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Abstract: Long-term exposure to coastal and marine environments accelerates the aging of reinforced concrete 
(RC) structures, impacting their structural safety and society impact. Traditional assessments of long-term 
performance deterioration in RC structures involve complex, nonlinear, and time-intensive studies of physical 
mechanisms. While existing machine learning (ML) methods can assess the lifetime of these structures, they often 
prioritize data regression over mechanistic interpretation. To enhance the efficiency and interpretability of 
predicting the life-cycle performance of RC structures, this study introduces a generic framework based on 
interpretable ensemble learning (EL) methods. The framework predicts life-cycle performance efficiently and 
accurately, with optimal hyperparameters automatically tuned through Bayesian optimization. Interpretability 
algorithms clarify the influence of environmental, durability, and mechanical parameters on structural durability 
and mechanical predictions. Validation employs real-world cases of RC hollow beams in the coastal area of the 
Guangdong-Hong Kong-Macao Greater Bay Area (GBA). The comprehensive model for RC structures integrates 
actual data on temperature, humidity, and surface chloride content in the GBA, considering diffusion, convection, 
and binding effects of chloride ions, corrosion non-uniformity, and crack impact on durability estimation. 
Comparative analysis with existing ML methods underscores the effectiveness of the framework. The findings 
highlight the dynamic evolution of feature importance rankings throughout the service life, shedding light on the 
continuous changes in the significance of different factors when predicting mechanical resistance. 
 
Keywords: RC structures; Corrosion; Marine exposure; Life-cycle performance; Ensemble learning; Interpretable 
models 
 

1. Introduction 
The long-term performance of reinforced concrete (RC) structures is susceptible to 
environmental actions, such as chloride ingress and concrete carbonation, which will impact 
structural functionality and safety, and even lead to significant societal and environmental 
consequences [1,2]. Among the environmental challenges confronting RC structures, 
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reinforcement corrosion emerges as a pivotal concern [3]. According to a report by Det Norske 
Veritas (DNV), the global cost of corrosion reached an estimated $25 trillion, equivalent to 3.4% 
of the global GDP in 2013 [4]. In Western Europe, the annual expenditure for repairing 
corrosion-induced damage amounts to 500 million euros [5]. Given the substantial damage 
inflicted by reinforcement corrosion, it is imperative to investigate its impact on RC structure 
performance and conduct comprehensive life-cycle assessments for these structures. Thus, a 
profound understanding of concrete performance is crucial for accurately estimating the 
durability and service life of these structures. 

Over the years, researchers have delved deeply into the mechanisms and theories studies 
relating to reinforcement corrosion, utilizing probabilistic approaches to assess the life-cycle 
performance of marine concrete structures [6,7]. For instance, Stewart et al. [8] and Wang et al. 
[9] have proposed a probabilistic method for evaluating corrosion damage to explore the effects 
of climate change on corrosion-induced damage in Australia. However, their studies adopted a 
simplified performance prediction approach, wherein only the diffusion mechanisms of 
corrosive media were considered. Besides, Guo et al. [10] proposed a performance-based 
durability assessment framework that integrates the effects of uncertainties with the chloride 
transport model, taking into account the impact of global warming on the life-cycle performance 
and complicated transport and impact mechanisms of chloride ions. Moreover, considering that 
RC structures may retain residual loading capacity and reliability even after reinforcement 
corrosion, Bastidas-Arteaga [11] elaborated on the impact of global warming on the limit state-
based reliability of RC bridge structures under chloride ingress, considering limit states 
alongside durability assessments. In the realm of probabilistic assessment methods, conventional 
techniques like Monte Carlo simulation (MCS) have been widely applied but are accompanied 
by a notable computational burden [7,12]. To enhance efficiency without compromising 
precision, Guo et al. [1,13–15] have conducted a series of studies using the probability density 
function informed method (PDFM) for the prediction of deterioration and reliability analysis of 
the life cycle performance of RC structures under realistic environmental effects. Although 
PDFM has proven to be efficient, it is fundamentally a sampling-based approach, lacking in 
generalizability. Therefore, to enhance the efficiency of probabilistic assessment of the life-cycle 
performance of RC structures, there is still a need to develop more generalized and versatile 
methods. 

Given the limitations and challenges posed by traditional methods in predicting the life-
cycle performance of RC structures, there has been a notable shift toward the utilization of 
machine learning (ML). This shift is attributed to ML's ability to model the intricate physical 
processes inherent in lifetime assessment [16–18]. For instance, Fu and Feng [16] developed an 
ML-based method to predict the remaining shear strength of corroded RC beams. Additionally, 
Zhang et al. [19] used time-based artificial neural networks to perform probabilistic assessments 
of the structural capacity of corroded RC structures based on randomly generated samples of 
crack widths and corrosion-induced steel weight loss. However, it is worth noting that the realm 
of ML encompasses a variety of algorithms, and it is not a one-size-fits-all solution. ML 
algorithms exhibit adaptability and limitations within civil engineering [20]. Consequently, there 
remains a necessity to develop tailored and efficient ML algorithms that align with the physical 
processes governing the life-cycle performance evolution of deteriorating RC structures. 



3 
 

Ensemble learning (EL) emerges as a highly effective strategy for amalgamating multiple 
individual ML learners to create more accurate surrogate models. While individual ML models 
have showcased their predictive capabilities in previous studies, EL stands out for its capacity to 
generalize and alleviate the risk of overfitting [21–23]. For instance, Feng et al. [24] employed 
ensemble methods to predict the shear capacity of RC beams, surpassing mechanics-driven 
approaches in terms of accuracy. Their findings underscored the superior performance of EL 
methods. Similarly, Kiani et al. [25] utilized the random forest model, a form of EL employing 
a bagging algorithm, to develop seismic fragility models. Their research demonstrated the 
model's exceptional efficiency in forecasting seismic responses, both on balanced and 
imbalanced datasets. In a study by Hwang et al. [26], boosting algorithms within EL exhibited 
the highest performance when predicting responses and classifying failures in modern code-
compliant RC frame buildings. Furthermore, Xu et al. [27] conducted a comprehensive 
comparison of various single and ensemble learning methods to construct a seismic assessment 
model for corroded RC columns. Their results conclusively favored the ensemble learning model 
as the most adept at predicting seismic failure modes. By leveraging the predictions of individual 
learners in an averaged or sequential manner, ensemble learning methods have the potential to 
significantly enhance the predictive performance of data-driven models. 

With the growing popularity of data-driven techniques in the field of civil engineering [28–
30], there is a growing recognition that the lack of interpretability inherent in these models poses 
a significant challenge in understanding the rationale behind their specific predictions. In 
response to this challenge, researchers have been actively exploring techniques to explain data-
driven models, aiming to quantify the impact of input features on their predictions. Recent 
studies have seen numerous researchers employing explainable ML methods to gain insights into 
and predict structural performance. For instance, Feng et al. [31] assessed the significance of 
individual features in the prediction of shear strength for squat-reinforced concrete walls. Lei et 
al. [32] interpreted the effects of load responses on bridges using structural health monitoring 
data, quantifying the influence of critical loads on the displacement of girders and pylons. Their 
research included a comprehensive comparison of three prevalent interpretation techniques, 
outlining their respective advantages and disadvantages. Additionally, Wakjira et al. [34] 
pioneered the development of a surrogate model for estimating the plastic hinge length of RC 
columns, introducing an approach designed to elucidate the model's outcomes.  

This study endeavors to tackle the computationally intensive nature of physical models 
when assessing the life-cycle performance of RC structures. The approach involves introducing 
an interpretable EL method aimed at creating an efficient data-driven surrogate model to predict 
the life-cycle performance of these structures. Optimization of the surrogate model's optimal 
hyperparameters and parameters is automated through Bayesian optimization. This robust model 
demonstrates superior predictive capabilities for critical life-cycle performance of RC structures 
based on input physical and environmental parameters (e.g., exposure condition and chloride 
ingress), outperforming alternative data-driven models. The training of the EL-based surrogate 
model incorporates considerations for structural uncertainties and diverse environmental 
characteristics within the dataset. Additionally, an interpretation algorithm is integrated to 
elucidate the influence of input features on the model's predictions, including the effects on 
global warming. The contributions of this study are provided as follows: 1) A comprehensive 
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environmental and durability assessment model for RC structures in Greater Bay Area (GBA) 
was established, validated, and investigated in terms of actual experimental records. 2) An 
efficient and accurate prediction model for the life-cycle performance of RC structures is 
formulated using LightGBM, and its optimal hyperparameters are automatically tuned through 
Bayesian optimization. 3) The interpretability algorithms are employed to clarify the influence 
of environmental, durability, and mechanical parameters on structural durability and mechanical 
predictions from diverse perspectives. The findings highlight the dynamic evolution of feature 
importance rankings throughout the service life, shedding light on the continuous changes in the 
significance of different factors when predicting mechanical resistance. 

The structure of this paper is outlined as follows: Section 2 introduces the proposed 
framework, presenting the fundamental steps and details of the case under investigation. Section 
3 delves into the essential algorithms of EL. Furthermore, Sections 4 and 5 elaborate the time-
variant performance assessment physical model and corresponding modeling performance of EL 
model. Section 6 offers an in-depth discussion of the analysis results concerning the established 
model. Finally, the conclusions from the study are drawn in Section 7, and their life-cycle 
performance can be predicted and understood more wisely using the proposed method. 

 
2. Life-cycle performance prediction and interpretation framework 
This study developed a concise three-step framework to evaluate the life-cycle performance of 
RC structures, covering both structural durability and mechanical properties (Fig. 1). In Step 1, 
case-specific data is collected, and models for performance deterioration are formulated and 
validated, with detailed procedures outlined in Section 4. Step 2 involves addressing 
uncertainties through probabilistic analysis and Latin Hypercube sampling (LHS) for dataset 
generation, as explained in Section 5.1. Finally, in Step 3, surrogate modeling is refined using 
Bayesian optimization with the generated samples, with further elaboration provided in Section 
3. 

 
Fig. 1 Flowchart of ML model-based prediction and interpretation 
 

To exemplify the framework, data from a typical RC bridge is utilized, illustrating how the 
methodology predicts life-cycle performance deterioration (Section 4). It is worth emphasizing 
that RC beam bridges represent complex structures with intricate geometries and material 
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interactions. Achieving accurate physics-based predictions for such structures entails a 
substantial investment of computational resources and analysis time with the comprehensive 
consideration of various influencing factors. Limited numerical simulations provide crucial 
datasets for training surrogate models. Once validated, these models effectively forecast 
durability and mechanical responses at different service life stages using untrained test datasets. 
By incorporating feature values over time intervals, the model ensures precise predictions of 
variations in life-cycle performance. 

 
3. Ensemble learning-based predictive and interpretable methods 
3.1  LightGBM surrogate ensemble learning model 
Various data-driven models exist for regression problems, with EL offering effective methods, 
particularly in ML. EL's core concept involves amalgamating predictions from diverse models, 
with bagging and boosting pivotal for enhancing ML models. LightGBM, a tree-based EL 
technique, harnesses the strengths of multiple models to improve predictive accuracy. XGBoost 
[23], a popular and potent ML algorithm belonging to the gradient boosting methods family, has 
been widely adopted. CatBoost, tailored for categorical features, is another notable gradient 
boosting library. While deep learning models excel in regression tasks, their intricate structures 
and lack of interpretability can cause challenges, especially in large datasets with high-
dimensional features. A general comparison of these algorithms is depicted in Fig. 2. In 
addressing the life-cycle performance prediction of coastal and marine RC structures, among 
various EL and deep learning models, LightGBM is adopted by considering its swift speed, 
minimal memory usage, high accuracy, and interpretability [28,29]. 

 
Fig. 2 Comparison of state-of-the-art models for data prediction 

 
The foundational component of LightGBM is the decision tree (DT), denoted as fDT. 

Decision trees use simple decision rules to capture data correlations, represented as: 

  (1) 

where x represents the input feature; I(∙) is the indicator function; cn is the prediction outcome 
from the n-th leaf node; and Rn represents the N input subspaces. 

LightGBM stands out through its unique tree construction and optimization approach, 
particularly adept at handling high-dimensional and sparse data. Employing Gradient-based 
One-Side Sampling (GOSS) streamlines training by prioritizing instances crucial for gradient 
updates, enhancing efficiency. Exclusive Feature Bundling (EFB) further improves efficacy by 
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consolidating correlated features, reducing feature count without sacrificing accuracy. This 
technique addresses challenges in high-dimensional data, resulting in accelerated training and 
enhanced model performance. Leaf value determination employs least squares optimization, 
incorporating gradient (Eq. (2)) and Hessian (Eq.(3)) calculations. This optimization process 
plays a pivotal role in achieving accurate and robust model predictions. 

  (2) 

  (3) 

  (4) 

where Gi is the gradient of the loss function with respect to the predicted value F(xi) for the i-th 
sample; L(yi,F(xi)) is the loss function comparing true label yi with predicted value F(xi) for the 
i-th sample; Hi represents the Hessian of the loss function with respect to the predicted value 
F(xi) for the i-th sample; γi denotes the optimal value for the i-th leaf node; and λ is the 
regularization parameter controlling tree complexity. 

Moreover, LightGBM allows flexibility through parameter customization and model 
interpretation. Tuning options control model complexity, boosting processes, and regularization. 
The model supports interpretability techniques such as feature importance analysis and decision 
tree visualization, facilitating a deeper understanding of the learned model. 

 
3.2  Tree-based Shapley Additive explanations 
This study addresses the persistent challenge of interpreting predictions in ML algorithms, 
focusing on enhancing the interpretability of life-cycle performance predictions generated by 
LightGBM surrogate models. The proposed framework incorporates SHAP (SHapley Additive 
exPlanations) to quantify contributions of input physical and environmental features to model 
predictions, fostering a comprehensive understanding of individual feature impacts on overall 
outcomes [30]. 

The primary objective of SHAP is to offer explanations for predictions on a per-data-
instance basis, assessing the influence of each feature on that specific prediction. By modeling 
features as a linear system, SHAP defines the feature vector, denoted as x', which encompasses 
all characteristic values for a given data instance x. This enables SHAP to provide explanations 
for each prediction, elucidating the significance and role of each feature in shaping the model's 
decision process. The explanation model, g(∙), can be represented as follows: 

   (5) 

where M is the maximum feature size; and φi∈ℝ denotes the contribution of feature i. 
SHAP exhibits efficiency, symmetry, and additivity, akin to Shapley values, along with 

three crucial properties: local accuracy, missingness, and consistency. Specifically,  
1) local accuracy measures how closely the explanations provided by the model align with 

the outcomes of the initial ML model. Such a relationship can be depicted as: 
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  (6) 

where ; 𝜑! is the base value, representing the expected value of the model 

output when all feature values are set to their reference values. ∑ 𝜑"𝒙"′#
"$%  accounts for the 

contribution of each feature to the estimated output. 
2) Missingness ensures that the contribution of a missing feature is zero. This property 

mandates that missing features possess a Shapley value of zero; and 
3) The consistency property asserts that if changes are made to the model, the Shapley 

value will also increase or decrease at the same extent. 
Given the computational efficiency and predictive performance of tree-based SHAP, and 

LightGBM algorithm belonging to tree-based models, this study employs tree-based SHAP for 
computing Shapley values and determining feature contributions. 

 
4. Environmental, durability and mechanical modeling 
This section provides an in-depth account of environmental, durability, and mechanical models 
for RC structures in marine environments, incorporating experimental validations. Fig. 3 
encapsulates essential procedures and models, with a specific emphasis on durability estimation 
(corrosion rate and concrete cracking width) and mechanical behavior estimation (residual 
flexural capacity Mres over the service life, considering non-linear properties of concrete and 
corroded steel bars). 

 
Fig. 3 Schematic for estimating durability and mechanical performance 
 
4.1 Case description: RC hollow beams 
Hollow beam bridges, characterized by a hollow cross-section (e.g., box or tubular shapes), are 
commonly employed for small to medium spans, offering advantages like increased stiffness, 
reduced material usage, and easy maintenance. In China, approximately 50% of the small and 
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middle-span bridge highway network consists of these structures, emphasizing the need for a 
detailed examination of their life-cycle performance [31]. 

This study focuses on recently constructed reinforced concrete bridges within a one-
kilometer radius along the Greater Bay Area (GBA) coastline in China, with a specific emphasis 
on those completed in 2020. The investigation concentrates on the midsections of hollow beam 
bridges with three distinct spans (6, 8, 10 m, Fig. 4), recommended by the Ministry of 
Transportation as design references. Considering the longitudinal cross-sectional loss, the 
corrosion non-uniformity factor R is introduced to predict the minimum cross-sectional area loss 
of longitudinal bars [7]. When it comes to the transverse direction, the results depend on the 
considered transport mode. For one-dimensional transport, it is assumed that all steel bars 
undergo a consistent area loss. In two-dimensional transport, the area losses of steel bars are 
contingent upon their positions. In this study, steel bars situated at the section corners are 
assumed to exhibit the same corrosion degrees, while those positioned at non-corner locations 
are likewise presumed to have the same corrosion degrees. 

 

 
Fig. 4 (a) Schematic of RC hollow beam; (b) cross-section of 6 m span beam; (c) cross-section 
of 8 m span beam; and (d) cross-section of 10 m span beam 

 
Table 1 summarizes key input and output parameters for the life-cycle performance 

assessment of these sections. Input parameters encompass facets related to the environment, 
durability, and mechanical behaviors of RC hollow beams, while output parameters consist of 
chloride content, corrosion degree, and residual mechanical capacities. This comprehensive 
assessment serves as a robust method to depict their overall condition and behavior. 
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Table 1 Input and output parameters of interest 
Input features Output measures 
Concrete resistivity Rc Free chloride content of steel bar surface Cfc 
Reference chloride diffusion coefficient Dc,ref Total chloride content of steel bar surface Ctc 
Critical chloride content ccr Average corrosion degree of tensile bars ηave,ten 
Characteristic value of exposure condition (EC) Average corrosion degree of compression bars ηave,com 
Critical corrosion degree ηcr Maximum corrosion degree of tensile bars ηmax,ten 
Corrosion non-uniformity R0 Maximum corrosion degree of compression bars ηmax,com 
Yield strength of steel bar fy0 Residual bending capacity Mres 
Elastic modulus of steel bar Es0  
Concrete compressive strength fc 
Elastic modulus of concrete Ecs 

 
Furthermore, Table 2 and Table 3 detail concrete mixtures and reinforcement layouts for 

various beam spans, and Table 4 provides input variable distribution details. It is assumed here 
that all random inputs in Table 4 are mutually independent random variables. Further research is 
required to characterize the correlation between the considered random variables and therefore 
improve the reliability assessment. Random variables will be used for probabilistic life-cycle 
performance evaluation using the models in the subsequent sections. Sections 0 - 4.4 elaborate 
on the adopted environmental model, durability, and mechanical behavior assessment. It is 
essential to note that, though many models are involved in life cycle assessment [1,7,10,12,32–
40], these models primarily serve an illustrative purpose in this study. Nevertheless, this study 
diverges from previous studies which often rely solely on simplistic analytical models [41–43], 
by incorporating the finite difference method (FDM) and iterative computational procedures for 
load capacity calculations of corroded RC beams. Therefore, compared to most existing studies, 
the models used in this study better capture the temporal and stochastic variations of changing 
environments, as well as the nonlinearities and uncertainties of material properties. Furthermore, 
with the exception of the environmental and chloride transport models, which would be validated 
using in-situ experimental records (as detailed in Sections 0 and 4.3.1), other models pertaining 
to the corrosion propagation stage and mechanical assessment are either based on regression 
modeling in terms of experimental data or have been corroborated in prior studies. 

 
Table 2 Mixture proportion of concrete 

w/c Water(kg/m3) Cement (kg/m3) Sand(kg/m3) Aggregate (kg/m3) Admixture (kg/m3) 

0.4 181.7 454.3 704.1 1058.5 1.4 

Table 3 Reinforcement schemes for different beam spans 

Span (m) 
Tension bar Compression bar 
Diameter d0 (mm) Number Diameter d0 (mm) Number 

6 18 15, 2 10 5 
8 18 12, 6 16 6 
10 20 12, 6 17 6 

Note: Two numbers of steel bars mean there are two rows of steel bars. 
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Table 4 Random variables and corresponding distribution information 

Parameter (unit) Description Distribution Mean 
COV 
(coefficient of variation) 

Ref. 

Dc, ref (m2/s) Reference diffusion coefficient Lognormal 6×10-12 0.1 [10] 
ccr (%wt cement) Critical chloride content Lognormal 0.4 0.25 [11] 
Rc (Ohms) Resistance of cover concrete Lognormal 1×104 0.1 [44] 
fy0 (MPa) Yield strength of steel bar Normal 500 0.1 [45] 
Es0 (MPa) Elastic modulus of steel bar Normal 2.73×105 0.05 [46] 
fc (MPa) Compressive strength of concrete Normal 40 0.2 [47] 
Ecs (MPa) Elastic modulus of concrete Normal 3.20×104 0.1 [47] 

 

4.2 Environmental model 
In this section, temperature and relative humidity (RH) predictions are performed using prior 
models [1,10,35] and environmental data from the Hong Kong Observatory (HKO). Chloride 
content deposition predictions stem from boundary values by chloride ion test in the GBA area 
and models from relevant studies [48]. For temperature evaluation, the time-varying temperature 
Tpred(t) (Eq.(7)) comprises an average baseline Tbase, a sinusoidal variation Tana (Eq.(8)), an 
increasing trend Tinc(EC, t) (EC is the characteristic value of environmental temperature), and 
temperature noise Tλ following Gaussian distribution N(0, 𝜎Tλ). 

  (7) 

  (8) 

  (9) 

where t (year) is the time elapsed since 1885; ntemp is the term number of Tana; bT1,i, bT1,i and bT3,i 
(i=1,…,ntemp) are the coefficients of Tana; tref is the reference year (85 year); and bT1(EC) and 
bT2(EC) are power function parameters of Tinc(EC, t) (as described in Eqs.(10) and (11)), relating 
to the temperature rising tendency from 1970 to the investigated year, considering the 
characteristic EC which follows a bimodal distribution of 0.5N(1.8,0.2)+0.5N(3,0.13) [49]. 

  (10) 

  (11) 

The fitting results of Eq.(8) and their 95% confidence interval are displayed in Fig. 5a, while 
the fitted coefficients of Tana and 𝜎Tλ are summarized in Table 5. Fig. 5b portrays the predicted 
annual temperature variation based on typical ECs (1.1 and 3.5°C), offering insights into the 
expected temperature trends in the future. 

 

( ) ( ) ( ),pred an cbase a inT t T t T ET C t Tl+= + +

( ) ( )1, 2, 3,
1

sin 1885
tempn

T T T
ana i i i

i
T t a a t a

=

é ù= × + +ë ûå

( ) ( ) ( )
)2 (

1,  
Tb ec

c
T

rei fn EC t b EC tT t= × -

3 2 2 2
1 ( ) 5.04 10 3.57 10 6.49 10Tb EC EC EC- - -= ´ - ´ + ´

1 1
2 ( ) 3.59 10 3.33 10Tb EC EC- -= ´ + ´

https://www.hko.gov.hk/en/climate_change/climate_change.htm


11 
 

 
Fig. 5 Temperature regression model in GBA: (a) comparisons of recorded temperature and 
model evaluation; and (b) comparisons of recorded temperature and temperature projections 
subject to different ECs 

 
Table 5 Coefficient values of annual variation and distribution parameters of Tλ for temperature 

Coefficients  aT1,1 aT2,1 aT3,1 aT1,2 aT2,2 aT3,2 aT1,3 aT2,3 aT3,3 

Values 0.1557 0.04286 8.692 0.1126 0.3072 27.97 0.1421 0.2193 22.83 

Coefficients aT1,4 aT2,4 aT3,4 aT1,5 aT2,5 aT3,5 ntemp 𝜎Tλ  

Values 0.1025 0.8969 42.27 0.09829 0.755 45.41 5 0.29  

For RH assessment, hpred (Eq.(12)) includes Fourier series hana (Eq.(13)) and humidity noise 
hλ. The distribution parameter of hλ is fitted based on the residual error of Eq. (13). The fitting 
results of Eq.(13) and their corresponding 95% confidence interval are displayed in Fig. 6, while 
the coefficients of hana and 𝜎hλ are summarized in Table 6. 

  (12) 

  (13) 

where t (year) is the time from 1961; nh is the term number of hana; hc, ah1,i, ah2,i and 𝜔h (i=1,... 
,nh) are the coefficients of hana.  
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Fig. 6 Comparisons of recorded RH from HKO and model evaluation 
 
Table 6 Coefficient values of annual variation and distribution parameters for RH 

Coefficients hc ah1,1 ah2,1 ah1,2 ah2,2 ah1,3 ah2,3 ah1,4 ah2,4 𝜎hλ 

Values 0.7773 0.2098 -0.7099 0.4716 -0.2965 -0.06217 -0.1261 0.1188 -0.1018 1.1566 

Coefficients 𝜔 ah1,5 ah2,5 ah1,6 ah2,6 ah1,7 ah2,7 ah1,8 ah2,8  

Values 0.2149 -0.02508 0.06674 -0.01068 -0.1048 0.00343 0.5987 -0.9325 0.08894  

Additionally, it is challenging to establish a physically driven and universal chloride 
deposition prediction model. Also, the surface chloride content data obtained from the in-situ 
study is limited [50], making it difficult to employ complex models for chloride deposition 
prediction. Therefore, a power function segmentation model, represented as Eq. (14) and derived 
by fitting the measured data [36], is utilized for the surface chloride content  

  (14) 

where t (year) is the time from the construction done; Csa,1 stands for the surface chloride content 
after 1 year of exposure (0.53%wt cement [50]); nsa is an empirical coefficient; and Csa,20 is the 
surface chloride content after 20 years of exposure (1.986%wt cement [50]). 
 
4.3 Durability estimation model 
4.3.1 Chloride ingress 
Prior research demonstrated that in rectangular cross-section components such as beams and 
columns, the chloride ion content on the surfaces of corner steel bars (CCl,cor) surpasses that of 
middle steel bars (CCl,mid), resulting in the earlier de-passivation of corner bars [51]. To precisely 
evaluate CCl,cor and CCl,mid, a validated 2D predictive model for chloride transport in ordinary 
Portland cement concrete is employed (Eq.(15)) [10]. 

  (15) 

where Cfc (kg/m3 of pore solution) represents the content of free chloride ions; hRH is the relative 
humidity (RH) in the pore solution; and Dc* and Dh* signify the apparent diffusion coefficients 
of chloride ions and humidity, respectively [10]. Additionally, moisture transport and heat 
transfer can be included as follows: 
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  (16) 

  (17) 

where Dh stands for the diffusion coefficient of RH (m2/s), estimated through Saetta et al.'s model  
[52]; and ρc, cq (103 J∙kg-1K-1[53]), and λ (2.5 W∙m-1K-1 [51]) denote the density, heat capacity, 
and thermal conductivity of concrete, respectively.  

Before solving Eqs. (15)-(17), it is imperative to establish the boundary conditions (as 
elaborated in Section 4.1) and specify the material properties of concrete. Due to the seasonal 
variation of environmental parameters, despite the investigated service life being 50 years, the 
time step for the mass transport investigation is set at half-day. The computation process for Eqs. 
(15)-(17) is further divided into three fundamental steps [10,54]: 

(1) Solving the heat transfer equation, Eq. (17); 
(2) Solving the moisture diffusion equation Eq.(16), based on the solution derived from 

the heat transfer equation; and 
(3) Solving the chloride transport equation Eq.(15), based on the solutions derived from 

the heat transfer and moisture transfer equations. 
Given the pronounced non-linearity within Eqs. (15)-(17), FDM is utilized for numerical 

solutions. Additionally, for two-dimensional transport, the alternating-direction implicit (ADI) 
FDM is implemented [10], leveraging the ADI scheme's unconditional stability and high 
accuracy attributes [55]. To verify the accuracy of the chloride transport model, a study by Pang 
and Li[50] is introduced, involving a chloride ingress survey on pre-2000 RC high piling wharves 
in Bao'an District of Shenzhen, and Hong Kong. Table 7 presents a comprehensive overview of 
crucial details for the investigated structures, encompassing locations, construction and 
investigation years, concrete grades, and water-cement ratios. The reference diffusion coefficient 
of chloride, denoted as Dc,ref (m²/s), displays nonlinearity and randomness influenced by factors 
such as the water-to-cement ratio (w/c) and admixture content. Consequently, accurately 
assessing Dc,ref poses a considerable challenge. In alignment with existing relevant studies 
[52,56], the values for Dc,ref under Case 1 to 5 are adopted as 4×10-11, 2×10-11, 1.2×10-11, 6×10-
11, and 4×10-11, respectively. 

 
Table 7 Characteristics of investigated structures [50] 

No Location Construction year Investigation year Concrete grade w/c 

Case 1 SZ 1994 2008 C30 0.45 

Case 2 SZ 1988 2008 C25 0.45 

Case 3 SZ 1987 2007 C30 0.4 

Case 4 HK 1984 2007 C25 0.65 

Case 5 HK 1984 2008 C25 0.5 

Note: SZ and HK denote Shenzhen and Hong Kong, respectively. 

Applying the environmental models (Section 4.1), the boundary conditions for temperature, 
moisture, and surface chloride content were established. Using FDM and data in Table 7, Eqs. 

( )e RH
h RHdivw h D h

h t
¶ ¶
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Eqs. (15)-(17) were solved. Fig. 7 illustrates a comparison between computational results and 
experimental data. As displayed, the numerical curves closely align with the experimental curves 
for most cases outlined in Table 7. The coefficient of determination (R2) for all cases surpasses 
0.8, signifying the accuracy of the chloride transport model in capturing the trends of chloride 
ingress over time in RC structures along the Greater Bay Area (GBA) coastline. This accuracy 
is maintained consistently across various factors, including location, construction year, and 
water-to-cement ratio. 

 
Fig. 7 Comparisons of experimental and calculated chloride profiles under different locations: 
(a) Shenzhen; and (b) Hong Kong (R2 denotes the coefficient of determination) 

 
4.3.2 Corrosion propagation damage 
When the chloride content on the surfaces of steel bars (CCl,cor and CCl,mid) surpasses the critical 
chloride content Ccr, corrosion initiation occurs, requiring quantification of corrosion extent. 
Herein, the corrosion rate icorr (μA/cm²) is determined through an empirical model [37]: 

  (18) 

where T (K) represents the temperature within the concrete; Rc (Ohms) is the resistance of the 
cover concrete; and ϑ is a Gaussian random variable that represents the model deviation, 
following N(0, 0.3312). Following Faraday's law, the average radius loss (∆r) and the minimum 
residual cross-sectional area (Amin) of steel bars can be calculated using Eqs. (19) and (20) [12]. 

  (19) 

  (20) 

where d0 is the initial diameter of the steel bar; ηave and ηmax denote the average and maximum 
corrosion degrees of corroded steel bars, respectively, and R0 is the corrosion non-uniformity 
factor of the average to minimum cross-sectional area. The distribution parameters (μ and σ) of 
the factor R are computed by Eqs. (21) and (22) [7].   

  (21) 

  (22) 

( ) ( ) 0.215
corr Clln 1.08 7.89 0.7771ln 1.69 3006 0.000116 2.24ci C T R t J-= + - - + +
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( ) ( ) ( )22 2
min 0 max 0 ave 0 0 00.25 1 0.25 1 / 0.25 2 /A d d R d r Rp h p h p= - = - = - ×D

( )ave corr av are b3.35 exp 0.236 0.12 ln( / ) 1.0150liµ h h s= × - + + × +

0.3371 0.0006aves h= +
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where lbar is the analysis length of the investigated steel bar. Regarding the loss of cross-sectional 
area ΔAs(t) over time, the corrosion-induced crack width ω (mm) is assessed using an empirical 
model [38]: 

  (23) 

where ΔAs0 is the reduction of the cross-sectional area when concrete cracks, and ct (mm) is the 
concrete cover. Considering the impact of corrosion-induced cracks on the concrete durability, 
the diffusion coefficients of chloride (Dc𝜔) and humidity (Dh𝜔) for cracked concrete are evaluated 
using Eqs.(24) [57] and (25) [39], respectively. 

   (24) 

   (25) 

where kh and sh are environmental factors (105 mm-2 [39]) and mean crack spacing [39], 
respectively. 
 
4.4 Mechanical behavior estimation model 
This study utilizes a semi-analytical section model to assess the flexural capacity of corroded 
RC beams, considering bond strength reduction due to corrosion [1]. The effective bond force 
Ftη diminishes, leading to varying strains between tension bar εs and surrounding concrete εcs, 
quantified by compatibility coefficient Ω (Eq.(26)) [32]. 

  (26) 

A simplified expression for Ω is derived via regression analysis (Eq. (27)), encompassing 
corrosion degrees, loading configurations, span-height ratios, etc. [32] 

  (27) 

where l0 and h0 denote the effective span and height of the beam, and lp is the distance between 
two-point loads for a four-point loaded beam. The validation of Eq. (27) can be found in previous 
studies [1,32]. When the tension force Fs of the corroded steel bar falls surpasses Ftη (Eq.(28)), 
εs becomes εcs multiplied by Ω, and the flexural behavior can still be evaluated using a nonlinear 
sectional analysis grounded on the assumption of the plane section [40,58]. 

  (28) 

where dt0 is the initial diameter of the tension bar; ld is the length of the effective bond region 
(evaluated by ACI 318 [59]); τbu0 is the average bond stress for uncorroded bars [40,60]; and 
R(ηs) is the normalized bond strength evaluation model [40]. Details of Eq.(28) refer to [32,40]. 

Besides, a trilinear constitutive model for corroded steel bars is adopted [7,61]. Elastic 
modulus (Es0), actual yield strength (fy0), and ultimate strength (fu0) remain constant, whereas the 
hardening strain εsh and ultimate strain εsu decrease with corrosion degree [33]: 
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  (29) 

  (30) 

where ηcr represents the critical corrosion degree, ranging from 20% to 30% [61]; εsh0 and εsu0 
denote the hardened strain and ultimate strain of non-corroded steel bars; and βδ equals 2.093 
and 2.501 for salt spray-induced corrosion and natural corrosion, respectively [34].  

Regarding the nonlinear attributes of concrete, a nonlinear constitutive model is applied, in 
which the principal tension stress σc1 and compressive stress σc2 are as follows: 

  (31) 

  (32) 

where ε1 and ε2 stand for the principal tensile and compressive strains, respectively, and εcr and 
ε0 represent the tensile strain of concrete corresponding to the tensile strength ft and the 
compressive strain corresponding to the peak compressive stress fc, respectively.  

Considering the non-rectangular cross-section of the hollow beam, the flexural capacity 
analysis is conducted using the cross-section layering method based on the bisection method-
based iterative algorithm [62]. Such a computational process yields the non-linear moment-
curvature relationship and residual flexural capacity (Mres) at each time point [32]. 

 
5. Establishment of a performance prediction model  
5.1  Information for model establishment 

This study employs the LightGBM model to construct surrogate models predicting the life-
cycle performance of RC hollow beams. To address input variable uncertainties (Table 1), LHS 
is utilized to generate 1,000 samples [63], forming a dataset for training the surrogate model for 
RC hollow beams of 6m, 8m, and 10m spans (Fig. 1, step 1). Due to the double-looping 
computation for 50 years of service for each sample, the dataset size becomes the product of the 
number of samples and the number of time steps. Before training, the dataset is randomly split 
into 70% for training and 30% for testing (Fig. 1, step 2). 

The training dataset utilizes Bayesian optimization and 10-fold cross-validation (10-fold 
CV) to determine optimal surrogate models. Bayesian optimization utilizes Gaussian process 
regression for hyperparameter modeling, with the acquisition function sampling 
hyperparameters. The acquisition function is used to balance exploration and exploitation. It 
guides the search for the next point to evaluate in the objective function. These functions use the 
Gaussian process model's predictions to suggest where the optimization process should focus 
next. The Bayesian optimization process is iterative until a satisfactory solution is found or a 
predefined stopping criterion is met. 

10-fold CV divides the dataset into ten groups, using nine for training and one for validation. 
The optimal LightGBM model is determined by averaging evaluation scores' means, with the 
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coefficient of determination (R2) serving as the evaluation metric. R2, ranging from 0 to 1, gauges 
similarity between predicted and actual values. Utilizing precise subject-specific vocabulary is 
crucial, and a high R2value characterizes a precise surrogate model. 

The LightGBM surrogate model learns patterns and relationships between features and 
target performance metrics of RC hollow beams from training data. Once developed and verified, 
it accurately forecasts endurance and mechanical reactions across different life cycle stages using 
input parameters from an untrained testing dataset. By entering relevant feature values 
representing various periods, the model ensures precision. Employing Bayesian hyperparameter 
optimization and a 10-fold CV approach, the study determines optimal hyperparameters for each 
LightGBM surrogate model predicting the life-cycle performance of RC hollow beams. These 
hyperparameters include learning rates, the number of estimators, maximum depth, minimum 
sum of instance weight, minimum number of data needed in a child, subsample ratio of the 
training instance, subsample ratio of columns when constructing each tree, and the L1 and L2 
regularization terms on weights. 

 
5.2  Model prediction performance 
Table 8 displays the prediction performance of each LightGBM surrogate model on the untrained 
test dataset. All models achieve R2 values surpassing 99.9%, emphasizing the remarkable 
accuracy in predicting the life-cycle performance of RC hollow beams. Moreover, utilizing the 
trained LightGBM surrogate model for life-cycle performance forecasting requires only 1 
second, a notable improvement of 1000 times compared to conventional numerical simulation 
methods. 
 
Table 8 Evaluation metrics for each surrogate model on the untrained test dataset 

R2 6m span 8m span 10m span 

Cfc 99.9850% 99.9842% 99.9781% 

Ctc 99.9545% 99.9556% 99.9398% 

ηave,ten 99.9901% 99.9771% 99.9869% 

ηave,com 99.9912% 99.9818% 99.9897% 

ηmax,ten 99.9307% 99.9338% 99.9291% 

ηmax,com 99.9382% 99.9360% 99.9335% 

Mres 99.9349% 99.9349% 99.9349% 

 
Fig. 8 and Fig. 9 depict the detailed accuracy of life-cycle performance predictions. In Fig. 

8, the alignment of most points with the diagonal line illustrates strong concurrence between 
model predictions and actual values for an RC hollow beam with a 10m span. Slight deviations 
from the diagonal are deemed acceptable in the context of ML predictions. 
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(a) Cfc (b) Ctc (c) ηave,ten 

   
(d) ηave,com (e) ηmax,ten (f) ηmax,com 

Fig. 8 Relation between tested (Ground truth) and predicted value in span of 10m 
 
Moving to Fig. 9, the relation between tested and predicted residual bending capacity for 

spans of 6m, 8m, and 10m is shown. The first row represents the entire test dataset, while the 
second row displays a sample, juxtaposing predicted life-cycle values with corresponding ground 
truth. In Fig. 9d to f, the close alignment of the red dashed line with the black solid line reaffirms 
the high accuracy of the built model in residual bending capacity prediction over the service life. 
Furthermore, in Fig. 9d to f, the plots of residual bending capacity versus time show fluctuations 
in the declining rate after corrosion initiation. Initially, a rapid decline occurs after corrosion 
initiation, followed by a gradual deceleration. At time goes by, concrete cracking increases the 
declining rate, leading to intermittent sharp declines [13]. 
  



19 
 

 

   
(a) test dataset of span of 6m (b) test dataset of span of 8m (c) test dataset of span of 10m 

   
(d) sample of span of 6m (e) sample of span of 8m (f) sample of span of 10m 

Fig. 9 Relation between tested (Ground truth, GT) and predicted residual bending capacity 
 
5.3 Performance comparison with different surrogate models 
This study compares the predictive capabilities of the LightGBM model with three EL models 
(Random Forest - RF, Gradient Boosting Decision Tree - GBDT, XGBoost) and one deep 
learning model (Residual Network - ResNet). RF belongs to the family of bagging ensemble 
algorithms, and it builds multiple decision trees during training. Unlike RF, GBDT builds 
multiple independent trees in parallel. ResNet introduces the concept of residual learning in the 
deep neural networks, where each layer learns the residual with respect to the previous layer's 
output [64]. All models are trained and tested on the same datasets, and Bayesian optimization 
with a 10-fold CV technique determines optimal hyperparameters.  

In Fig. 10, the prediction accuracy is measured with R2. Meanwhile, training efficiency is 
measured with training time, which is then standardized relative to the training time of the 
LightGBM model. It can be seen that despite the high prediction accuracy observed in all five 
models, LightGBM outperforms XGBoost and ResNet models with the highest R2 value at 
99.9581%. Regarding training efficiency, the LightGBM model outperforms other models by at 
least 1 time, and with larger datasets, the computational time saved by this model becomes even 
more substantial. Overall, the LightGBM model stands out among these models, offering both 
speed and accuracy in predicting the life-cycle performance of RC structures. 
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Fig. 10 Comparison of life-cycle performance prediction accuracy with different surrogate model 

 
Efficiency evaluation is crucial for comparing surrogate models, focusing on training times 

in this study. Compared to the LightGBM baseline, the training times for DT, SVM, RF, GBDT, 
and GPR models are 0.321, 0.339, 2.658, 2.196, and 5.326 times that of the proposed model, 
respectively. Single weak learners (DT and SVM) exhibit quick training but lower prediction 
accuracy than EL methods. LightGBM emerges as the most efficient among EL methods, 
excelling in both training efficiency and prediction accuracy. In summary, LightGBM 
demonstrates robust predictive capabilities, surpassing other EL models in terms of accuracy and 
efficiency. 

 
6. Interpretation of performance predictions 
The SHAP analysis of the LightGBM surrogate model reveals the significance of individual 
physical and environmental parameters in determining the overall durability and mechanical 
measures of RC hollow beams. This analysis provides a comprehensive understanding of how 
the model makes predictions, offering both a global perspective and insights into the importance 
of specific features for each prediction. It enhances our understanding of the model's decision-
making process regarding durability and mechanical performance. 
 
6.1  Global interpretation of feature effects 
The global interpretation of SHAP involves understanding the general behavior of the trained 
LightGBM surrogate model and the influence of various physical and environmental features on 
durability and mechanical predictions. SHAP values, representing average feature contributions 
across all data points, are crucial for this interpretation. The SHAP summary plot provides 
insights into feature importance rankings, aiding in a deeper understanding of the overall 
behavior of the model and identifying significant patterns and relationships among features. 

In Fig. 11, SHAP summary plots for selected measures focus on 10m span RC hollow 
beams, visually depicting the impact of physical and environmental features on predictions. 
Concrete resistivity (Rc) emerges as crucial for ηave,ten and ηave,com, ranking second for Ctc and 
Mres. Reference chloride diffusion coefficient (Dc,ref) and critical chloride content (ccr) are 
prominent for ηave,ten and ηave,com. Corrosion non-uniformity (R0) holds the second-most important 
position forηave,com. EC characteristic value influences ηave,ten, ηave,com, and Ctc predictions. The 
horizontal position of each data point in Fig. 11 indicates whether feature values increase or 
decrease predictions. For instance, a higher Rc leads to lower predictions for ηave,ten, ηave,com, and 
Ctc, while higher Dc,ref results in higher predictions. Notably, the influence range of R0 on ηmax,ten 
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prediction exhibits distinct effects in the positive and negative regions. A higher R0 value causes 
a larger increase in ηmax,ten, while a lower R0 value results in a more pronounced decrease in 
ηmax,ten. Similarly, the variation in ccr also shows the opposite effect on the prediction of Ctc. 
Furthermore, across the entire dataset, fy0 appears to have a substantial influence on Mres 
compared to other input physical and environmental parameters. The variations in ranking for 
the prediction of Mres throughout the service life warrant further investigation. 

 

  
(a) ηave,ten (b) ηmax,ten 

  
(c) Ctc (d) Mres 
Fig. 11 Global interpretations of LightGBM model by SHAP values in span of 10m 

 
Fig. 12 displays feature importance and SHAP value variations for predicting Mres in a 10m 

span RC hollow beam, considering both 1-D and 2-D chloride ion transport. These results 
illuminate changing significance and influence of input features on Mres predictions over the 
service life. fy0 remains dominant, while ccr, Rc, fc, and Dc,ref gain importance over time. In 1D 
chloride ion transport, ccr ranks second from 25th to 55th year, indicating increasing importance. 
Rankings for Rc, ccr, fc, and Dc,ref vary with time, underlining their growing significance in 
determining Mres. In 2D chloride transport, the effects of Rc, ccr, and R0 on Mres predictions 
become more pronounced over time. These findings underscore the dynamic nature of the 
prediction process of the LightGBM model in the life cycle analysis of Mres for RC hollow 
beams. Understanding these changes is crucial for identifying factors influencing mechanical 
resistance at different life cycle stages, guiding decisions and optimization strategies for 
enhanced durability and performance. 

SHAP value

Fe
at

ur
e 

va
lu

e

High

Low
-0.03   -0.02   -0.01   0.00   0.01   0.02   0.03

Rc
Dc,ref
ccr
EC
ηcr
R0
fy0
Es0
fc
Ecs

SHAP value

Fe
at

ur
e 

va
lu

e

High

Low
-0.06   -0.04   -0.02   0.00   0.02   0.04

Rc
R0
Dc,ref
ccr
EC
fy0
fc
Es0ηcr
Ecs

SHAP value

Fe
at

ur
e 

va
lu

e

High

Low
-0.002  -0.001  0.000  0.001  0.002

Dc,ref
Rc
ccr
EC
Es0
R0
fy0
fc
Ecs
ηcr

SHAP value

Fe
at

ur
e 

va
lu

e

High

Low
-200             0              200

fy0
Rc
fc
R0
Dc,ref
ccr
ηcr
EC
Es0
Ecs



22 
 

  
(a) 1-D chloride transport (b) 2-D chloride transport 

Fig. 12 Feature importance ranking variations on residual bending moment prediction during 
life-cycle in span of 10m 

 
6.2  Analysis of significant feature dependencies 
The individual interpretation of SHAP offers detailed insights into how each physical and 
environmental feature contributes to durability and mechanical predictions for specific instances. 
It assesses feature impact relative to a baseline or reference prediction, indicating whether a 
feature positively or negatively influences that specific prediction.  

To visualize individual explanations, the SHAP dependence plot is employed. In a SHAP 
dependence plot, the horizontal axis represents feature values, the vertical axis corresponds to 
associated SHAP values, and data point color indicates interactions with another feature. Positive 
SHAP values are in red, while negative values are in blue. Besides, vertical dispersion of the 
data points reflects the magnitude of interaction effects between features. 

Fig. 13 presents feature dependence plots for Mres in a 10m span. As shown, fy0, Rc, and fc 
positively impact Mres, while R0 has a negative impact. In Fig. 13b to d, considering the same 
feature values of R0, Rc, and fc, red points move farther from zero over time, indicating their 
increasing impact on Mres predictions. Conversely, in Fig. 13a and e, the impact of fy0 and ccr on 
Mres decreases with time. In Fig. 13a, the narrow vertical dispersion suggests time has a limited 
influence on the impact of fy0 on Mres, while other features exhibit larger dispersion, indicating 
more significant changes in their impact over time. These insights offer a detailed understanding 
of how individual features affect Mres predictions over the service life, guiding targeted strategies 
for optimizing structural durability and performance. 
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(a) (b) (c) 

  

 

(d) (e)  
Fig. 13 Feature dependence plots for Mres in span of 10m 

 
6.3  Impact of climate change on residual bending capacity 
The trained LightGBM model will further assess the impact of climate change on the residual 
bending capacity at the end of service life. Considering the bimodal distribution of the 
characteristic value of EC, two climate change scenarios will be examined: small EC (1~1.8°C) 
and large EC (3~3.5°C). SHAP dependence plots in Fig. 14 reveal the relationship between 
critical physical and environmental parameters and bending capacity, where solid curves depict 
general trends, offering insights into the effects of the parameters under global warming. 

Unlike the results in Fig. 13, the effects of ccr, EC, Ecs, and Es0 on Mres reflect a stronger 
nonlinearity and discreteness. Also, comparing the feature dependence plot on the left and right 
sides of Fig. 14, it is seen that the effects of ccr, EC, Ecs, and Es0 on Mres are also different under 
small (blue results) and large (red results) EC. For instance, in Fig. 14a, it can be noticed that 
under the small EC, the SHAP value of ccr sharply decreases with ccr, dropping to around 0.45 
and then increasing. Conversely, under the large EC, the SHAP value of ccr essentially decreases 
with ccr, but the reduction is less pronounced than in the small EC. Such a result suggests that in 
large EC situations, the values of ccr have a more negative impact on Mres.  

Furthermore, in Fig. 14b, under the small EC, the mean curve of the SHAP value of EC 
exhibits some fluctuations but remains relatively dispersed with changes in EC. However, under 
the large EC, the SHAP value of EC shows a distinct decreasing trend versus EC, signifying that 
EC has a significant negative impact on Mres with an increasing EC.  
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Fig. 14 Feature dependence plots for Mres prediction in 10m span scenario under extreme ECs 

 
Additionally, in Fig. 14c, under the small EC, the SHAP value of Ecs generally increases 

with Ecs. In contrast, under the large EC, the SHAP value of Ecs initially decreases with Ecs, then 
increases after reaching values beyond 35000MPa. In contrast to Ecs, Fig. 14d displays that, 
under the small EC, the SHAP value of Es0 exhibits significant fluctuations initially as Es0 
increases, but under large EC conditions, the SHAP value of Es0 generally increases with Es0. 
Such results indicate that under the small EC, the influence of the concrete elastic modulus on 
Mres increases with the concrete elastic modulus, but under the large EC, the effect becomes more 
nonlinear. Conversely, the impact of the steel elastic modulus on Mres behaves the opposite. 

Finally, in Fig. 14e, under the small EC scenario, the SHAP value of ηcr initially increases 
with ηcr (for ηcr < 0.22) and then fluctuates. When ηcr > 0.28, its SHAP value increases with ηcr. 
Under the large EC scenario, the SHAP value of ηcr exhibits an initial decrease with ηcr, followed 
by fluctuations. Similarly, when ηcr > 0.28, its SHAP value also increases with ηcr. It is evident 
that EC primarily affects the sensitivity of ηcr on Mres at low values of ηcr, while at high values 
of ηcr, it has a positive effect on Mres and each effect increases with ηcr. 
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7. Conclusions 
This study introduces a three-step ensemble machine learning framework designed to assess the 
life-cycle performance of RC structures in marine environments, with a specific focus on 
durability and mechanical properties. The application of this framework is demonstrated through 
a practical case study involving RC hollow beam bridges in the GBA, China, which were 
completed in 2020 and consist of three spans. The key conclusions drawn from this investigation 
are as follows: 
1. A time-variant environmental and durability prediction model, tailored for coastal 

environments, demonstrates strong alignment with historical data from the HKO. 
Additionally, the results of the chloride transport model are in concordance with in-situ 
chloride tests conducted in Shenzhen and Hong Kong. These findings validate the efficacy 
of the proposed model for estimating the life-cycle durability in the GBA. 

2. The LightGBM surrogate model attains outstanding precision and training efficiency across 
all target variables, surpassing alternative methods such as RF, GBDT, XGBoost, and ResNet. 
Notably, LightGBM accomplishes life-cycle predictions 1000 times faster than conventional 
simulations, highlighting its substantial efficiency. 

3. SHAP analysis reveals the impact of different physical and environmental factors on 
durability and mechanical predictions. Notably, Rc emerges as the most critical factor 
affecting ηave,ten and ηave,com, exerting a secondary influence on Ctc and Mres. Additionally, 
Dc,ref and ccr significantly impact ηave,ten and ηave,com. In the context of 1D chloride transport, 
ccr initially holds the second position in predicting Mres but is later surpassed by other 
parameters. Conversely, in 2D chloride ion transport, the effects of Rc, ccr, and R0 on Mres 
become more pronounced over time. These findings underscore the dynamic evolution of 
feature importance rankings throughout the service life, emphasizing how the significance 
of various factors in predicting mechanical resistance continually changes. 

4. Integrating SHAP plots with the LightGBM model facilitates the assessment of the impact 
of global warming on the residual bending capacity of RC structures. SHAP plots reveal that 
ccr, EC, Ecs, and Es0 display stronger nonlinearity and discreteness in their influence on Mres. 
Under a small EC (1 ~ 1.8°C), the SHAP value of ccr initially decreases with ccr, while under 
a large EC (3 ~ 3.5°C), this decrease is less pronounced, indicating a greater impact of ccr on 
Mres. The concrete elastic modulus exhibits linear growth in its effects on Mres under the small 
EC but becomes more nonlinear under the large EC, contrasting with the effects of the steel 
elastic modulus on Mres. Moreover, at low ηcr, EC primarily influences the sensitivity of ηcr 
on Mres, whereas at high ηcr values, it has a positive effect, and this effect strengthens with 
increasing ηcr. 
In summary, this framework proves to be effective in the assessment of the life-cycle 

performance of RC structures in marine environments. The framework adeptly captures the 
dynamic changes in influencing factors, providing engineers with valuable insights into the 
intricate patterns of performance evolution and influencing factors under diverse climate change 
scenarios. As a result, it facilitates the implementation of more targeted design and maintenance 
strategies. While this study assesses the life-cycle durability behaviors of RC structures using a 
simplified model, future investigations will delve into more comprehensive analyses employing 
refined and intricate models. These may include a stochastic model for surface chloride 
deposition and the analysis of various mechanisms such as shear and torsional performance. 
Additionally, future research should explore diverse machine learning techniques and structural 
types for comprehensive and multi-scale performance assessments in concrete infrastructure 
applications. 
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