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Abstract: Extracting statistics for turbulent flows directly from the Navier–Stokes equations poses a
formidable challenge, particularly when dealing with unsteady or inhomogeneous flows. However,
embracing Kolmogorov’s inertial range spectrum for isotropic turbulence as a dynamic equilibrium
provides a conceptual starting point for perturbation theory. We review theoretical results, combining
perturbation approaches, and phenomenological turbulence closures, which allow us to gain valuable
insights into the statistics of unsteady and inhomogeneous turbulence. Additionally, we extend the
ideas to the case of the mixing of a passive scalar.

Keywords: isotropic turbulence; inhomogeneous turbulence; unsteady turbulence; passive scalar
mixing; perturbation approach

1. Introduction

Perturbation techniques play an important role in a wide range of applications. In gen-
eral, such methods allow us to obtain insights into complex dynamics for which no ana-
lytical solution exists by investigating how the system behaves if it is driven away from a
known equilibrium solution. Different techniques fall under the denominator of perturba-
tion theories [1] and in the domain of fluid mechanics only, a large number of approaches
exist [2]. In the present article, we will consider one such method to evaluate the tem-
poral and spatial perturbations of an equilibrium turbulent flow. As an introduction,
before focusing on turbulent flow, we will outline the general method.

1.1. Perturbation Approaches

We consider an observable, or statistic X (p), where p can be any set of arguments,
such as position x, time t, or wavevector k. The evolution of X is described by the equation

L(X ) + F(X ) = 0. (1)

The function L(X ) is a known (linear) functional of X . The function F can be any integro-
differential nonlinear expression. Let us assume that we know a solution of F for a given
value of X

F(X0) = F0. (2)

The perturbation approach is now used to obtain approximate solutions in the vicinity of
X0. For this, we consider a value of X not far from X0,

X = X0 +X1 (3)

where |X1|/|X0| ≪ 1. An approximate solution is then obtained by

0 = L(X ) + F0 +X1
δF
δX

∣∣∣∣
X=X0

(4)
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This allows us to obtain a relation between the shape of the perturbation X1, X0 and the
other terms in the evolution equation.

In the problems we will consider here, it is the shape of X1 which is unknown, and char-
acterizing the spatio-temporal behavior of X1 will be the goal of the present investigation.
We are interested in turbulent flow and therefore we consider statistics. The quantity X
can be, for instance, the average kinetic energy, or its wavenumber spectrum. We then
need to define, for this case, F and X0, corresponding to terms in the evolution equation
for X , and its equilibrium value, respectively. Determining closed expressions for the
evolution of the kinetic energy density and its equilibrium value directly from the Navier–
Stokes equations is not an easy task for turbulent flows and we will discuss this in the
following sections.

1.2. This Review

The most significant prediction associated with the present work was obtained 30 years
ago, in 1994, when Yoshizawa suggested how unsteadiness influences the spectral kinetic
energy density of a turbulent flow [3]. However, it was not until 2011 that these ideas found
empirical validation in numerical simulations [4], and only recently, in 2024, has there been
a proposal to extend these findings to inhomogeneous flows [5].

This review aims to synthesize both theoretical and numerical advancements over the
past thirty years, contextualizing them within the broad landscape of isotropic turbulence
modeling. By maintaining a close connection with the theory of isotropic turbulence,
this approach distinguishes itself from reviews on conventional modeling strategies for
complex flows. It is hoped that this closer alignment with theory will establish a more robust
theoretical foundation for models pertaining to unsteady and inhomogeneous turbulence.
The ultimate objective of this review is to pinpoint the most promising avenues within this
still active research domain.

In Section 2, we will discuss the equilibrium X0 that we work with. In Section 3, the
theoretical attempts to obtain a closed expression for F as a function of X are reviewed.
In Section 4, we discuss the temporal perturbation approach to determine the shape of the
perturbation to the kinetic energy spectrum. A recent application to inhomogeneous flows
is discussed in Section 5, and an extension to mixing is proposed in Section 6. An important
question is whether these spectral corrections can also describe large-scale behavior, an issue
discussed in Section 7. We conclude by briefly reviewing similar approaches applied to
anisotropy and wall bounded flows in Section 8.

2. Equilibrium in Turbulence: Finding X0

In statistical physics, the notion of (thermodynamic) equilibrium denotes a state
which does not evolve and where macroscopic fluctuations are absent. The Navier–Stokes
equations are compatible with such an equilibrium, when the range of modes is con-
strained by Galerkin truncation. Indeed, considering the statistics of an isolated number of
Fourier modes [6] it was theoretically shown that the Navier–Stokes equations admit an
equipartition solution, where all Fourier modes are in equilibrium. The definition of the
three-dimensional energy spectrum E(k), with k the wavenumber, then implies that the
energy density is given by

E(k) ∼ k2. (5)

This equilibrium is modified at the largest wavenumbers if the flow contains helicity [7].
In systems governed by the Euler-equations, numerically integrated by a conservative
Galerkin method, this k2 dependence can be assessed conveniently [8,9].

Nevertheless, realistic turbulent flows do not conserve energy since the energy dis-
sipation acts as a sink. To conserve energy in the system, a continuous energy input is
necessary. If a statistical steady state is attained where the input and dissipation of energy
are in equilibrium, one obtains a dynamical equilibrium, different from the thermodynamic
equipartition equilibrium. It is this dynamic equilibrium for scales smaller than the injec-
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tion which we will focus on in the present case, and it is this equilibrium which represents
our X0.

The dynamical equilibrium range, or inertial range, was predicted by Kolmogorov [10]
and Obukhov to be proportional to k−5/3,

E(k, t) = CKϵ(t)2/3k−5/3, (6)

with ϵ denoting the energy dissipation rate and CK denoting a constant. The first convincing
evidence of expression (6), which we will refer to as K41, in a real turbulent flow, was
obtained in tidal channel measurements [11]. Ever since, Kolmogorov’s theory has gained
overwhelming evidence in experiments [12] or in numerical simulations [13].

Interestingly, both equilibria, Equations (5) and (6), can coexist in different wavenum-
ber ranges of a flow. Indeed, for flow-scales larger than the energy-injection scale, equipar-
tition (Equation (5)) is observed in steady state numerical simulations [14]. Furthermore,
at scales small enough so that the kinetic energy becomes comparable to, or smaller than, the
energy associated with thermal noise, the equipartition of energy is also observed [15]. Most
of the triadic turbulence closures and some of the phenomenological turbulence closures
(approaches discussed in the next section) do reproduce this equilibrium solution [16–19].

K41 is an asymptotic theory, valid exactly only in the limit of infinite Reynolds number
and, in general, corrections due to the finiteness of the Reynolds number are present [20–25].
Furthermore, as suggested by Kolmogorov himself [26], intrinsic corrections could possibly
be added to the K41 theory due to the fact that the dissipation rate is not a uniformly
distributed quantity in space. Even though, for higher order statistics, these corrections
seem indisputable [27,28] for second-order quantities such as the kinetic energy spectrum,
these corrections are small and within error-bars not easily distinguishable from finite
Reynolds number effects [22]. We will not further take them into account.

In the following, we will thus consider that the equilibrium we are interested in is
a flow statistically characterized by a K41 inertial range. This latter spectrum is thus the
X0 in expression (4). We need, at this point, in Equation (4), an expression for F, which is
simple enough to allow us to determine the functional (or Fréchet) derivative. This will be
discussed in the following section.

3. Isotropic Turbulence: Deriving F(X )

In this section, we focus on the necessary requirement to apply the method represented
by Equation (4) to the energy spectrum: we need the governing equation for the kinetic
energy spectrum. We focus in this section on (statistically) isotropic turbulence, a concept
introduced by Taylor [29] and popularized by Batchelor [30].

For the case of isotropic turbulence, the equation for the evolution of the kinetic energy
spectrum writes

∂E
∂t

= P − 2νk2E + T, (7)

where we omitted time and wavenumber dependence for brevity. The first two terms on the
right-hand side of this equation are, respectively, production P and dissipation 2νk2E. The
last term is the nonlinear transfer T, which can be written as the wavenumber divergence
of the energy flux Π at scale k,

T = −∂Π
∂k

. (8)

This quantity T is the term associated with F in Equation (1). To carry out our perturbation
analysis, we need F to be a functional of X , in our case, the kinetic energy spectrum. The
Navier–Stokes equations are a (quadratic) nonlinear function of the velocity. Therefore,
the equation of second-order moments, such as the kinetic energy spectrum, will contain
terms containing triple-velocity correlations. This is the case for the transfer spectrum,
which is thereby not a closed function of the kinetic energy spectrum, but is determined by
the interactions of a set of three Fourier modes (or triadic interactions). We can at this time
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not directly apply the perturbation theory sketched in Section 1.1 to Equation (7), since we
cannot simply determine the differential δF/δE. We now summarize the efforts to obtain
such a closed equation.

A first attempt could be to simply ignore T, as would be the case in a Gaussian field,
but this does not allow turbulent-like solutions, since different flow-scales are not able to
interact in the absence of nonlinearity. Perhaps the first encouraging attempt to obtain a
closed expression for the transfer of the kinetic energy from the Navier–Stokes equations
was based on an idea from Millionschikov [31,32]: if the cumulants (i.e., the deviations
from Gaussianity) to the fourth-order velocity moments are ignored, the statistical moment
hierarchy obtained from the Navier–Stokes equations can be closed. This retains mode
coupling leading to finite transfer. The algebra to obtain an expression for T was carried
out by Proudman and Reid [33] and Tatsumi [34]. The resulting expression was numer-
ically integrated by Ogura [35] and shown to lead to negative values of kinetic energy,
in mathematical disagreement with reality. The reason for this violation of realizability is
that ignoring the cumulants to the fourth order moments leads to insufficient damping of
the third-order moments, so that these can become too large [8].

Kraichnan contributed enormously to the theory of isotropic turbulence by introducing
a renormalized perturbation technique, where the small parameter is associated with the
contribution of a single triadic interaction to the transfer. The resulting theory is called
the direct-interaction approximation (DIA) [36,37]. Despite its mathematical elegancy,
and the realizability of its results (no negative kinetic energy), the asymptotic energy
spectrum associated with the DIA is in disagreement with Kolmogorov’s inertial range
theory. The origin of this discrepancy was pinpointed by Kraichnan to be the Eulerian
character of the theory [38]. Indeed, the DIA is a two-time theory, involving memory-times.
In a Eulerian reference frame, time-correlations between two points are importantly affected
if one adds a sweeping velocity, an effect associated with Galilean invariance (adding a
uniform velocity will affect the Eulerian time-correlation but should not affect the energy
transfer). This motivated the formulation of Lagrangian versions of the DIA [39,40]. These
theories are of a formidable mathematical complexity. An exception is the Lagrangian
renormalized approximation [41–43], which, through the precise combination of the choice
of the points in the reference frame, is of lesser complexity.

An alternative approach used the insights obtained from Kraichnan’s theories to
replace the Lagrangian character by more ad hoc damping, either by directly modeling
the missing cumulants by a spectral eddy-viscosity in the balance for the third-order
moments, yielding the Eddy-damped quasi-normal Markovian (EDQNM) approach [44],
or by evaluating the damping using the help of a test-field which measures the Lagrangian
decorrelation [45], or by using a scalar field to measure the correlation-time directly, yielding
the Lagrangian Markovianized field approximation (LMFA) [46,47]. An Eulerian two-time
theory, allowing agreement with K41 due to the introduction of a well-chosen velocity
propagator function, is the local energy transfer theory [48,49]. All these theories can be
integrated numerically, and their solution is compatible with K41. Nevertheless, since the
final closed equations are based on convolution integrals, the Fréchet derivative used in
Section 1.1 is not easily determined from these closures.

Another line of research, leading to simpler expressions, is more phenomenological
and aimed at directly reproducing the features of turbulence, but not starting from first
principles (i.e., not starting from the Navier–Stokes equations). This approach yielded
closure models for Π involving simple integrals and derivatives. Notable examples are the
model by Heisenberg [50] taking into account scale-nonlocality, and Leith’s [17] diffusion
approach, allowing both the thermal-equilibrium solution and K41. An overview of these
approaches is given in a dedicated textbook [51]. Certain models can be obtained from the
above-discussed closure theories like the DIA by taking the appropriate limits of the triadic
wavenumber interactions [52,53]. Since these approaches aim for simplicity and do not
simply relate to the Navier–Stokes equations, we discuss the simplest of all, compatible
with K41, proposed by Kovaznay [54]
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Π =
(

C−1
K k5/3E

)3/2
. (9)

This form of the spectral flux is dimensionally correct, yields a conserved energy flux, and
allows a steady state energy spectrum of the form Equation (6). One of the features it does
not reproduce is the thermal equilibrium solution. If this was desired, the Leith model
would be better adapted. For our purposes Expression (9) will be sufficient and we will
retain it for the remainder of our discussion.

We note that the development of an analytical theory of turbulence has been a long-
standing objective in fluid mechanics research. The present review does not address all
attempts and more complete reviews can be found, for instance, in [55–57]. In the follow-
ing, we will focus on the application of perturbation methods to inertial range scaling,
without worrying too much about the exact formulation of the closure, as long as it is
compatible with the physics that we are interested in.

4. Temporal Perturbations to K41

In this section, we focus on the inertial range given by Equation (6). We take Equation (7)
and integrate from k to infinity, where k is chosen to be larger than the scales where the forc-
ing is significant, and smaller than those where the dissipation is important. We have then∫ ∞

k

∂E
∂t

dk = Π − ϵ. (10)

To this expression, we apply our perturbation approach. Identifying

X0 → CKϵ2/3k−5/3 (11)

F(X ) → Π =
(

C−1
K k5/3E

)3/2
(12)

L(X ) → −
∫ ∞

k

∂E
∂t

dk − ϵ (13)

we find F0 = ϵ and δF/δE = 3
2 Π/E. We then obtain to the leading order (i.e., ignoring ∂E1/∂t)

E1 =
2
3

E0

ϵ

∫ ∞

k

∂E0

∂t
dk. (14)

This yields, using the K41 expression for E0, and for a wide inertial range,

E1 =
2
3

C2
K ϵ̇ϵ−2/3k−7/3. (15)

This expression was first proposed by Yoshizawa [3] in a study using two-scale DIA. Further
theoretical investigations discussing this scaling are [58–61].

An important implication for the inertial range scaling of Equation (15) is that the
exponent −7/3 indicates a faster decay as a function of wavenumber than the Kolmogorov
spectrum. For large values of k, the correction is therefore sub-dominant, and Kolmogorov-
scaling will prevail. The ratio in the inertial range is

E1

E0
∼ ϵ̇

ϵ
τk, (16)

where τk ∼ ϵ−1/3k−2/3, which allows us to estimate for a given perturbation of ϵ, the scale
or wavenumber beyond which the corrections become insignificant. For large values of
the wavenumber, the approximation should thus be better since the precision of linear
perturbation theory improves for small values of the perturbation, but at the same time,
the corrections become very small compared to the equilibrium spectrum and are therefore
harder to detect. However, by subtracting the equilibrium spectrum Equation (6) from the
instantaneous spectrum, one is able to identify the non-equilibrium contribution [62].



Atmosphere 2024, 15, 547 6 of 12

An example of a clear k−7/3 correction to the kinetic energy spectrum is given in
Figure 1, where we show EDQNM results for the equilibrium and perturbation spectra,
for the case of periodically forced turbulence [62], i.e., for a flow where the large scales are
modulated by a periodic forcing [63]. In this Figure, E0 is obtained by time-averaging the
spectrum, after normalizing it using Kolmogorov variables (length and timescales based
on the viscosity and dissipation). Subtracting this estimate of E0 from the instantaneous
spectra and averaging the norm of the resulting spectra yields the spectrum ⟨|E1|⟩.
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Figure 1. Equilibrium spectrum E0 and the average of the norm of the perturbation spectrum E1 for
the case of periodically forced turbulence. Details and parameters of the set-up are found in [62].
The wavenumber is normalized by the Kolmogorov-scale η.

To derive Equation (15), there has been no assumption concerning the nature of the
temporal perturbations, i.e., the time-signal of the perturbation, so that the perturbations
should be observed universally. Evidence of this scaling was indeed observed in a range of
different flows. The first confirmation of the non-equilibrium scaling was reported in the
numerical simulations of Horiuti and Ozawa in shear flow [4], followed by observations
in isotropic turbulence in Horiuti and Tamaki [64]. Recent further evidence was obtained
by Berti et al. in three-dimensional turbulence forced by Taylor-Green forcing [65] and
assessing the isotropic EDQNM equations [62] (see Figure 1).

5. Inhomogeneous Perturbations to K41

Given the success in describing temporal fluctuations in turbulence using perturbation
theory on the Kolmogorov spectrum, one might want to extend the approach to spatial
inhomogeneity. The progress to derive statistical theories for inhomogeneous turbulence
can be summarized by a small number of attempts, including the inhomogeneous test-field
model [66] and inhomogeneous extensions of the EDQNM approach [67–69]. A particular
difficulty is that, in inhomogeneous turbulence, the fluxes in scale and space are intertwined
and it seems that approximations are needed to separately consider them [70–72].

Indeed, this coupling of scale and space renders the description of statistically inhomo-
geneous turbulence tremendously complex. Furthermore, whereas temporal perturbations
can be assessed in an isotropic setting, inhomogeneous flows are intrinsically statistically
anisotropic. The general statistical description of inhomogeneous turbulence, taking into
account both space and scale variations, can be covered by the Karman–Howarth–Hill
equations [73,74]. A comprehensible analytical treatment of these equations to obtain the
statistics of inhomogeneous turbulence does not yet exist. To study the corrections due
to inhomogeneity, as in the previous section for temporal fluctuations, we abandon our
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attempts to rigorously derive closures from the Navier–Stokes equations and, again, we
use the simplest possible phenomenological closure models.

We consider the case where the flow is statistically stationary and inhomogeneous in a
single direction z only. Assuming that we can separately consider space and scale fluxes in
the Lin-equation, we write for the inhomogeneous spectrum E(k, z)

0 = P − 2νk2E − ∂Π
∂k

− ∂Φz

∂z
. (17)

One should thus realize that, since we separate scale and space fluxes, this is already a
modeled equation. However, the important physical mechanisms are present. In Section 4,
the wavenumber flux Π was modeled by the simplest possible model Equation (9). If we
extend this approach here and keep the model for Π and model the spatial energy flux by a
simple gradient diffusion approach,

Φz = −DT
∂E
∂z

, (18)

we obtain a closed equation for E(k, z). The inhomogeneous equivalent of Equation (14)
then becomes, for uniform DT ,

E1 = −2
3

E0

ϵ

∫ ∞

k
DT

∂2E
∂z2 dk, (19)

which yields

E1 = −
2C2

K
3

DT

(
∂2ϵ

∂z2 − ϵ−1

3

(
∂ϵ

∂z

)2
)

ϵ−2/3k−7/3. (20)

The assumption of uniform turbulent diffusivity DT can be refined. Indeed, a spectral
equivalent was considered in [70,75], yielding a k-independent value for large k. Further-
more, DT can be a function of space. This effect only leads, however, to second-order
corrections [5]. Also, the second term in brackets is for small fluctuations of ϵ around
equilibrium negligible compared to the first.

The inhomogeneous spectral corrections have, for the moment, received little attention.
The recent numerical investigation [5], however, shows evidence that the expression (20) is
consistent with the statistics of the three-dimensional Kolmogorov flow. Further research
could consider the refinement of the modeling of the turbulent diffusion and the extension
and assessment of these ideas to integral quantities.

6. Mixing

The foregoing ideas can also be applied to the mixing of a passive scalar by turbulent
flow. The evolution-equation of the spectrum Eθ(k, t) of the scalar variance in an isotropic
turbulent flow is given by

∂Eθ

∂t
= Pθ − 2κk2Eθ −

∂Πθ

∂k
. (21)

This expression is the equivalent of Equation (7). We similarly find a production term Pθ

and a dissipation term 2κk2Eθ , with κ, the molecular diffusivity of the scalar. We will focus
on the case of unity Prandtl number, where κ = ν. The last term is again an unclosed
term, associated with the flux Πθ of θ2-stuff through scale-space (the term θ2-stuff was
introduced by Batchelor [76], and we could also call it scalar variance).

To apply the temporal perturbation approach to the case of scalar mixing one needs
again to define X0 and L and F. The study of turbulent mixing closely followed the
development of the theory for isotropic turbulence and we will briefly review it here.

The equivalent of Kolmogorov’s inertial range theory for mixing is due to Obukhov
and Corrsin [77,78] and reads

Eθ = Cθϵθϵ−1/3k−5/3, (22)
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where ϵθ is the dissipation of scalar variance, obtained by integrating the dissipation term
in Equation (21) over wavenumbers. Expression (22) will thus be the X0 for the case of
turbulent scalar mixing. The next step consists in obtaining a closed form for the scalar
transfer. The approaches described in Section 3 were also applied to mixing. For instance,
the DIA for a passive scalar was developed by Roberts [79], and the Lagrangian version
was developed by Kraichnan in the same article where he treated the velocity [39]. The test-
field model for scalar mixing is discussed in [80] and the EDQNM approach to the scalar
was first discussed in [81,82]. Again, these models are elegant, but not easily treatable
in a perturbation approach. We will therefore refer to phenomenological closure [83],
as discussed in Section 3 for the energy spectrum.

For mixing, the equivalent of the Kovaznay model reads

Πθ = C−1/2
K C−1

θ k5/2EθE1/2, (23)

which will constitute our F(X ) for scalar mixing. Carrying out the same procedure as in
Section 1.1, we obtain for the perturbations to the equilibrium spectrum

Eθ1 =
Eθ0

ϵθ

∫ ∞

k

∂Eθ0

∂t
dk. (24)

This yields

Eθ1 = C2
θ

(
ϵ̇θ

ϵθ
− ϵ̇

3ϵ

)
ϵθϵ−2/3k−7/3. (25)

The validity of the present approach to the case of the passive scalar has not been assessed
and verifying the expression (25) constitutes a logical perspective for further research.

7. Implications for the Large-Scale Statistics

An intriguing question is that of whether the ideas of the last three sections can be
extended to integral scales. For the temporal fluctuations, in principle, if the fluctuations
are slow, so that the value of ϵ̇/ϵ is not too large compared to the typical timescale of the
large eddies, the approximation should hold at the large scales. Indeed, this was explicitly
assumed in the theoretical study by Bos and Rubinstein [84].

In that study, an attempt was made to explain fluctuations in the normalized dissipa-
tion rate, defined as

Cϵ =
ϵL
U3 (26)

where U =
√

2
∫

E(k)dk/3 and L is the longitudinal correlation lengthscale. Indeed, Cϵ

should at first order be constant, as was suggested by Taylor [29]. However, the fluctuations
around this equilibrium were shown to be close to a functional relation of the Reynolds
number Rλ [85,86]. Integrating Equations (6) and (15), it was obtained in [84] that this
variation should be given by

Cϵ(t) ∼ Rλ(t)−15/14. (27)

The result (27) was compared in [84] to the numerical results of [86] and the wind-tunnel
results of Hearst and Lavoie [87]. Subsequently, confirmation was obtained in windtunnel
measurements [88,89] and in atmospheric measurements [90]. These observations suggest
that the temporal corrections to the large scales are following the same trends as the spectral
corrections, an observation which needs further research.

Other preliminary investigations have focused on the integral quantities for the case
of modulated scalar mixing, discussed in Section 6 [91,92]. Again, these approaches
extend the results for inertial range quantities to integral lengths and timescales. A recent
extension where the small scales are perturbed instead of the large ones is proposed [93]
and numerically verified [94], yielding an expression similar to Equation (27), but with an
exponent close to −2 instead of −15/14.
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There seems, therefore, to be evidence that the Yoshizawa scaling and its extensions
can be used for the large-scale descriptions. This might seem surprising given the non-
universality of large-scale turbulence and further research is needed to assess why this
approach is justified.

8. Conclusions and Perspectives

To summarize: it was highlighted in this review how isotropic turbulence can serve as
a basis for linear perturbation theory. For the inertial-range in three dimensional turbulence,
the spectral corrections are, for the cases discussed in this review, proportional to

E1(k, t) ∼ ϵ̇

ϵ
ϵ1/3k−7/3 (28)

E1(k, z) ∼ −∂2ϵ

∂z2
DT
ϵ

ϵ1/3k−7/3 (29)

Eθ1(k, t) ∼
(

ϵ̇θ

ϵθ
− ϵ̇

3ϵ

)
ϵθϵ−2/3k−7/3. (30)

In particular, for the moment, this last expression remains a prediction, and should be
verified by simulation or experiment.

We have not reviewed a great part of the literature, focusing on the anisotropic
properties of turbulence [95,96]. Perturbation approaches have been successfully applied to
investigate the anisotropy of flows in the presence of certain external forcing mechanisms.
For instance, following dimensional arguments by Lumley [97], homogeneous shear-flow
was investigated both theoretically [98] and numerically [99]. Scaling corrections for
different anisotropic contributions were shown to be proportional to either k−7/3 or k−3.
Scaling obtained by perturbation analysis in stratified turbulence was considered in [100],
and in quasi-static magnetohydrodynamics in [101].

All these developments have considered flows in homogeneous or periodic flow-
settings. Clearly things, will change in the vicinity of solid walls. An interesting first
approach to extend these ideas to wall bounded flow was recently proposed [102,103],
opening a whole new direction for the investigation of turbulent flows using perturba-
tion approaches.

We do want to insist that most of the methods used in the present review are fairly
general. An extension to other turbulent flows is thereby an obvious direction for further
research. Indeed, a large number of turbulent flows exhibit scaling ranges [104] and can
be described by empirical transfer-flux models. For instance, we mention magnetohydro-
dynamic turbulence, even though the precise scaling of the equilibrium spectrum is not
uniquely determined (see, e.g., [105] for a recent review).

Yet another field of research which can take advantage of the present results is the
field of atmospheric research. Indeed, in atmospheric turbulence, the interplay between
the turbulent fluxes of heat and momentum yields dynamics which are not only governed
by the turbulent kinetic energy dynamics but also by the influence of buoyancy. In such
flows, it might be reasonable to consider another equilibrium state that is different from
K41 and to choose an associated spectral energy transfer closure. This would allow one
to measure the influence of unsteadiness and inhomogeneity on these non-Kolmogorov
flows. An interesting perspective then consists in linking closure approaches for this
system [106,107] to the present approach. It is encouraging that, as mentioned in Section 7,
measurements have shown evidence of the validity of the current approach to describe the
fluctuations of integral quantities in the atmospheric boundary layer [90]. Further research
is needed.

Altogether, advancing the present concepts to encompass the (simultaneous) effects
of magnetic fields, rotation, buoyancy, and shear, while validating the extrapolation to
large scales, will allow us to obtain a refined understanding of out-of-equilibrium statistics.
Such insights hold significant promise for a wide range of applications across engineering,
geophysical, and astrophysical flows.
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