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(a) Patch decomposition (b) Remaining edges after patch culling (c) Final contour edges

Figure 1: Our method decomposes the edges of the “Stanford Bunny” (62k edges) into (a) 3584 patches colored by a palette of 64 colors and
bounded by spatialized normal cones, optimized to maximize culling efficiency over arbitrary camera viewpoints. For a given side viewpoint,
we show the remaining edges after patch culling in (b) and the extracted mesh contours in (c).

Abstract
Object-space occluding contours of triangular meshes (a.k.a. mesh contours) are at the core of many methods in computer
graphics and computational geometry. A number of hierarchical data-structures have been proposed to accelerate their compu-
tation on the CPU, but they do not map well to the GPU for real-time applications, such as video games. We show that a simple,
flat data-structure composed of patches bounded by a normal cone and a bounding sphere may reach this goal, provided it is
constructed to maximize the probability for a patch to be culled over all viewpoints. We derive a heuristic metric to efficiently
estimate this probability, and present a greedy, bottom-up algorithm that constructs patches by grouping mesh edges according
to this metric. In addition, we propose an effective way of computing their bounding sphere. We demonstrate through exten-
sive experiments that this data-structure achieves similar performance as the state-of-the-art on the CPU but is also perfectly
adapted to the GPU, leading to up to ×5 speedups.

CCS Concepts
• Computing methodologies → Rendering; Visibility;

1. Introduction

Occluding contours play a central role in 3D shape percep-
tion [Koe84, CGL∗08] since they delineate the frontier between
visible and invisible parts of a 3D surface, that is where the surface
overlaps itself in image space. For smooth shapes, the occluding
contour generator is defined as the set of 3D curves that separate
front-facing regions from back-facing regions. Assuming consis-

tent orientation of the surface, it corresponds mathematically to the
points where the surface normal n is orthogonal to the view direc-
tion v (i.e., v · n = 0). Under perspective projection, the camera
is defined by the position of its center c and the view direction
thus varies for every scene point p, i.e., v = (c− p). For triangle
meshes [MB77, MKG∗97], the occluding contour generator, often
called mesh contours, directly corresponds to the subset of mesh
edges that connect front faces (v ·n > 0) to back faces (v ·n < 0).
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Mesh contours have proved to be crucial for various appli-
cations. It is a key component in 3D non-photorealistic render-
ing for line art stylization (e.g., [KMM∗02, GTDS10]) and sci-
entific visualization [LVPI18], but also for shadow-volume algo-
rithms [Cro77], spherical visibility computation [NBMJ14], next-
event estimation for many lights rendering [CEK18], differen-
tial rendering through edge sampling [LADL18, YLB∗22] and
grid-free Monte-Carlo methods with Neumann boundary condi-
tions [SMGC23]. In all these cases, the common problem is to effi-
ciently locate contour edges every time the viewpoint or mesh ver-
tex positions change [IFH∗03, BH19]. The brute-force approach,
which consists in testing every pair of adjacent triangles, is far from
optimal especially considering the fact that contour edges are very
sparse [McG04].

Two main approaches have been explored to speed up this pro-
cess: (1) hierarchical data-structures to limit the number of tested
edges (e.g., [OZ06]), and (2) algorithms leveraging the massive par-
allelism of the GPU (e.g., [JLNX22]). To the best of our knowl-
edge, the only attempt to combine both approaches is the work of
Kobrtek et al. [KMH19], but it suffers from strong limitations: high
memory consumption and restricted viewpoints.

In this paper, we propose an edge clustering algorithm that de-
composes an input mesh into a set of patches bounded by spatial-
ized normal cones [JC01], i.e., the combination of a sphere bound-
ing its geometry and of a cone bounding its normals. Thanks to
an improved bounding sphere definition (Section 3.1) and a novel
patch culling metric (Section 3.2), our greedy edge partitioning al-
gorithm (Section 3.3) produces a flat (i.e., non-hierarchical) data-
structure which allows highly efficient full patch culling at runtime,
as illustrated in Figure 1. We demonstrate in Section 4 that, com-
pared to brute-force mesh contour extraction, it achieves up to ×5
speedups on the CPU, which is comparable to the most advanced
hierarchical approaches, but also on modern GPU pipelines that
support compute or task/mesh shaders. The resulting contour edges
may be used as input of any of the aforementioned applications. In
this paper and its accompanying video, we simply visualize them
using solid line segments.

2. Previous work

Even though the definition of occluding contours is simple, accu-
rately computing the contours of smooth 3D shapes is surprisingly
difficult. Liu et al. [LBHH23] recently explained why previous ap-
proaches [HZ00, BHK14, SEH08, WS96, EC90] failed when com-
puting a polyline approximation of the smooth contour, and pro-
posed a numerical sampling algorithm that produces valid contour
polygons. Concurrently, Capouellez et al. [CDHZ23] derived the
first closed-form solution for surfaces approximated by quadratic
patches. However, both approaches are limited to smooth surfaces
and computationally expensive (0.5 to 16 seconds per viewpoint).

At the other end of the methodological spectrum, raster meth-
ods compute approximate apparent contours (i.e., the 2D projection
of the contour generator) either through edge detection in screen-
space buffers [ST90], or by rendering the 3D model twice, first
with back- and then front-face culling, to reveal the “inverted hull”
of the mesh [RC99]. These methods achieve real-time performance

thanks to GPU acceleration, but they cannot produce a vectorial
representation of the contour, which is required for many applica-
tions (e.g., advanced line stylization, shadow volumes) and must
then be recovered in a vectorization step [McC00, BLC∗12].

The alternative solution is to represent the surface as a trian-
gular mesh and to test whether every mesh edge is adjacent to a
front and a back face. This approach has two drawbacks. First, due
to the piece-wise linear discretization of the surface, the topology
of mesh contours is erroneous compared to their smooth coun-
terpart, which may require topological simplification as a post-
process [NM00, IHS02, EWHS08]. Second, algorithmic complex-
ity scales linearly with the number of mesh edges. To improve on
that aspect, three main families of methods have been proposed:
randomized search [MKG∗97], GPU acceleration, and hierarchical
data-structures. We will focus on the latter two families since the
former is not guaranteed to detect the full set of contour edges.

GPU-based algorithms evolved jointly with the programming ca-
pabilities of the graphics hardware. Early methods [CM02, Goo03,
BS03, MH04] detect contour edges in a vertex shader, but they re-
quire convoluted storage schemes to encode edge adjacency data.
With the introduction of the geometry shader stage and the possibil-
ity to store triangle adjacency in an index buffer, implementing the
brute-force algorithm on the GPU became trivial [SWK07,HSC12],
in theory, fully leveraging the SIMD power of the GPU. However
geometry shaders are not available on all GPUs and their perfor-
mance is often disappointing. Most recently Jiang et al. [JLNX22]
proposed a brute-force contour extraction algorithm with compute
shaders, and additionally compute their visibility and chain them
together to create long textured strokes. We demonstrate in this
work that we can further accelerate the extraction step while be-
ing compatible with the rest of their pipeline.

For static or rigidly transformed meshes, an acceleration data-
structure can be precomputed to significantly accelerate the edge
contour search at run-time, performance scaling almost linearly
with the number of the extracted edges. Such data-structures can
be constructed either in the primal 3D Euclidean domain [SGG∗00,
JC01], or in a dual domain: under orthographic projection, projec-
tion of the mesh face normals onto the Gaussian sphere [BE99,
GSG∗99]; under perspective projection, extension to a 4D dual-
space combining positions and normals [HZ00], use of the point-
plane duality in 3D space [PDB∗01], or 3D Hough transform of
the mesh faces [OZ06]. The last two methods are especially effi-
cient when updating mesh contours incrementally as the viewpoint
smoothly moves in space. However, all these dual space methods
rely on a hierarchical data-structure (most often an octree) that must
be fully recomputed whenever the input mesh changes and is com-
plex to combine with GPU processing.

Drawing inspiration from clustered back-face culling algo-
rithms [JC98,KMGL99,Wih17], Sander et al. [SGG∗00] construct
a forest of search trees, each node in the tree storing a set of mesh
edges and two anchored cones. These cones are conservative es-
timates of the front- and back-facing regions with respect to all
the faces incident to the stored edges. They devise an optimization
algorithm to cluster mesh edges, forming the search forest, so as
to minimize an expected contour extraction cost. Johnson and Co-
hen [JC01] propose a simpler hierarchical bounding volume data-
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structure, called Spatialized Normal Cone Hierarchy (SNCH). Each
node contains a set of edges, a bounding sphere of the incident faces
and a bounding cone of the face normals. They show that a node can
be discarded at runtime with a simple test considering the view cone
(i.e., the cone from the camera center to the bounding sphere) and
normal cone opening angles. However, the hierarchy is constructed
using a standard Euclidean bounding volume algorithm that fully
ignores the distribution of normals and thus leads to sub-optimal
results as demonstrated in Section 4.3. In this paper, we use spa-
tialized normal cones but show that tighter bounding spheres can
be considered and present a construction algorithm in the spirit of
Sander et al. [SGG∗00] that produces much improved results. In
addition, we demonstrate that a flat data-structure achieves similar
or even better performance than hierarchical structures, and more
easily maps to the GPU.

In that respect, the method of Kobrtek et al. [KMH19] is the
only one attempting to combine GPU parallelism with a acceler-
ation structure. It precomputes the results of brute force contour
extraction for a discrete set of view positions and store them in an
octree. At runtime, a subset of the octree is copied into a continuous
buffer for GPU processing. Even though it is effective at reducing
the number of tested edges, this method is memory intensive and
restricts the location of the light/view position. Our method is free
from these limitations, and is trivial to implement on modern GPU
architectures supporting compute or task/mesh shaders [Ped21].

In this context, Unterguggenberger et al. [UKPW21] compute
spatio-temporal bounds of meshlets (i.e., small clusters of faces)
animated with linear blend skinning for back-face and view-
frustum culling. Their method could be adapted for mesh contour
extraction, but it is restricted to predefined animation loops and
takes as input an existing meshlet decomposition. Yet the exper-
iments conducted by Jensen et al. [JFB23] show that choosing a
given meshlet generation strategy has significant consequences on
rendering performance, which advocates for a dedicated meshlet
decomposition such as ours.

3. Patch decomposition

Our method takes as input a triangular mesh and partitions its edges
into a set of disjoint patches {P}. Each patch P is bounded by a
spatialized normal cone as defined by Johnson and Cohen [JC01].
As illustrated in Figure 2a, this data-structure is composed of two
parts: (1) a cone represented by its spine axis n and its opening an-
gle α enclosing the normals of the patch faces, and (2) a bounding
sphere defined by its center o and its radius r. In the original paper,
this sphere was bounding the geometry contained in the patch, but
we show in Section 3.1 that tighter bounds can be computed.

To test whether a patch P must be consider for contour extrac-
tion, a view cone is constructed. In the case of perspective projec-
tion, the view cone axis s runs from the camera position c to the
center of the patch bounding sphere, s = (o− c)/||o− c||, and its
half-angle β = arcsin r

||o−c|| . Under orthographic projection, since
the view vector v is the same for all edges of the patch, the view
cone is degenerated (s = v, β = 0). If any vector in the view cone is
orthogonal to a vector in the normal cone of the patch, an edge ofP
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(a) Spatialized normal cone (in
green) and view cone (in red).
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(b) Patch culling test on the unit circle.

Figure 2: (a) A spatialized normal cone is composed of a cone (in
green) and a bounding sphere (in blue) from which a view cone (in
red) is constructed for a given camera position c. To check if any
pair of vectors in these two cones are orthogonal, one can compare
the angle between the cone axes expanded and contracted by the
sum of the cone half-angles (α+β). (b) On the unit circle, it cor-
responds to the magenta region, which leads to a simple test on the
dot-product of the cone axes.

may be contour. As shown in Figure 2b, the corresponding test is:

|n · s|⩽ sin(α+β) . (1)

If this test fails, the edges of P can be safely ignored, i.e., the
patch can be culled. Otherwise the patch is called “accepted” and its
edges must be considered. A similar test was derived for clustered
back-face culling [AMHH18, Section 19.3].

In Section 3.2, we derive a heuristic metric that predicts the prob-
ability for a patch to be culled at runtime. We use this metric in
Section 3.3 to guide a bottom-up greedy fusion algorithm.

3.1. Bounding volumes computation

We compute the normal cone similarly to Johnson and Co-
hen [JC01]: the cone axis n is first computed as the average normal
of all triangles adjacent to the patch edges, the cone half-angle α is
then the maximum angle between n and the normals. The optimal
but more expensive algorithm of Barequet and Elbert [BE05] could
be used instead if precision is favored over computation time.

As a basis for the view cone construction, Johnson and Co-
hen [JC01] compute a sphere enclosing all the edges of a patch.
We call this baseline bounding sphere algorithm Mean Sphere (see
Figure 3a). It proceeds in two steps: first the sphere center is com-
puted as the average position of the edge vertices (making sure to
count every vertex only once), and then the sphere radius is incre-
mentally increased to include all the vertices.

However, in theory, the view cone solely needs to enclose all the
view vectors that are required to test whether any edge of the patch
is contour. Under perspective projection, recall that a face is front
(resp. back) facing when (c−p) ·n > 0 (resp. < 0), where p is any
point on the supporting plane of the face. To simplify computation,
since an edge is contour if it is adjacent to a front and a back-facing
face, p is usually chosen on the edge shared by these two faces
(one of its two vertices). Yet, it could be any point on the line ℓ
subtended by this edge. For a given patch P containing ξ edges,
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p2c

(a) Mean Sphere.
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p2c

ℓ1

ℓ2

(b) Reduced Sphere.

Figure 3: For a patch with two edges, comparison of (a) the orig-
inal bounding sphere of Johnson and Cohen [JC01] with (b) the
proposed algorithm. Front (resp. back) faces are colored in yellow
(resp. blue) according to the given camera position c, for which
both edges are contour. Notice how moving p1 (resp. p2) along ℓ1
(resp. ℓ2) does not change the result of the contour test.

all the view vectors (c−pi),∀i ∈ {1, . . . ,ξ} need to be considered,
with pi a point on the line ℓi subtended by the ith edge of the patch.
The view cone must enclose all these view vectors, which implies
that the associated bounding sphere must contain all the pi points.
Since pi can be any point on the line ℓi, the bounding sphere must
at least intersect all these lines once. As illustrated for two edges in
Figure 3b, any sphere intersecting these two lines would work.

The bounding sphere of Johnson and Cohen [JC01] satisfies this
condition but is often an overly conservative approximation of the
optimal bounding volume, which can even lie outside the bounding
sphere of the edges (left sphere in Figure 3b). However finding the
smallest sphere that intersects all the line constraints, if feasible,
would be overly expensive, especially as part of our patch fusion
algorithm. Therefore, we propose a simpler method called Reduced
Sphere that basically puts pi at the midpoint of the patch edges
(right sphere in Figure 3b).

First, to compute the sphere center, we only consider edge mid-
points, which reduces the number of points processed and removes
the need to ensure that a vertex is not counted twice. This proves
especially beneficial when merging two patches Pa and Pb, since
the position of the new center may be computed as the average of
the original centers oa and ob weighted by the associated number
of edges ξa and ξb, that is:

o =
ξaoa +ξbob

ξa +ξb
.

Second, to reduce the volume further, the sphere radius r is com-
puted as the largest shortest (i.e., perpendicular) distance between
the sphere center o and the set of lines supported by the edges in
the patch. Denoting di a unit vector in the direction of the ith edge
in the patch and pi its midpoint, we get:

r = max
i∈{1, ...,ξ}

||(pi−o)− ((pi−o) ·di)di|| .

Computation time of our Reduced Sphere algorithm is on a par
with the baseline Mean Sphere algorithm, but our experiments in
Section 4.3 show the benefits of tighter spheres at runtime.

3.2. Patch acceptance metric

To guide the patch fusion algorithm described in Section 3.3, we
need to define a heuristic metric H(P) which estimates the ac-
ceptance ratio of a patch P , ideally, over all potential viewpoints
c ∈ R3. In practice, to make the problem tractable, we restrict the
viewpoint to lie on a sphere at a fixed, user-defined distance dcam
from the center of the patch bounding sphere. We show in Sec-
tion 4.3 how the choice of dcam affects runtime performances.

Since the viewing distance is fixed, the view cone angle is a con-
stant βdcam = arcsin(r/dcam), and the view cone axis s spans the
space of unit directions Ω. Based on Equation 1, we define the
patch acceptance function D(P,s) that returns one if the patch may
contain a contour edge, zero otherwise, that is:

D(P,s) =
{

1 if |n · s|⩽ sin(α+βdcam)
0 otherwise.

(2)

n

h
α+βdcam

The acceptance ratio H(P) of a patch is
then the integral of the acceptance function
D(P,s) over all unit directions s ∈ Ω, di-
vided by the surface of the unit sphere. Since
D is invariant by rotational symmetry around
the normal cone axis n, this integral may be
interpreted geometrically (see inset) as the
rotation of the magenta region in Figure 2b around the horizontal
axis, aligning this axis with n. The resulting swept surface corre-
sponds to a spherical zone with height h = 2sin(α+βdcam) whose
area is 2πh as the sphere is unitary. It yields the following formula
for the acceptance ratio H(P):

H(P) = 2πh
4π

= sin(α+βdcam) . (3)

This ratio does not take into account the actual computation time
required to test if an edge is contour, or whether a patch is accepted.
Similarly to Johannsen and Carter [JC98], we measure empirically
these two hardware-dependent timings, denoted respectively te and
tP , (cf. Section 4.2) and define the mean expected computation
time of a patch E(P) as:

E(P) = tP +H(P) te ξ , (4)

where ξ is the number of edges in the patch P .

3.3. Patch fusion algorithm

Given the expected cost of a patch as defined in Equation 4, we need
an algorithm to create these patches efficiently from an input trian-
gular mesh. Ideally we would like to find the set of patches, i.e., a
disjoint partitioning of the mesh edges, that minimizes ∑P E(P).
This would require enumerating all possible partitions of the edges,
which is intractable. We propose instead a bottom-up greedy al-
gorithm that starts with one patch per edge, and then iteratively
merges the pair of patches reducing the most the computation time.
At each step, the algorithm search for Pa and Pb that maximize the
following gain metric:

G(Pa,Pb) = E(Pa)+E(Pb)−E(P f ) , (5)
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Algorithm 1: Patch fusion algorithm.
Input: {P} contains one patch per edge
Output: {P} contains the final patches

1 begin
▷ Initialization

2 forall Pi ∈ {P} do BuildCache (Pi)
3 repeat

▷ Find the pair of patches (Pa,Pb) with highest
gain Gmax

4 Gmax←−1
5 forall Pi ∈ {P} do
6 (P j,G j)← GetBestFusion (Pi)
7 if G j > Gmax then Pa←Pi, Pb←P j,

Gmax← G j

8 if Gmax > 0 then
▷ Perform the fusion

9 P f ← Merge (Pa,Pb)
10 {P}← (({P}\Pa)\Pb)∪P f

▷ Update caches
11 forall Pi ∈ {P} do
12 InvalidateFusion (Pi,Pa)
13 InvalidateFusion (Pi,Pb)
14 AddFusion (Pi,P f )
15 if IsEmptyCache (Pi) then BuildCache (Pi)

16 until Gmax < 0

where P f is the merged patch. The algorithm stops when no ad-
ditional improvement can be made, i.e., the best fusion has a neg-
ative gain. Eventually we finalize the list of patches by checking
whether using a patch actually improves the computation time, that
is if ξ te > E(P), with ξ the number of edges in P .

The core step of the algorithm requires evaluating all potential
fusions for each pair of patches. Its complexity is quadratic with the
number of patches (the number of edges initially), which is imprac-
tical for large meshes. To overcome this limitation, we introduce
two practical extensions: (1) a constant-size cache mechanism that
stores for each patch its k best potential fusions; (2) a space parti-
tioning scheme to restrict the candidate patches considered for the
fusion. We detail these extensions in the following paragraphs.

Best fusion cache. At any time of the algorithm, each patch Pi
stores up to k potential best fusions sorted by Equation 5, i.e., k
pairs (P j,G(Pi,P j)). A negative gain indicates an invalid fusion.
We define the following operations on this cache:

GetBestFusion. Returns in constant time the best fusion for this
patch (i.e., the first element of the cache since it is sorted).

InvalidateFusion. Removes a fusion from the cache, if present.
AddFusion. Inserts in sorted-order a fusion in the cache if its gain

is positive and higher than the worst stored fusion. If the cache
is empty, the full cache must be rebuilt instead.

BuildCache. Fill the cache by checking all potential fusions.

Thanks to this cache, the complexity for determining the best pair

Table 1: Effect of the maximum number of edges per group cmax
on the patch computation time and runtime performance on the
CPU, for the “Stanford Bunny”. The last row shows the baseline
performance obtained without space partitionning.

cmax
precomputation # patches # edges execution

time (min) tested time (ms)
512 <1 3 511 10 578 76.33

1024 <1 3 335 10 342 74.05
2048 1 3 140 10 209 72.17
4096 3 2 998 10 091 71.20
8192 8 2 933 10 006 70.13
16384 15 2 883 9 918 68.71

No limit 613 2 763 10 059 68.93

of patches (Pa,Pb) to merge into P f (loop starting at line 5 of
Algorithm 1) is now linear in the number of patches. The memory
footprint of this cache is also linear with the number of edges ξ

(ξ× (11× k+ 15) bytes in our implementation). After performing
this fusion, we update the caches of the remaining patches (loop
starting at line 11) by invalidating the potential fusions with Pa
and Pb, and computing all possible new ones with P f . If one cache
is empty, it is fully rebuilt, which is again a linear time operation in
the number of patches.

These operations ensure that the algorithm cannot miss a poten-
tially better fusion, irrespective of the cache size k. However, this
size impacts the computation time: a big cache makes sorting and
invalidating fusions more expensive, whereas a small cache lead to
many costly full-cache recomputations. We determined empirically
that computation time has a local minima towards k = 50 that we
use for all the results in the paper.

Space partitioning. Linear complexity when updating caches may
still be impractical for very large 3D models, since every possible
patch fusion must be checked. However, in practice, fusions of very
distant patches have low probabilities as they would lead to large
patch bounding spheres, and thus wide view cone angles and high
expected costs. Therefore it is reasonable to limit the amount of
candidate patches considered for fusion based on spatial proximity.

In practice we separate the edges into groups of at most cmax
edges using a space partitioning scheme. We start from the axis-
aligned bounding box (AABB) of the input edges and recursively
split the AABB in two along its longest dimension at the median of
the edge count, making sure that at most one group will have a size
below cmax by the end of the recursions. These groups are then pro-
cessed separately by the patch fusion algorithm (potentially in par-
allel), which greatly speeds up computation due to the polynomial
nature of the algorithm. However, unlike the cache mechanism, this
extension changes the final decomposition into patches, leading to
a trade-off between patch computation time and runtime efficiency.

To evaluate the effect of the parameter cmax, we report in Ta-
ble 1 the patch computation time (using the Mean Sphere algo-
rithm), number of patches and runtime performance on the “Stan-
ford Bunny” for a range of cmax values. Based on these results, we
use cmax = 4096 for all results as the precomputation time is greatly
reduced with a minor repercussions on runtime performance.
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Table 2: 3D models used in our experiments with their number of filtered edges (removing rigid concave edges and boundaries) and per-
centage of edges transformed rigidly. We report the patch decomposition timings (min:seconds), number of patches, mean bounding sphere
radii (r̄) and normal cone opening angles (ᾱ) computed with the Reduced Sphere algorithm and meshoptimizer. We also report the number
of nodes in the SNCH binary-tree. A wireframe preview of each model is provided at the bottom.

Reduced Sphere meshoptimizer SNCH
3D Model # of filtered edges time # patches r̄ ᾱ time # patches r̄ ᾱ time # nodes

ob
je

ct
s Bunny 61 914 (100%) 2:48 2 762 0.215 10.76 <0:01 4 319 0.051 15.68 0:13 72 792

Armadillo 303 727 (100%) 13:08 13 891 0.184 11.27 0:02 21 587 0.035 17.04 4:08 358 756
Dragon 750 922 (100%) 29:28 28 453 0.090 9.28 0:05 54 185 0.017 12.34 25:21 895 185

Thai Statue 7 582 592 (100%) 5:09:38 340 164 0.139 9.49 1:02 623 598 0.021 16.29 74:31:01 10 221 718

en
v.

Roman Bath 34 071 (100%) 1:12 1 972 0.740 22.26 <0:01 2 257 0.165 44.53 0:10 43 889
Spaceship 56 031 (100%) 2:07 2 624 0.900 29.14 <0:01 1 461 0.315 60.56 0:15 61 279

Space Station 56 715 (100%) 2:03 2 908 0.602 26.73 <0:01 1 034 0.444 57.86 0:11 46 952

ri
gg

ed

Pigman 45 599 (45%) 0:13 743 0.144 23.40 - - - - - -
Tuba Gunner 74 421 (98%) 1:26 4 064 0.348 24.47 - - - - - -

Gawain 311 585 (45%) 2:15 4 210 0.641 12.91 - - - - - -

Pigman
Bunny

Gawain
Tuba GunnerSpace Station

Spaceship Roman Bath Dragon
 Thai StatueArmadillo 

4. Results

We evaluate our method on nine 3D models that fall into three cate-
gories: isolated static objects, environments, and rigged characters.
They are shown and described in Table 2.

4.1. Preprocessing

To simplify comparisons, all models are resized to unit scale. For
input 3D models with skeletal animation, we split the mesh into
rigid parts based on the bone weights. A rigid vertex depends on at
most one bone, and a rigid edge is made up of two rigid vertices be-
longing to the same bone. Our patch fusion algorithm is then run on
each rigid part separately, while non-rigid edges are grouped into
a shared patch that cannot be culled at runtime (i.e., with a normal
cone opening angle α = π/2). For non-closed surfaces, boundary
edges are treated separately. For each patch, we store the list of its
edges as quadruplet of vertex indices, and its culling data, i.e., the
bounding sphere center and radius, and the normal cone axis and
opening angle. As noted by Wihlidal [Wih17], if memory footprint
is critical, the four-component 8-bit SNORM format has enough
precision to store the cone data.

If invisible contours are not required, which is customary for
stylized line art rendering and shadow volumes, concave edges may
be ignored [SHSG01]. In such a case, we discard all rigid edges
whose internal dihedral angles are greater than π in a pre-process.
Jiang et al. [JLNX22] observed that it may represent up to 40% of
the mesh edges saving memory space and computation. All models
used in our experiments have gone through this filtering step.

We report in Table 2 the CPU computation time of the patch
decomposition (Section 3.3) as well as the resulting number of
patches and their mean bounding sphere radii r̄ and mean cone
opening angle ᾱ computed with the Reduced Sphere algorithm

and a fixed viewing distance dcam = 10 (cf. Equation 3). It may
be noted that, while the number of patches is roughly the same
for Mean Sphere and Reduced Sphere, the mean bounding sphere
radii are about 20% smaller with Reduced Sphere, for a similar to-
tal pre-processing time (see the supplemental materials for details).
Figure 1a shows the patch decomposition for the Stanford Bunny;
the same visualization for the other models and for patches gener-
ated by meshoptimizer is available in the supplemental materials.

In addition, we report the same statistics for patches computed
with meshoptimizer, a widely used meshlets generation library de-
veloped by Kapoulkine [Kap24]. Finally we report the computation
time and total number of nodes for our implementation of Spa-
tialized Normal Cone Hierarchy (SNCH) [JC01] using an Axis-
Aligned Bounding Box hierarchy for the spatial decomposition —
namely the BVH library of Pérard-Gayot [PG24] with the default
high quality parameters. All methods are implemented in C++ and
run with a single thread.

4.2. Hardware calibration

As noted in Equation 4 of Section 3.2, the mean expected computa-
tion time of a patch is based on the actual time needed to test if an
edge is contour te and whether a patch may be culled tP , for a given
hardware configuration. To estimate the former, we measure the ex-
ecution time t of the brute-force mesh contour extraction algorithm
without culling for ξ edges, yielding te = t/ξ.

For the latter, we run the algorithm with culling using a single
patch per edge, and record the execution time t as well as the num-
ber of tested edges τ, which yields:

tP =
t− τ te

ξ
.

We apply this process for the three isolated static objects and aver-
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Table 3: Calibration of single edge te and single patch tP process-
ing time on CPU and GPU for two hardware configurations.

CPU (ms) GPU (ns)
te tP tP/te te tP tP/te

A
3.968 5.408 1.363 0.338 0.440 1.302
Intel i7-4790K @ 4.0GHz NVIDIA GeForce GTX 1080

B
5.628 11.534 2.049 1.946 4.500 2.312
AMD Ryzen 5 2600 @ 3.4GHz AMD Vega 10 XL/XT

Table 4: Mean CPU execution time (in ms) of the brute-force base-
line algorithm, Reduced Sphere, and SNCH [JC01]. Speedups
(×.) are computed with respect to the baseline.

Brute-force Reduced Sphere SNCH
Bunny 260 66 ×3.9 163 ×1.6

Armadillo 1294 320 ×4.0 805 ×1.6
Dragon 2995 610 ×4.9 1428 ×2.1

Thai Statue 30189 7383 ×4.1 21738 ×1.4

Roman Bath 139 70 ×2.0 222 ×0.6
Spaceship 228 147 ×1.6 383 ×0.6

Space Station 217 137 ×1.6 339 ×0.6

Pigman 183 155 ×1.2 -
Tuba Gunner 299 156 ×1.9 -

Gawain 1254 1064 ×1.2 -

age the results. Table 3 shows the resulting timings for two hard-
ware configurations with different CPU and GPU manufacturers.
We observed empirically that using approximate ratio of calibra-
tion parameters tP/te has a limited impact on the execution time
(please see the supplemental materials for details). All subsequent
tests were conducted on Machine A.

4.3. Performance and comparisons

Procedure. All the experiments described in
this section follow the same procedure. Exe-
cution time and number of tested edges are
recorded from 42 viewpoints evenly distributed
on a sphere (the vertices of an icosphere subdi-
vided twice – inset figure) at 6 distances (5, 10, 25, 50, 75, 100
scene units) from the 3D model center. It ensures that a variety of
viewing conditions are considered and allows evaluating the impact
of the chosen dcam parameter (set to 10 in our tests) on the culling
performance — in all cases the complete set of mesh contours are
extracted. On the GPU, to maximize occupancy, we evaluate all
viewpoints and distances at once by instancing the model 252 times
and transforming it by the inverse camera matrix.

Note that we measure both the execution time and the number
of tested edges because a lower number of tested edges does not
necessarily translates into a shorter execution time as the cost for
culling patches is ignored. For instance, when creating one patch
per edge, the number of tested edges is minimal since culling will
only accept contour edges. However there will be as many patches
as edges and, as shown during the calibration, the culling test may
be up to 2.3× more expensive than the contour test.
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Figure 4: Comparison of Mean Sphere (in blue) with Reduced
Sphere (in red) in terms of (a) percentage of CPU execution time
with respect to the baseline brute-force algorithm, and (b) percent-
age of tested edges. Statistics computed over the 42 viewpoints and
6 viewing distances.
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Figure 5: Percentage of tested edges for 42 viewpoints enumerated
along a spiral going from top to bottom of a twice-subdivided ico-
sphere. Each curve corresponds to a viewing distance.

CPU evaluation. The brute-force mesh contour algorithm is used
as a baseline on the CPU. It is compared with our patch decom-
position using the Mean Sphere and Reduced Sphere bounding
volume algorithms, as well as our implementation of Spatialized
Normal Cone Hierarchy (SNCH). For simplicity, especially for an-
imated characters, face normals are computed at runtime for every
tested edge. Table 4 summarizes the results of these experiments.
Additional tests are provided in the supplementary materials.

We show in Figure 4 with boxplots the ratio of execution time
with respect to the brute-force algorithm and the percentage of fil-
tered edge that are tested. We observe similar improvements over
the baseline with both bounding volume methods, Reduced Sphere
being slightly better overall — it reduces the execution time by
about 2% and the number of tested edges by about 4% on static
models. As expected, the benefits are lower on rigged models since
only rigid parts are optimized, each of them independently of the
others. As such, the “Tuba Gunner” model, with the highest per-
centage of rigid edges, is also the one for which our method is the
most effective.
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Figure 6: Comparison of Reduced Sphere (in red) with
SNCH [JC01] (in black) in terms of (a) percentage of CPU exe-
cution time with respect to the brute-force algorithm, and (b) per-
centage of tested edges. Statistics computed over the 42 viewpoints
and 6 viewing distances.

To evaluate the impact of the viewing distance on the results,
we plot in Figure 5 for two models the percentage of tested edges
according to the 42 viewpoints for the 6 distances separately. As
intended, the number of tested edges decreases and stabilizes when
moving away from the 3D model since the view cones get narrower.
Nevertheless, some models, such as the “Spaceship”, exhibit pre-
ferred directions in the distribution of their edges, which leads to
peaks in the graph. Conversely, characters show more uniform dis-
tributions of edge directions.

Compared to SNCH [JC01], our method tests a significantly
lower number of edges which leads to a substantial speedup, as
shown in Figure 6. This may be traced back to the BVH construc-
tion of the SNCH that is solely based on the spatial distribution of
faces, as opposed to our direct handling of edges, dedicated culling
metric and more optimized bounding volume construction. As a re-
sult, our flat data-structure counts a much lower number of patches
(about 15-30 times less) than the number of nodes in the SNCH
binary tree, which drastically limits the number of culling tests at
runtime, leading to significantly lower execution time.

The percentages of edges tested by our method on static
objects (12 to 15%) are on a par with those reported by
Sander et al. [SGG∗00] with their forest of cone-trees, but their
hierarchical structure leads to significantly more culling tests. For
instance, on the “Stanford Bunny”, more than 4000 nodes are vis-
ited by their method whereas ours only needs to check the 2793
patches of the decomposition. We measured similar speedup fac-
tors (between 4 and 5) compared to the brute-force algorithm for
the “Armadillo” and “Dragon” models. Furthermore the method of
Sander et al. would be much more complex to implement on the
GPU, and most likely less efficient since hierarchical culling will
lead to divergent shader executions.

Table 5: Mean GPU execution time (in µs) of the brute-force
baseline algorithm, Reduced Sphere and meshoptimizer [Kap24].
Speedups (×.) are computed with respect to the baseline.

Brute-force Reduced Sphere meshoptimizer

Bunny 21.0 3.9 ×5.3 9.4 ×2.2
Armadillo 88.5 28.55 ×3.1 48.8 ×1.8

Dragon 155.9 56.55 ×2.8 96.7 ×1.6
Thai Statue 1579 604 ×2.6 1217 ×1.3

Roman Bath 8.3 4.6 ×1.8 10.4 × 0.8
Spaceship 17.9 9.8 ×1.8 18.7 × 0.9

Space Station 18.7 8.9 ×2.1 17.0 × 1.1

Pigman 20.8 10.8 ×1.9 -
Tuba Gunner 18.4 11.5 ×1.6 -

Gawain 91.4 66.3 ×1.4 -
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Figure 7: Percentage of GPU compute time using our patch de-
composition with Reduced Sphere (in red) and using meshlets by
meshoptimizer (in green) over the baseline brute-force algorithm.

GPU evaluation. Our baseline GPU implementation applies the
brute-force algorithm in a compute shader executed in parallel over
all edges of the mesh with a 1D local size ls = 16. The shader writes
the indices of the contour edge vertices in a buffer with an atomic
counter. If subgroups are supported by the GPU, the shared mem-
ory may be leveraged to limit the number of atomic calls. Unlike
Jiang et al. [JLNX22], we did not notice any benefit in comput-
ing face orientation (front/back facing) with respect to the camera
in a first pass and then detecting contour edges in a second pass.
To more easily accommodate both rigid and non-rigid parts, we
recompute face normals at runtime in the shader, but they could
instead be precomputed, stored in a buffer and transformed by the
skinning matrices.

Patch culling is also performed on the GPU using another com-
pute shader dispatched over all patches with the same 1D local
size ls. For each accepted patch, the shader writes the identifier
of the first edge of the patch using an atomic counter in a contin-
uous buffer of size 4ξ/ls bytes, with ξ the total number of edges.
This buffer is then used as input of the brute-force compute shader.
In addition, we compare our patch decomposition with meshlets
generated by meshoptimizer [Kap24]. This library provides control
over the target number of faces per patch (not edges); we use a tar-
get of 16 faces resulting in 14 edges per patch on average, which is
comparable to our patches.

The results of these experiments are shown in Figure 7 and Ta-
ble 5 solely measuring GPU compute timings (memory transfers
and CPU overheads are ignored). The effects of the method are
apparent with speedups compared to the baseline on static models
ranging from ×2 to ×5. These speedups are similar to the results
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(a) (b)

Figure 8: Visualization of the remaining edges after patch culling
(similarly to Figure 1b). Their number is noticeably smaller with
our patch decomposition (a) compared to meshlets produced by
meshoptimizer (b).

obtained on CPU but, due to GPU massive parallelism, the variance
around the mean execution time is less pronounced. Our method
is also up to 2 times faster than meshlets generated by meshopti-
mizer thanks to narrower normal cones, clearly demonstrating the
benefits of a patch decomposition dedicated to contour extraction.
Additional tests are available in the supplementary materials.

4.4. Practical use-case

To showcase the method in a more practical use-case, we developed
a demo application in Vulkan supporting two rendering pipelines.
The first pipeline uses the previously described pair of compute
shaders to determine the indices of the contour edge vertices, and
then draws line segments using a draw indexed indirect call. The
second pipeline uses task and mesh shaders to achieve the same re-
sult in a single pass. As illustrated in Figure 8, we run the algorithm
on multiples instances of the same model, rotating independently
(please see the accompanying video). To comply with GPU manu-
facturer recommendations (e.g., 64 vertices and 126 primitives per
patch on Nvidida’s Turing GPU), we add a limit on the number of
edges and vertices per patch during the decomposition.

We report in Table 6 the average frame time measured for both
pipelines with and without culling on a NVIDIA GeForce RTX
2080 SUPER using a 1D local size ls = 32. The first pipeline proved
to be the most efficient by a large margin, despite redundant ver-
tex transformations in the compute and vertex shaders. The disap-
pointing performance of the second pipeline may be explained by
the large number of mesh shaders that are outputting empty invo-
cations, which significantly slows down rendering. Nevertheless,
the memory footprint of the compute pipeline is significantly more
important since, if all edges were contour, an index buffer suffi-
ciently large to store the total number of edges for all mesh in-
stances in the scene must be allocated. Compared to meshlets gen-
erated by meshoptimizer, our patch decomposition achieves better
performance on static objects and similar results on environments.

5. Conclusion and Perspectives

We presented a patch decomposition algorithm that generates a flat
acceleration structure specifically tailored to efficient mesh con-
tours extraction on both the CPU and the GPU. At the core of this
algorithm, we proposed a metric to evaluate the culling probabil-
ity of a patch and a more precise definition of its bounding vol-

Table 6: Comparison of the average frame time (in ms) for mesh
contours extraction and rendering, without (off) and with (on)
patch culling using our compute and task/mesh shaders pipelines,
measured on a NVIDIA GeForce RTX 2080 SUPER for a viewport
of 1920×1080 pixels, and multiple instances (×.) of the mesh.

Pipeline: Compute Task/Mesh
Decomposition: ours meshopt. ours

Culling: off on off on off on

Bunny (×121) 1.3 0.48 1.6 0.72 121 32
Armadillo (×81) 4.5 1.6 5.0 2.4 385 108

Dragon (×25) 3.6 1.4 3.7 1.6 300 66
Thai Statue (×1) 1.6 0.75 1.63 0.88 138 32

Roman Bath (×169) 1.36 0.85 1.35 1.17 82 42
Spaceship (×81) 1.4 1.1 1.1 1.1 101 65

Space Station (×81) 1.4 1.0 1.0 1.0 99 61

Pigman (×81) 0.78 0.72 - - 37 29
Tuba Gunner (×81) 1.2 0.85 - - 100 60

Gawain (×25) 2.8 2.4 - - 176 136

ume leading to tighter bounds. Together, these improvements allow
complex 3D scenes, including environments and rigged characters
with skeletal animation, to be handled in real-time on the GPU. It
paves the way for the use of mesh contours in applications where
their cost was overly prohibitive, such as video-games.

More optimized bounding volumes. We have shown that the
bounding volume is not the geometrical bounding volume of the
patch, but the one intersecting all lines subtended by the patch
edges. However, even if it leverages this insight, our bounding
sphere algorithm does not find the smallest possible volume. An
algorithm that can find the minimal sphere intersecting a set of arbi-
trary 3D lines would allow the creation of more optimized patches.
However, such an algorithm would likely be much computationally
expensive, making the patch decomposition slower, and the space
partitioning scheme that we introduced to speed-up computation
would need to be revisited since spatial proximity would not be a
relevant criteria anymore.

Besides, if we used bounding spheres for their simplicity of com-
putation, evaluation and efficient storage, other bounding primi-
tives, such as cuboids, could be explored. Nevertheless, a corre-
sponding patch acceptance metric must be derived and, to be prof-
itable, the additional cost for the patch culling test must be suffi-
ciently amortized by improved culling performance.

Other culling applications. Unlike mesh contours extraction,
view-frustum culling requires bounding volumes that encompass
the whole geometry of a patch. Spheres generated by our Re-
duced Sphere algorithm are thus unsuitable for this use-case. How-
ever, back-face culling might benefit from our patch decomposition
method, using a different patch acceptance metric.

Rigged models. Although we propose a simple treatment for han-
dling meshes with skeletal animation, our method does not apply to
non-rigid edges (i.e., edges affected by more than one bone of the
skeleton). The pre-computed conservative meshlet bounds of Un-
terguggenberger et al. [UKPW21] could be used for those edges,
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but the unavoidable overestimation of the patch bounds would
greatly limit the number of times such a patch may be culled. Al-
ternatively, the method of Schvartzman et al. [SGO09] which up-
dates patch normal bounds at runtime could be investigated. How-
ever, the computational overhead (linear in the number of driving
bones) must not counterbalance the culling gains, which is chal-
lenging on the GPU. In addition the potential gains may vary a lot
per 3D model, as the modeling and rigging processes may signifi-
cantly change the amount of rigid edges as exemplified by the range
in our test set (Table 2) with the “Pigman” (45% rigid) and “Tuba
Gunner” (98% rigid) models.
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