of moisture and temperature in the near-surface layer relative to deeper layers in the profile. It 196 

is seen during Period A that variation of soil moisture in the deeper layers was much lower 197 

than Period B, with high variability of moisture in almost all of the soil layers. Despite rapid 198 

drying of the surface and shallow layers, the deeper layers of the soil were slow to respond (see 199 

soil moisture at deeper layers in Fig. 2 (a)). Compared to soil moisture, soil temperature has a 200 

Fig. 3. Selected (a) soil moisture and (b) temperature profiles for this research. All of these soil 

moisture profiles were used in investigating different mathematical functions to represent the 

soil moisture and soil temperature profile. 

Jo
urn

al 
Pre-

pro
of



strong day to day variation and cooling of the near-surface layer relative to deeper layers for 201 

Period A compared with Period B (Fig. 2 (c)). 202 

In an initial synthetic study, the twenty soil moisture and soil temperature profiles in Fig. 3, 203 

selected from the two periods in Fig. 2 to cover the different profile shapes identified in Fig. 4, 204 

were used to predict TB values for developing the soil moisture profile estimation process. The 205 

selected data were used for answering questions including: i) if single or multi-frequency 206 

provide better results; ; ii) if single or multi-incidence angles yield better results; iii) if single 207 

(H or V) or dual (H and V) polarization provide a more robust solution; iv) which mathematical 208 

function(s) provides the best results; v) whether a snapshot or time series approach performs 209 

best; and vi) the impact of soil temperature profile approximation on the soil moisture profile 210 

estimation accuracy? 211 

3. Methodology 212 

Quantification of soil moisture using passive microwave remote sensing relies on a model, 213 

which in its simplest form can be a regression model, or in its most complex form a physical 214 

model. Microwave emission models are physical models that take the form of either a coherent 215 

or an incoherent model for soil moisture estimation. In this research, the coherent stratified 216 

model of Njoku and Kong (1977) was employed. 217 

3.1 Forward model background 218 

A vertically inhomogeneous half-space model (Njoku and Kong, 1977), hereafter referred to 219 

as the Njoku model, was used as the forward model to simulate TB at the sensor level. The 220 

theory behind such an approach uses electromagnetic fluctuations and electromagnetic wave 221 

propagation as formulated by Stogryn (1970), which established a relationship between emitted 222 

energy and the properties of the medium (surface roughness, soil moisture, and physical 223 
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temperature). Mathematically, TB at H (Eq.1) and V (Eq.2) polarization from the Njoku model 224 

is written as:  225 

𝑇𝐵𝐻 =
𝑘

𝑐𝑜𝑠𝜃
∫ 𝑑𝑧𝑇(𝑧)

0
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0

−∞

𝜖𝑟
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𝜖𝑟(𝑧)
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|
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𝑘𝑥𝜙(𝑧)

𝜖𝑟(𝑧)
|
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 }, 
(2) 

where 𝐾 =
2𝜋

𝜆
 is the free space wave number, 𝑘𝑥 = 𝑘 sin 𝜃, 𝜃 is the angle of observation, 226 

𝜖𝑟(𝑧) = 𝜖𝑟
′(𝑧) + 𝑖𝜖𝑟

”(𝑧) is the complex dielectric constant profile, and 𝑇(𝑧) is the soil 227 

temperature profile. The functions 𝜓(𝑧) and 𝜙(𝑧) are solutions of the following two second-228 

order differential equations (Eq.3 and Eq.4): 229 

{
𝑑𝜓(𝑧)

𝑑𝑧
+  𝑖𝑘𝑐𝑜𝑠𝜃[2 − 𝜓(𝑧)]}

𝑧=0

= 0 
(3) 

{
𝑑𝜙(𝑧)

𝑑𝑧
+ 𝑖𝜖𝑟(𝑧)𝑘𝑐𝑜𝑠𝜃[2 − 𝜙(𝑧)]}

𝑧=0

= 0. 
(4) 

These wave propagation equations are solved in conjunction with the boundary condition for a 230 

smooth surface. From the perspective that at lower frequencies more information about soil 231 

moisture comes from the deeper layers of the soil, Tsang et al. (1975) reformulated Eq.1 and 232 

Eq.2 for a large number of horizontal layers. This was then incorporated by Njoku and Kong 233 

(1977) and referred to as a stratified medium approach for smooth and bare soil according to 234 

Eq.5 (for H polarization) and Eq.6 (for V polarization): 235 
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2𝑖𝑘𝑙𝑧′
{1

− 𝑒𝑥𝑝[−𝑖2𝑘𝑙𝑧
′(𝑑𝑙 − 𝑑𝑙−1)]}

−
[𝐶𝑙 𝑒𝑥𝑝(−𝑖𝑘𝑙𝑧 𝑑𝑙)] ∗ [𝐷𝑙 𝑒𝑥𝑝(𝑖𝑘𝑙𝑧 𝑑𝑙)]

2𝑖𝑘𝑙𝑧′
{1

− 𝑒𝑥𝑝[−𝑖2𝑘𝑙𝑧
′(𝑑𝑙 − 𝑑𝑙−1)]})]

+
𝑘

𝑐𝑜𝑠𝜃

𝜖𝑡
"(|𝑘𝑡𝑧|2 + 𝑘𝑥

2)𝑇𝑡

𝜖0|𝑘𝑡|2
|𝑇𝑣|2

exp(−2𝑘𝑡𝑧
"𝑑𝑛)

2𝑘𝑡𝑧"
 , 

(6) 

where 𝜃 is the incidence angle, index 𝑙 is the ID of the layer, 𝑘 =
2𝜋

𝜆
= 𝜔√𝜇0𝜖0 is the 236 

wavenumber in free space (𝜆 is the wavelength, 𝜔 is the frequency in radiance/sec, 𝜇0 is the 237 
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permeability of free space, 𝜖0 is the permittivity of free space), 𝜖𝑙 = 𝜖𝑙
′ + 𝑖𝜖𝑙

” is the complex 238 

permittivity of the 𝑙th layer, 
𝜖𝑙

𝜖0
 is the dielectric constant of 𝑙th layer, 𝑇𝑙 is the temperature in the 239 

𝑙th layer, 𝑘𝑙 = 𝜔√𝜇0𝜖𝑙 is the wavenumber in the 𝑙th layer, 𝑘𝑙𝑧 = 𝑘𝑙𝑧
′ + 𝑖𝑘𝑙𝑧

" =240 

𝑘√𝜖𝑙 𝜖0 − 𝑠𝑖𝑛2𝜃⁄  , 𝑑𝑙 is the depth below the surface, and 𝑛 is the total number of horizontal 241 

layers. The quantities 𝐴𝑙, 𝐵𝑙, 𝐶𝑙, 𝐷𝑙, 𝑇ℎ and 𝑇𝑣 are wave amplitudes that are related to each 242 

other by propagation matrices. The impact of surface roughness was considered based on a 243 

semi-empirical approach (referred here to as the HQN model) which was proposed by (Wang 244 

and Choudhury, 1981) and developed by (Wigneron et al., 2001) through Eq.7. 245 

𝑟𝐺𝑃(𝜃) = [(1 − 𝑞𝑃(𝜃))𝑟∗
𝐺𝑃(𝜃) + 𝑞𝑃(𝜃)𝑟∗

𝐺𝑄
(𝜃) ] 𝑒𝑥𝑝(−ℎ𝑃(𝜃)𝑐𝑜𝑠𝑛𝑃(𝜃)), (7) 

where 𝑞𝑃 (with 𝑃 = 𝐻 and  𝑄=V or 𝑃 = 𝑉 and  𝑄=H) is a polarization mixing factor, ℎ𝑃 is a 246 

surface roughness parameter, and 𝑛𝑃 is the angular dependence of the surface roughness. The 247 

parameter ℎ𝑃 was calculated using (Wigneron et al., 2001) by Eq.8: 248 

ℎ𝑃 = 1.3972 ∗ (
𝑟𝑚𝑠

𝑙𝑐
)

0.5879

, 
(8) 

where 𝑟𝑚𝑠 and 𝑙𝑐 are the RMS height and correlation length measured at the field for the two 249 

study periods. The parameter 𝑞𝑃 was set to 0 for both L- and P- bands. The parameter 𝑛𝑃 was 250 

calibrated using Eq.7 and the Njoku model from another period of data, yielding values of -251 

0.50 (1.80) and -0.333 (0.415) at H (V) polarizations for L-band and P-band respectively. The 252 

parameter 𝑟∗
𝐺𝑃 is the specular reflectivity calculated from the Fresnel equations for H (Eq.9) 253 

and V (Eq.10) polarizations such that: 254 

𝑟∗
𝐺𝐻 = |

cos(𝜃) − √𝜀𝑟 − sin2(𝜃)

cos(𝜃) + √𝜀𝑟 − sin2(𝜃)
|

2

 

(9) 

𝑟∗
𝐺𝑉 = |

𝜀𝑟 ∙ cos(𝜃) − √𝜀𝑟 − sin2(𝜃)

𝜀𝑟 ∙ cos(𝜃) + √𝜀𝑟 − sin2(𝜃)
|

2

, 
(10) 

Jo
urn

al 
Pre-

pro
of



where 𝜀𝑟 = 𝜀𝑟
′ − 𝑖 ∙ 𝜀𝑟

′′ is the relative soil dielectric constant which includes real (′) and 255 

imaginary (′′) parts, and 𝜃 is the incidence angle. Using the coherent model, the emissivity is 256 

calculated in each layer, so by adjusting the calculated surface layer emissivity for roughness 257 

before multiplying by the physical temperature, the roughness can be included in the overall 258 

TB estimate by summing the TB contributions from each layer. Using the stratified coherent 259 

model to calculate the TB, with inputs of soil moisture and temperature, requires selecting an 260 

appropriate soil dielectric model, profile depth and a number of horizontal layers (profile depth 261 

divided by layer thickness). Here the multi-relaxation generalized refractive mixing dielectric 262 

model (Mironov et al., 2013, 2014) was used, as it considers the interfacial (Maxwell-Wagner) 263 

relaxation of water in the soil, which is significant at P band (Zhang et al., 2020). Schmugge 264 

and Choudhury (1981) recommended there be a total of 100 layers in 1 m profile depth (layer 265 

thickness varies from 0.003 cm at the surface to 1 cm at a depth of 9 cm and 5 cm at a depth of 266 

40 cm) for 1.4 GHz frequency and higher. However, based on a sensitivity analysis using a 267 

combination of synthesized soil moisture and temperature profiles at various incidence angles 268 

using L- and P-band and H/V polarization, the profile depth and the number of horizontal layers 269 

did not exceed 0.9 m and 56 (when the layer thickness was 0.016). However, for preventing 270 

error from the numerical configuration of the model, they were set to 1 m and 0.01 m 271 

respectively, with 100 layers. 272 

3.2 Mathematical representation of soil moisture and temperature profile 273 

Several mathematical functions including Li (Eq.11), Exp (Eq.12), Pn2 (Eq.13), Pn3 (Eq.14), 274 

PL (Eq.15), RE (Eq.16) and PRE (Eq.21) were selected from literature (Reutov and Shutko, 275 

1986; Tabatabaeenejad et al., 2015; Cuenca et al., 2016). Mathematically these functions are:  276 

SM(𝑧) = 𝑎z + 𝑐 (11) 

SM(𝑧) = 𝑐 + 𝑏(exp(−𝑎𝑧) − 1)/(exp(−𝑎𝑧1) − 1) (12) 
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SM(𝑧) = 𝑎𝑧2 + 𝑏𝑧 + 𝑐 (13) 

SM(𝑧) = 𝑎𝑧3 + 𝑏𝑧2 + 𝑑𝑧 +  𝑐 (14) 

SM(𝑧) = 𝑐 + 𝑎z + 𝑏(𝑧 − 𝑧1)x, (15) 

where 𝑧 is depth (positive downward) and 𝑎, 𝑏, 𝑐 and 𝑑 are coefficients of the related function. 277 

Table 1 shows the boundaries of each parameter. The parameters 𝑎 in Eq.11 and Eq.15 278 

represent the profile slope of soil moisture content, while in Eq.12 and Eq.13 along with 𝑑 in 279 

Eq.14 control the shape of the profile. Parameter 𝑏 in Eq.12 is the change of moisture from the 280 

surface to the depth 𝑧1 (0.6 m in this study), while in Eq.15 its value along with the 𝑎 parameter 281 

is the slope of the second piece of the piecewise linear function. The parameter 𝑐 in Eq.11 to 282 

Eq.15 represents the surface soil moisture content. Parameter 𝑧1 in Eq.12 is the depth after 283 

which the soil moisture can be considered constant, while Eq.15 contains two linear segments 284 

that join at the depth 𝑧1. Moreover, the binary vector x in Eq.15 is mathematically written as: 285 

if (𝑧 <=𝑧1,0,1). Notably, each of these functions has different computational requirements and 286 

degrees of complexity for fitting the shape variables.  For example, the linear function has only 287 

two shape variables, while the exponential and second-order polynomial functions have three 288 

Table 1. The boundaries of parameters used in the mathematical functions. SP (Shape 

Parameter; unitless), SSM (Surface Soil Moisture; % in Equations 12, m3/m3 in the rest), and 

𝛥SM (the change of moisture in the profile from surface to the bottom of the profile (here 60 

cm); %). The numbers in the brackets show the boundary [lower, upper] of each parameter. 

Equation 𝒂 𝒃 𝒄 𝒅 

11 Slope [-0.83, 0.83] - SSM [0, 0.5] - 

12 SP [-50, 50] 𝛥SM [-35, 35] SSM [0, 50] - 

13 SP [-1, 1] SP [-1, 1] SSM [0, 0.5] - 

14 SP [-1, 1] SP [-1, 1] SSM [0, 0.5] SP [-1, 1] 

15 Slope [-1, 1] Slope [-1, 1] SSM [0, 0.5] - 
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shape variables, and the third-order polynomial and piecewise linear each have four shape 289 

variables. The simplified solution to Richards' equation Eq.16 has five parameters, two of 290 

which are empirical parameters (ℎ𝑐𝑀 and 𝑃) related to effective capillary drive and soil pore 291 

size distribution respectively, given for different soils in Table 1 (51.64 and 10.84 respectively 292 

for the silty loam soil used here) of Sadeghi et al. (2016), while the rest (𝑎, 𝑏, and 𝑐) are 293 

parameters controlling the shape of the profile and do not have any physical meaning. 294 

Consequently, these were parametrized according to the value of soil moisture at the top (𝜃1
 ), 295 

middle (𝜃2
 ), and bottom (𝜃3

 ) of the investigated depth (𝑧1, 𝑧2 and 𝑧3) as follows (Sadeghi et 296 

al., 2016): 297 

SM(𝑧) = (𝑎𝑧 + 𝑏 exp (
𝑧

ℎ𝑐𝑀
) + 𝑐)

1
𝑃 

(16) 

𝑎 =
𝜃3

𝑃 − 𝜃1
𝑃 − 𝐴(𝜃2

𝑃 − 𝜃1
𝑃)

𝑧3 − 𝑧1 − 𝐴(𝑧2 − 𝑧1)
 

(17) 

𝑏 =
𝜃2

𝑃 − 𝜃1
𝑃 − 𝑎(𝑧2 − 𝑧1)

exp (
𝑧2

ℎ𝑐𝑀
) − exp (

𝑧1

ℎ𝑐𝑀
)
 

(18) 

𝑐 = 𝜃1
𝑃 − 𝑎𝑧1 − 𝑏𝑒𝑥𝑝 (

𝑧1

ℎ𝑐𝑀
) 

(19) 

𝐴 =
exp(

𝑧3
ℎ𝑐𝑀

)−exp(
𝑧1

ℎ𝑐𝑀
)

exp(
𝑧2

ℎ𝑐𝑀
)−exp(

𝑧1
ℎ𝑐𝑀

)
. 

(20) 

Assuming 𝑃 = 1 and/or ℎ𝑐𝑀 is larger than the investigation domain (
𝑧

ℎ𝑐𝑀
< 1) leads to a 298 

second-order polynomial approximation (Eq.21):  299 

SM(𝑧) = 𝑎𝑧 + 𝑏 exp (
𝑧

ℎ𝑐𝑀
) + 𝑐. (21) 

It is worth noting that the unknown parameters of Eq.16 and Eq.21 include the soil moisture 300 

value at the surface, middle, and bottom of the soil profile (0, 30 and 60 cm in the application 301 

here). When 𝑃 > 1, and 𝜃1
  < 𝜃2

 < 𝜃3
  or 𝜃1

  > 𝜃2
  < 𝜃3

 , the calculated soil moisture profile using 302 
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Eq.16 is undefined for a part of the profile. To solve this problem, 𝑃 is considered as 1 so that 303 

the second-order polynomial in Eq.21 can be used.   304 

Data throughout the period December 2017 to December 2019, having different wetting and/or 305 

drying regimes, was used to identify typical profile shapes and analyze the seven mathematical 306 

functions identified from literature for approximating soil profile conditions. This step was 307 

undertaken to aid in estimating the root zone soil moisture profile, as estimating a few shape 308 

parameters is a simpler task than estimating directly the soil moisture at multiple depths in the 309 

soil. The profile types (or shapes) are distinguished by changes in their moisture gradient, and 310 

their dynamic response to precipitation, evapotranspiration, soil properties etc. Type 1 in Fig. 311 

4 (a) is a soil moisture profile that has little variation with depth (gradient or slope which can 312 

be decreasing, stable, or increasing). Type 2 in Fig. 4 (b) is a dry case with higher soil moisture 313 

at depth due to exfiltration. Type 3 in Fig. 4 (c) occurs when rain has wetted the soil near the 314 

surface and this has moved down through the soil column as plug flow, resulting in a sharp 315 

gradient neat the bottom of the profile. It could also happen if there are large differences in the 316 

soil texture such that the shallow layer can hold the moisture while the bottom of the profile 317 

does not. Type 4 in Fig. 4 (d) is where infiltration has occurred (due to rainfall) on the profile 318 

of Type 1, such that the profile takes a concave shape. Type 5 in Fig. 4 (e) is the most complex, 319 

taking on a S shape likely due to alternate wetting and drying cycles, resulting in substantial 320 

moisture variation throughout the profile. Samples of observed soil moisture profiles along 321 

with a typical soil temperature profile and their comparison with the fitted functions are 322 

illustrated in Fig. 4. 323 

From the analysis it was concluded that depending on the time of the year, site, and its soil 324 

texture and infiltration dynamics, a mathematical function with a higher number of parameters 325 

will typically represent the soil moisture profile more accurately. The average RMSE (from 326 

surface to 60 cm depth) between soil moisture profiles from the fitted function and observed 327 
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soil moisture profiles were 0.026 (PL), 0.028 (Pn3), 0.03 (Pn2 and PRE), 0.032 (Exp), 0.034 328 

(RE), and 0.035 (Li) (the unite is m3/m3). However, the greater number of parameters also 329 

Fig. 4. Examples of (a) to (e) soil moisture and (f) soil temperature profile shapes encountered 

in Cora Lynn over the period December 2017 to December 2019 along with fitted mathematical 

functions (Li: Linear, Exp: Exponential, Pn2: second-order Polynomial, PRE: Parametrized 

second-order polynomial from simplified solution of Richard Equation, RE: simplified solution 

of Richards’ Equation, Pn3: third order Polynomial, and PL: Piecewise Linear). Note: Both 

Pn2 and PRE functions resulted in exactly the same values, meaning that the curves were 

overlapped. 
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brings greater challenges to identify them. In this research, Eq.11 to Eq.16 and Eq.21 were 330 

considered as the mathematical representation of soil moisture profiles. 331 

3.3 Inversion scheme 332 

Radiative transfer equations used for forward models like the Njoku model need the 333 

distribution of soil moisture and temperature throughout the profile to simulate TB at the sensor 334 

level. Moreover, the output from the forward model should be able to closely mimic the TB 335 

that would be recorded by the sensor. Critically, validity of the forward model is a prerequisite 336 

for success of the inverse problem. For the synthesis study, it was assumed that the forward 337 

model met this criterion, while for the field application, roughness parameters were first 338 

calibrated to an independent period of data. In order to estimate the soil moisture profile, each 339 

of the above assumed mathematical functions was applied to calculate soil moisture as a 340 

function of depth. Accordingly, the parameters of the associated mathematical function were 341 

derived from matching predicted and observed TB using the cost function in Eq.22 through the 342 

coherent model in Eq.5 and Eq.6 by the process explained in Fig. 6. Accordingly, using the 343 

Njoku model the TB expected from an L-band and P-band radiometer were simulated 344 

separately and constrained using Eq.22.  345 

𝐿(𝑋
−) =

1

𝑁
[∑ |𝑇𝐵𝑓,𝑝(𝑋

−) − 𝑇𝐵𝑓,𝑝|
2

𝑝=ℎ,𝑣  ], (22) 

where (X
−) represents the parameters of interest, 𝑇𝐵𝑓,𝑝 and 𝑇𝐵𝑓,𝑝(𝑋

−) are the calculated and 346 

observed TB, 𝑁 is the number of observations, 𝑝 and 𝑓 represent the polarization (H or V) and 347 

frequency, respectively.  348 

Given the complex analytical form of this physics-based emission model, an iterative 349 

optimization scheme was used to minimize the cost function and estimate the desired soil 350 

moisture profile parameters of interest. Different optimization algorithms were analysed, 351 

including simulated annealing (SA), genetic algorithm (GA), particle swarm optimization 352 
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(PSO) and their combinations, to estimate soil moisture profiles under two nominal conditions 353 

(a dry case and a wet case). According to the results (not shown here), PSO alone consistently 354 

produced the best results and so was selected for optimization of the soil moisture profile shape 355 

parameters in this study. PSO is a stochastic evolutionary computation technique that relies on 356 

the social behavior of swarms of fish, bees, and other animals. Each solution in PSO can be 357 

considered as a particle, except that they share their information and interact locally with each 358 

other and with the community. These interactions lead to a global behavior which is less likely 359 

to get stuck in a local minimum. A schematic of the algorithm search for the global minima is 360 

shown in Fig. 5. By randomly initializing parameters, any particle (blue circle in Fig. 5 (a)) in 361 

the search space has an initial position whose value is the cost function. The next position of 362 

the particles is determined by Eq.23: 363 

𝑥𝑖[ 𝑡 + 1] = 𝑥𝑖[ 𝑡] + 𝑣𝑖[ 𝑡 + 1] (23) 

𝑣𝑖[ 𝑡 + 1] = 𝑤𝑣𝑖[ 𝑡] + 𝑐1𝑟1(𝑥𝑖,𝑏𝑒𝑠𝑡[𝑡] − 𝑥𝑖[𝑡]) + 𝑐2𝑟2(𝑥𝑔𝑏𝑒𝑠𝑡[𝑡] − 𝑥𝑖[𝑡]),  (24) 

where 𝑥𝑖[ 𝑡] is the current position of the particle, 𝑣𝑖[ 𝑡 + 1] (Eq.24) is the speed for the next 364 

position which is a function of movement in the direction of the previous position 𝑤𝑣𝑖[ 𝑡], the 365 

best experience of the particle 𝑥𝑖,𝑏𝑒𝑠𝑡[𝑡] − 𝑥𝑖[𝑡] and movement in the direction of the best 366 

Fig. 5. (a) Schematic view of the particle swarm intelligence and (b) movement of a particle 

based on the theory of the PSO algorithm. 
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particle 𝑥𝑔𝑏𝑒𝑠𝑡[𝑡] − 𝑥𝑖[𝑡], 𝑤 is inertial weight between 0.6 and 0.9, slowing the particle and 367 

helping it to converge around 𝑥𝑔𝑏𝑒𝑠𝑡, 𝑐1 and 𝑐2 (between 1.2 and 1.5 ) are acceleration constants 368 

and 𝑟1 and 𝑟2 are random numbers between 0 and 1. A sample of the movement for one particle 369 

is shown in Fig. 5 (b).  370 

Different strategies were considered to retrieve the soil moisture profile shape parameters (as 371 

shown in Fig. 6), including using the a) L-band observations alone, b) P-band observations 372 

alone, c) L- and P-band observations jointly (namely LP method), and d) retrieving the surface 373 

soil moisture parameter in each of the functions using the L-band observation and the rest of 374 

the shape parameters using the P-band observation (namely L_P method). In the L_P method, 375 

the soil moisture profile was first estimated using the L-band alone (method (a)). Because L-376 

band is more sensitive to surface soil moisture, just the parameter related to the surface soil 377 

moisture in each of the used mathematical functions (parameter 𝑐 in Eq.11 to Eq.15 and 378 

parameter 𝜃1
  related to Eq.16 and Eq.21) was accepted and fed into the next step, which then 379 

retrieves the remaining parameters using P-band. It should be noted here that the estimated 380 

surface soil moisture using the coherent stratified model from L-band is the soil moisture at the 381 

air-soil interface and not the average soil moisture from surface to 5 cm depth. In order to 382 

compare the result of the different strategies, the number of iteration (100) and the parameters 383 

of the PSO algorithm (𝑤, 𝑐1 and 𝑐2) along with the convergence criteria (< 0.01 K) for 384 

minimizing the cost function were considered equal. A flowchart of soil moisture profile 385 

estimation using the coherent stratified model is shown in Fig. 6. 386 

In soil moisture profile estimation using each of the strategies, first a mathematical function 387 

was considered and then the corresponding parameters of the function were generated 388 

randomly and dependently. In applying all of the seven mathematical functions, first, surface 389 

soil moisture as a parameter of the function was generated and then the rest of the parameters 390 

were generated in a way that the change of soil moisture from the surface to the investigated 391 
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depth did not exceed 0.35 m3/m3 to prevent generating strange soil moisture profile shapes. 392 

The generated soil moisture profile along with the observed (or approximated) soil temperature 393 

profile was then fed into the Njoku model, and the TB at L-band and/or P-band simulated. In 394 

the LP method, the Njoku forward model is run twice in a sequential manner, once for the L-395 

band and once for the P-band. The Njoku model is a multilayer model which is a function of 396 

the soil profile (taken to be to 1 m depth in our application), thereby negating the necessity for 397 

any assumptions regarding the different observation depths of L-band and P-band (Shen et al., 398 

2020). The simulated TB was then compared with the observed TB collected from the 399 

radiometers mounted on the tower (or the synthetic equivalent) using the cost function in Eq.22. 400 

For estimating each soil moisture profile, the total 100 iterations and a population of 50 401 

particles were considered. If the cost functions of ten successive iterations remain almost 402 

Fig. 6. Flowchart of soil moisture profile retrieval using the stratified coherent model. Note: 

here the soil moisture profile was retrieved using the L-band alone, P-band alone, and joint L-

and P-band as explained in the text. For method L_P, first the soil moisture profile was retrieved 

based on this flowchart using L-band. In the next step, the soil moisture profile was retrieved 

using P-band alone but with the surface soil moisture parameter as already retrieved using L-

band. 
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constant (< 0.01 K), then the algorithm interrupts the optimization process by changing the 403 

parameters 𝑤, 𝑐1 and 𝑐2, and randomly generating a new population. The algorithm saves the 404 

last cost function and the corresponding parameters in a separate matrix and starts generating 405 

parameters from the beginning. If it doesn’t get stock in the local minimum, it generates the 406 

parameters so that it will converge the cost function. Finally, the matrix containing the smallest 407 

cost function of each ten successive iteration were sorted based on its cost values and the 408 

corresponding parameters of the smallest selected as the final output. The soil moisture profile 409 

was then calculated from the retrieved parameters using the corresponding mathematical 410 

function and the RMSE between estimated and observed soil moisture profile calculated. 411 

Moreover, the practical depth for estimating the soil moisture profile from the relevant 412 

mathematical function with a satisfactory level of accuracy (RMSE less than 0.04 m3/m3) was 413 

approximated. 414 

Experimental data of various soil moisture and temperature profile shapes (Fig. 2) collected 415 

from ground Stations 126 and 136 in Cora Lynn under flat bare soil were used as input to the 416 

coherent model to demonstrate the potential for profile estimation. Retrieved shape parameters 417 

for the soil moisture profile were evaluated by comparing the derived profile against the 418 

original profile used to produce the observed TB, with and without TB error imposed. A 419 

uniform distribution of noise (low noise: -1 ~ +1 K, and high noise: -4 ~ +4 K) was imposed 420 

on the TB observations, and each soil moisture profile estimated 10 times (realization) using 421 

different realizations of noise. The analysis considered single and dual-frequency, single and 422 

dual-polarization, and single and multi-incidence angle, snapshot and time series. Additionally, 423 

the soil temperature profile was considered as known, or assessed for approximation using a 424 

simple method.  425 

In approximating the soil temperature profile, first a time series of the 6 AM profiles was 426 

extracted from discrete measurements and interpolated to a continuous profile. The 12 soil 427 
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temperature measurements of each profile were related to depths of 2.5 (0-5 cm) to 57.5 (55-428 

60 cm) in 5 cm increments. The gradient between 2.5 and 7.5 cm was used to estimate the soil 429 

temperature at the surface. The soil temperature below 57.5 cm up to 100 cm was considered 430 

constant and equal to the soil temperature at depth of 57.5 cm. Second, a general profile was 431 

calculated based on the whole set of 6 AM soil temperature profiles. Then surface soil 432 

temperature (measured or estimated from a land surface model) for that day could be added to 433 

the general profile shape and the soil temperature profile of that day approximated. The reason 434 

behind using the general profile shape lies in the fact that 6 AM soil temperature profiles 435 

through the year have a similar profile shape, but with an offset. 436 

4. Results and discussion  437 

In this section, the result from the soil moisture profile estimation methods as described in 438 

section 3.3 are first presented and discussed. The performance of the best method from the 439 

synthetic study is then evaluated using experimental data.  440 

4.1 Soil moisture profile estimation 441 

To explore the potential of the proposed soil moisture profile estimation models explained in 442 

the methodology section, the 20 soil moisture profiles shown in Fig. 3 were estimated 443 

individually using the four methods with dual H and V polarization, incidence angle of 40°, 444 

and the seven mathematical functions used to represent the soil moisture profile. The average 445 

final value of the cost function in the case of low (0.58 K) and high (0.96 K) noise scenarios 446 

using the LP method demonstrated the robustness of the inversion scheme. The depth for 447 

reliable estimation and error (RMSE) was calculated for each soil moisture profile at different 448 

depths over the top 60 cm profile, containing in situ soil moisture measurements at 12 depths. 449 

The result (Fig. 7 for high noise scenario and Fig-Sm. 1 in supplementary material for low 450 

noise scenario) showed that as the depth increased, the RMSE typically increased because of 451 

the reduced contribution of the soil dielectric profile to the total emission from the soil. 452 
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Moreover, it was found that the RMSE of the methods was lower for Period A (profile numbers 453 

Fig. 7. Heatmap of RMSEs (average of ten perturbations under high noise scenario) between 

retrieved and observed soil moisture profile using L-band only (first column), P-band only 

(second column), LP band jointly (third column), and L_P method (last column). Each row 

shows results for a mathematical function representing the soil moisture profile including (a) 

linear, (b) exponential, (c) second-order polynomial, (d) derived second order polynomial from 

simplified solution of Richard equation, (e) simplified solution of Richard equation, (f) third-

order polynomial, and (g) piecewise linear. Note: the blue color represents the RMSE below 

the target RMSE (0.04 m3/m3). 
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1 to 10 in Fig. 7 and Fig-Sm. 1) as compared to Period B (profile numbers 11 to 20 in Fig. 7 454 

and Fig-Sm. 1) due to the higher penetration depth of L- and P-band wavelengths in drier 455 

profiles (Rao et al., 1988). Taking all the mathematical functions and the twenty soil moisture 456 

profiles into account, it was found that the LP method outperformed other methods (Fig. 8). 457 

The two different levels of noise in the synthetic study aimed to represent the impact of 458 

calibration and model uncertainty. The average estimation depth of the methods under low 459 

(high) noise scenarios were 5 (4) cm at L-band, 6 (5) cm at P-band, 13 (12) cm with LP method, 460 

and 11 (10) cm for L_P method. Thus, it is clear that the performance of the two wavelengths 461 

together is better than the performance of a single wavelength. Since the sensitivity to factors 462 

which affect soil emission is frequency dependent (e.g. penetration depth is increased in the 463 

soil at longer wavelengths), obtaining higher accuracy and getting information from deeper 464 

layers are expected to be achieved by combining the two L-band and P-band frequencies. More 465 

specifically, there are many profile options that could lead to the same P-band TB prediction. 466 

However, adding an additional frequency at L-band constrains these options and thus leads to 467 

Fig. 8. Comparison of the methods for (a) low noise and (b) high noise scenario. Note: the 

RMSE axis is the average RMSE of 10 realizations and 7 mathematical functions. The vertical 

and horizontal dotted lines show the target RMSE (0.04 m3/m3) and the associated maximum 

estimation depth respectively. The dashed horizontal line shows worst case scenarios of 

estimation depth. 
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a more accurate extrapolation. The L_P method was the next best performing method followed 468 

by the P-band and finally L-band only models. Regardless of the applied noise scenario or the 469 

period, the RMSE of the L-band model predicted shallower surface soil moisture than the P-470 

band model (Fig. 8). This is because the P-band signal carries information about the soil 471 

moisture from much deeper layers of the soil. The performance of the individual mathematical 472 

functions representing the soil moisture profile was investigated. For this reason, the estimation 473 

depth of the methods was calculated as shown in Fig. 9. The linear function with only two 474 

parameters (Eq.11) could estimate the soil moisture up to a depth of 31 cm (mean of low and 475 

high noise scenarios) at LP and 30 cm at L_P method, outperforming all other functions. 476 

Additionally, the average estimation depth of the Pn2 function (17 cm) was comparable with 477 

Pn3 (17.5 cm) using each of the LP or L_P methods. The RE function recommended by Sadeghi 478 

et al. (2016) led to an estimation depth of 12 cm at both LP and L_P methods. The PL function 479 

using LP (L_P) method was the next best function with estimation depth 9 (12) cm. Although 480 

applying the Exp function resulted in an estimation depth of 12 cm using the LP method, the 481 

lowest estimation depth was achieved using this function with 1 cm at L-band alone, 2 cm at 482 

P-band alone and 4 cm for L_P method. Also, using the PRE function an average estimation 483 

depth of 4 cm (10 cm) was achieved using L-band or P-band (LP or L_P) methods. The reason 484 

Fig. 9. The estimation depth of methods according to assumed moisture profile functions based 

on target RMSE 0.04 m3/m3 under (a) low and (b) high noise scenarios. 
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of achieving lower estimation depth using the Exp function could be linked to the fact that a 485 

small change in the shape parameters (𝑎 and 𝑏 in Eq.12) of this function leads to a huge change 486 

in the profile shape. Additionally, function PRE could capture the shape of the profiles that are 487 

dominant in Period B (Fig. 3). Except Exp, PRE, and RE functions, the depth of estimation of 488 

the other functions were similar using L-band or P-band methods and were 8 cm and 9 cm 489 

respectively. The results obtained using the employed functions were similar at least for depths 490 

less than 10 cm (Fig. 7 and Fig. 10). Therefore, if the intention is to estimate the soil moisture 491 

not deeper than 10 cm, any of these functions can be expected to give a similar result. The 492 

linearity of soil moisture variation at the lower depth could be a possible reason for achieving 493 

such similar results, thus enabling most of these functions to capture the shape of the profile at 494 

the lower depths. However, as the depth increased, the RMSE between the estimated and 495 

observed soil moisture profile increased (Fig. 7 and Fig. 10). This synthetic study clearly shows 496 

the effectiveness of the LP method in estimating the soil moisture profile with the best 497 

mathematical functions of Li followed by Pn2 function. Therefore, the LP method was selected 498 

as the most robust method and thus the main focus of the further analysis of this research. 499 

4.2 Time series estimation of soil moisture profile 500 

The optimization algorithm (PSO) used in this study is population-based and so the particles 501 

share information together while searching the global minimum. In the snapshot retrieval, one 502 

global minimum is found by 50 particles during every iteration. For example, considering a 503 

second-order polynomial for retrieving parameters 𝑎, 𝑏, and 𝑐, the 50 particles search for 504 

finding one global minimum. By increasing the number of observations (known) in a fixed 505 

time-window, more parameters can be retrieved. If a 30 day estimation period of soil moisture 506 

profiles is considered using the second-order polynomial function instead of retrieving one set 507 

of 𝑎, 𝑏, and 𝑐, 30 sets of parameters are retrieved. However, in a drying down period, these 30 508 

parameters of 𝑎, 𝑏, and 𝑐 change gradually and so can build a density of global minima in the 509 
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search space. As a result, finding 30 global minima (built by 30 days × 3 parameters) by 50 510 

particles is much easier than finding one global minimum. Accordingly, PSO is expected to 511 

give a better result with the time series approach, because it is able to incorporate the prior 512 

knowledge of the previous time step to get the value for the next time step as it understands the 513 

relationship between these parameters through time. As a result, the motivation of using time 514 

series retrieval is proposed.  515 

The temporal behaviour of soil moisture is usually characterized by a relatively slow dry-down 516 

process following an abrupt increase from precipitation or irrigation. Therefore, dry down 517 

periods of soil moisture in Period A and B were considered to compare the time series and 518 

snapshot retrieval methods. The purpose of selecting the dry-down periods was for partially 519 

removing the uncertainties in calibration and forward modeling in the multi-temporal soil 520 

moisture profile estimation. The Period A is characterized by simple soil profile shapes and 521 

relatively lower soil moisture with average 0.13 m3/m3 (minimum 0.07 m3/m3 and maximum 522 

0.23 m3/m3) while Period B has more complex profile shapes with an average of 0.27 m3/m3 523 

(minimum 0.13 m3/m3 and maximum 0.35 m3/m3). Fig. 10 shows the comparison between the 524 

snapshot and time series estimation for the two periods using the LP method. It is concluded 525 

that except the Li function, the time series outperformed the snapshot estimation under low 526 

(high) noise scenario by 0.01 (0.01) m3/m3 for RE, 0.01 (0.02) m3/m3 for PRE, 0.02 (0.02) 527 

m3/m3 for PL, 0.008 (0.01) m3/m3 for Exp, 0.004 (0.008) m3/m3 for Pn3, and 0.006 (0.002) 528 

m3/m3 for Pn2 functions. Function Li showed an exception in which RMSE increased by 0.006 529 

(0.003) under low (high) noise scenarios when using the time series approach.  530 

The effect of combining observations from different incidence angles, including 10, 20, and 531 

40, on the soil moisture profile estimation accuracy as compared to having observations at a 532 

single incidence was assessed using the L-band, the P-band, and the LP method. It was found 533 

that using one incidence angle at 40 with the LP method outperformed using multi-incidence 534 

Jo
urn

al 
Pre-

pro
of



angles at L-band or P-band alone (Fig-SM. 2). Taking all the mathematical functions into 535 

account, the result of the LP method using a combination of different incidence angles, 536 

including 40, 20 and 40, and 10, 20 and 40 demonstrated (Fig-SM. 3) that two incidence 537 

Fig. 10. Snapshot retrieval of soil moisture profiles using the combined L- and P-band method 

(H and V polarization and single 40° incidence angle) for (a and b) known and (c and d) 

approximated soil temperature profile using snapshot retrieval, and time series retrieval (e and 

f) with known soil temperature profile under low and high noise scenarios. The dashed and 

dotted horizontal lines show best and worst case scenarios of estimation depth. 
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angles resulted in a 0.003 m3/m3 decrease in RMSE under low and high noise scenarios, while 538 

remaining unchanged when three incidence angles were employed.  539 

Investigation of single and dual-polarization retrieval from the LP method confirmed 540 

expectations (Fig-SM. 4) that using H and V together resulted in better performance than when 541 

using either polarization individually.  542 

4.3 Impact of approximation of soil temperature profile on the estimation accuracy 543 

The soil temperature profile is one of the important inputs of the microwave coherent model in 544 

simulating TB, but obtaining this variable is challenging and has thus been a limitation for 545 

large-scale applications. Therefore, an approximation method as explained in the methodology 546 

section was considered and differences quantified between the approximated profiles from 547 

actual temperature profiles and their impact on the simulated TB and soil moisture estimation. 548 

It was found (not shown here) that approximation of the soil temperature profile leads to an 549 

average RMSE between actual soil temperature profiles at 6 AM and approximated soil 550 

temperature of around 3 K.  551 

The impact of the soil temperature profile approximation on the TB estimation for soil moisture 552 

profile estimation was investigated. Accordingly, TB was simulated for both L-band and P-553 

band using the coherent model from actual and approximated soil temperature profiles. 554 

Considering the thermal sensing depth at L-band and P-band, it is obvious that if approximated 555 

soil temperature profiles were calculated from the surface soil temperature, the RMSE of the 556 

simulated and observed TB would be higher at P-band (4 K) as compared with L-band (3 K). 557 

The reason is that thermal sensing depth at P-band is much deeper than for L-band, and P-band 558 

is more sensitive to the temperature of the deeper layers. In the above analysis, a dry soil 559 

moisture profile was considered. However, when a wet soil moisture profile was considered, a 560 

much lower RMSE of TB was achieved when using the approximated soil temperature profile. 561 

The reason is that when soil moisture is high, the penetration depth and the variation of soil 562 
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temperature near the surface decrease so that surface temperature is more realistic for 563 

approximating the soil temperature profile. 564 

It should be noted that, to investigate the impact of approximated soil temperature profiles on 565 

soil moisture profile estimation, the twenty soil moisture profiles (Fig. 3) were estimated 566 

individually using the LP method under low and high noise scenarios (Fig. 10 (c and d)). In the 567 

low noise scenario, except Exp (decrease in RMSE by 0.001 m3/m3), Pn2 (decrease in RMSE 568 

by 0.0005 m3/m3), and PL (decrease in RMSE by 0.001 m3/m3) function, and in the high noise 569 

scenario except Pn3 (decrease in RMSE by 0.005 m3/m3) and PL (decrease in RMSE by 0.0001 570 

m3/m3) functions, the retrievals from other functions were a little worse by average 0.002 571 

m3/m3. Therefore, the approximation method of soil temperature profile can be considered as 572 

an appropriate substitution of having known soil moisture profile information when estimating 573 

the soil moisture profile using coherent models.    574 

4.4 Estimating soil moisture profile using real experiment data  575 

In the synthetic study it was found that the LP method outperformed other methods, and that 576 

using the time series approach gave better performance compared with snapshot retrieval. 577 

Additionally, it was concluded that the two incidence angles 10 and 40 at both H and V 578 

polarization led to the lowest RMSE. It was also shown that Li and Pn2 functions resulted in a 579 

lower RMSE compared with the other options. Thus, using this configuration, the coincident 580 

brightness temperature observations at L-band and P-band for the Period A and B profiles 581 

shown in Fig. 2 were used for testing with real data. In the real study using real data, because 582 

of the configuration of the tower, the brightness temperature observations were only available 583 

at incidence angles of 45° (for Period A) and 40° (for Period B) for both L-band and P-band. 584 

Therefore, the soil moisture was estimated using a single incidence angle. To assess the 585 

performance of the proposed inversion scheme, the L-band and P-band observations (Fig. 2 586 

(c); 26 days in Period A and 14 days in Period B) were first used along with simultaneous 587 
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measurements of soil moisture and temperature profiles (Fig. 2 (a and b)) for the two periods 588 

from the PRISM project. The numerical setup of the coherent model was considered the same 589 

as for the synthetic study with the same profile depth and number of layers. The brightness 590 

temperature was simulated using the coherent forward model and evaluated against 591 

observations at L-band and P-band for both periods. As explained in the methodology section, 592 

the roughness parameters ℎ𝑃, 𝑞𝑃, and 𝑛𝑃 in Eq.7, and soil temperature profile were considered 593 

as known.  594 

Fig. 11 shows the predicted brightness temperature versus the respective L-band and P-band 595 

observations over the two Periods A and B. The V (4.4 K) and H (4.6 K) polarization achieved 596 

the best performance for L-band and P-band respectively, followed by V (6.9 K) and H (8.6 K) 597 

polarization at the P-band and L-band. The H polarization is more sensitive to roughness and 598 

so this could be the possible reason for higher RMSE at L-band compared with the V 599 

polarization. Following rainfall when the surface was drying out, the anomalous error in H 600 

polarization at L-band led to higher observed TB. However, the model used the average soil 601 

Fig. 11. Comparison of calculated brightness temperature from the coherent model and tower 

observations at (a) L-band and (b) P-band over bare soil. The dash lines denote ± 5 K offset. R 

refers to the Pearson correlation coefficient. 
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moisture below the surface (measured by ground stations), which was wetter than the surface 602 

(due to infiltration), resulting in a relatively lower modelled TB. The source of anomalous error 603 

in P-band and V polarization is unknown, with the model overestimating the TB.  None of 604 

these errors were removed from the calculations. Notably, there is a tendency for the Njoku 605 

model to underestimate (overestimate) at low (high) soil moisture (especially at L-band) 606 

(Njoku and O’Neill, 1982). Reasons for differences include: i) during a dry period, the soil 607 

moisture at the skin is lower and drier than the deeper profile while during the wet period 608 

(especially during rainfall), the surface tends to be saturated and it is wetter than deeper 609 

profiles; ii) wind and rain showers modify the surface and the differences between surface 610 

roughness characteristics change; iii) the skin soil moisture was constructed by having the slope 611 

of soil moisture variation estimated using the sensor values at 2.5 and 7.5 cm which might not 612 

be realistic.  613 

In the synthetic study, it was found that applying the LP method using a linear and a second-614 

order polynomial within a time series retrieval resulted in the lowest RMSE.  As a comparison 615 

to the synthetic study, the soil moisture profiles were estimated for Periods A (26 days) and B 616 

(14 days) using the LP model using the seven mathematical functions with both the time series 617 

and snapshot approaches. The result in Fig. 12 shows that using snapshot (time series 618 

approaches) the soil moisture profiles were estimated with lower RMSE in Period A (average 619 

11 cm (21cm) estimation depth) as compared with Period B (average 4 cm (5cm) estimation 620 

depth). The reason is that during the dry period when all layers had low moisture, the L-band 621 

and P-band had a deeper observation depth. During the dry period (Period A), the time series 622 

approaches outperformed the snapshot retrieval with an increasing estimation depth of 20 cm 623 

for Exp, 15 cm for PL, 10 cm for Pn2 and Pn3, 5 cm for PRE and RE, and 3 cm for Li, resulting 624 

in average increase of 10 cm. During the wet period (Period B), the time series approach still 625 

resulted in an average increase of 1 cm, with 4cm, 4cm, and 3cm increase in estimation depth 626 
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of Exp, RE, and PRE respectively, unchanging for Pn3 and PL, and 1 cm decrease for Pn2 and 627 

Li functions. The time series approach using the LP method was found to be the most robust 628 

with a minimum estimation depth of 8 cm using the PRE function and maximum estimation 629 

Fig. 12. The average RMSE calculated between in-situ and retrieved soil moisture profiles 

using LP method for (a) snapshot and (b) time series approaches decomposed to Period A (c 

and d) and Period B (e and f). The dashed and dotted horizontal lines show best and worst case 

scenarios of estimation depth. 
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depth of 28 cm using Pn2 and Pn3 functions over period A. Additionally, the result of the time 630 

series approach for Period B had the minimum estimation depth of 5 cm using L, Exp, Pn2, 631 

Pn3, and PL, and maximum estimation depth of 8 cm using the PRE and RE functions. Besides, 632 

the time series approach is faster (0.5 second faster in retrieving each profile) and more precise 633 

(standard deviation 0.015 (0.016) m3/m3 at the surface; 0.05 (0.06) m3/m3 at depth of 60 cm for 634 

time series (snapshot) with lowest values for the Pn2 function) than the snapshot retrieval 635 

approach.  Moreover, the Exp, PRE and PL functions were found to be more sensitive to noise 636 

in the observed brightness temperature compared to the other functions, resulting in the 637 

snapshot retrieval approach having a higher RMSE when using these functions. In contrast, the 638 

RE function is not sensitive to noise, however under some conditions (as explained in the 639 

methodology) it has to be replaced with the PRE function resulting in a higher RMSE.  The 640 

time series retrieval can mitigate noise as explained in section 4.2 and so resulted in a much 641 

lower RMSE as compared with the snapshot retrieval.  642 

From this analysis it is concluded that the Pn2 function is the best function for estimating soil 643 

moisture. Additionally, if the intention is estimating soil moisture below 20 cm, the Li function 644 

with only two parameters can be considered as the best representation of soil moisture profile 645 

especially during a wet season (Period B). The reason for a lower RMSE in the linear function 646 

is the linearity of soil moisture in the shallow layer so that it is captured by this function. The 647 

better performance of the PRE function during Period B is because during this period soil 648 

moisture profiles had a large gradient at the shallow layers (up to 20 cm) and also showed some 649 

changes of soil moisture value in the deeper layers, meaning that this function can capture their 650 

shapes more easily. Some samples of estimated and observed soil moisture profiles for both 651 

periods are shown in Fig. 13.     652 
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5. Conclusions 653 

A soil moisture profile estimation strategy has been developed using L- and P-band radiometer 654 

observations together with a stratified coherent model and the PSO optimization algorithm. 655 

Fig. 13. Samples of estimated soil moisture profile using the LP method for the two periods A 

(left column) and B (right column) periods utilizing the time series approaches. 
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Under low and high noise synthetic scenarios with RMSE lower than 0.04 m3/m3, the combined 656 

use of L- and P-band dual polarization data outperformed both the L- or P-band method alone, 657 

with an average estimation depth of 20 cm for the Li function and 15 cm for the Pn2 function 658 

under both a wet and dry period with complex profiles, providing the more robust time series 659 

approach was employed. Multi-incidence angle retrieval using 10 and 40 improved the 660 

average RMSE by 0.002 m3/m3 and 0.005 m3/m3 under low and high noise scenarios 661 

respectively as compared with single angle retrieval at 40, while adding a third incidence angle 662 

of 20° made no further improvement. Moreover, when approximating the soil temperature 663 

profile with a simple method that uses a trend of the profile together with a surface soil 664 

temperature measurement, there is little impact on the result. In a real-world experiment, the 665 

combined L-band and P-band method using the time series retrieval approach and a second-666 

order polynomial representing the soil moisture profile outperformed the other methods tested, 667 

with an RMSE less than 0.04 m3/m3 for depths up to 28 cm for a dry period but only to 5 cm 668 

for a wet period. The success of this work demonstrates the potential of this approach, which 669 

now requires further research to determine the most suitable mathematical functions for soil 670 

moisture profile estimation in different regions around the world. Additionally, this study 671 

demonstrates the potential of combining L-band and P-band radiometry for estimating soil 672 

moisture in the root zone, proving the merit of this concept for the next generation radiometer 673 

satellite mission. 674 
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Highlights: 

1- Combined L&P-band radiometry outperformed using either band alone. 

2- Second -order polynomial found best for soil moisture profile retrieval. 

3- Soil moisture profile retrieval via time series outperformed snapshot retrieval. 

 

Jo
urn

al 
Pre-

pro
of



Declaration of interests 
  

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  

☐ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

 
  
  
  
 

Jo
urn

al 
Pre-

pro
of


