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Abstract: We investigate two-dimensional flow in toroidal geometry, with a10

focus on a transition between two-dimensional three-component flow and two-11

dimensional two-component flow. This latter flow-state allows a self-organization12

of the system to a quiescent dynamics, characterized by long-living coherent13

structures. When these large-scale structures orient in the azimuthal direction,14

the radial transport is reduced. Such a transition, if it can be triggered in15

toroidally confined fusion plasmas, is beneficial for the generation of zonal flows16

and should consequently result in a flow field beneficial for confinement.17

Key words: toroidal flow, turbulence, transition, plasma18

1. Two-dimensional turbulence and toroidal fusion plasmas19

Thermonuclear fusion is a sustainable and carbon-free energy source. It can20

thereby constitute a game-changer in the context of energy regulation and climate21

change. Currently the most advanced geometry to achieve the ultimate goal of a22

sustained large-scale fusion reaction is the tokamak: in a torus-shaped reactor23

chamber, magnetic fields are used to confine a plasma at a temperature of24

hundreds of millions degrees, in which energy is produced by fusion of hydrogen25

isotopes. A schematic of toroidal geometry, indicating the definitions of toroidal26

and poloidal directions, is shown in Fig. 1.27

The largest obstacle for fusion is the confinement of a plasma. Indeed, if any28

reactor is to produce energy by a fusion reaction, the ionized gas of hydrogen29

isotopes should be kept at a sufficient temperature, with a sufficient density for a30

long enough period of time. This triple criterion (time, density and temperature)31

has been known since the 1950s (Lawson 1957) and the goal of almost any32

magnetically controlled fusion experiment is to enhance this triple product.33

Currently, tokamaks cannot work without continuous injection of energy in the34

plasma, and they produce less energy than they need to sustain the reaction. The35

† Email address for correspondence: wouter.bos@ec-lyon.fr
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Figure 1: Tokamaks are torus-shaped fusion reactors where the plasma is
confined by a magnetic field. The toroidal component of the magnetic field is
dominant in realistic reactors. In the simplified description considered here, we

only consider this toroidal field and assume it strong enough to render the
plasma-dynamics invariant along the toroidal direction. This reduces the

dynamics to a two-dimensional system, with three velocity components: two
components in the poloidal plane, uP and one toroidal component uT . In the
present schematic we indicate the major and minor axes R and a, respectively.
The color plot indicate the (toroidal) vorticity associated with the poloidal

velocity field.

ITER experiment aims at showing that tokamaks can reach, and go beyond, the36

break-even point.37

The main actor limiting the confinement in tokamaks is turbulence. The trans-38

port of heat and matter by turbulent fluctuations degrades the confinement39

quality in all existing tokamaks (Liewer 1985; Garbet et al. 2004). The pres-40

ence of some turbulence does seem inevitable given the enormous gradients of41

temperature and magnetic fields in the plasma edge, but limiting the intensity of42

this turbulence as much as possible in the reaction chamber is paramount. This43

explains the tremendous importance given to a transition between two turbulent44

states, observed first experimentally in the ASDEX experiment (Wagner et al.45

1982). The transition from a, highly turbulent, low-confinement mode (or L-46

mode) to a, more quiescent, high confinement mode (H-mode), is observed to47

increase the confinement time considerably. Knowing how to trigger such a LH-48

transition, and keep a plasma in H-mode, can thus be essential for the design of49

a successful fusion-reactor.50

The understanding of the LH-transition is still incomplete. Different proposi-51

tions of theoretical frameworks can be found in reviews on the subject (Wagner52

2007; Connor & Wilson 2000). It is now well accepted that in H-mode, con-53

finement is improved by the presence of shearing motion at the edge of the54

plasma (Groebner et al. 1990; Shaing & Crume 1989; Shats et al. 2007) and that55

interaction with the walls of the plasma vessel might play a role in this dy-56
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namics (Dif-Pradalier et al. 2022). Such shearing motion allows to decorrelate57

radially propagating structures by a mechanism called shear-sheltering in the58

fluid mechanics literature (Hunt & Carruthers 1990; Hunt & Durbin 1999). In59

the tokamak community this insight has had a major impact (Terry 2000), in60

particular since magnetized plasmas show the formation of zonal flows, radially-61

sheared poloidal flow structures, which contribute importantly to this shear-62

sheltering (Biglari et al. 1990; Diamond et al. 2005; Gürcan & Diamond 2015).63

Indeed, in addition to zonal flows, another established ingredient of the H-64

mode is its link with two-dimensional turbulence. It has been known since the65

works of Kraichnan (Kraichnan (1967); Kraichnan & Montgomery (1980)) that66

a fluid flow in two space dimensions has the tendency to self-organize into67

large-scale structures. Examples of such self-organization are cyclonic structures68

in the atmosphere, and controlled numerical and physical experiments have69

verified this tendency to self-organization (McWilliams 1984; Sommeria 1986;70

Paret & Tabeling 1997). The turbulence in plasmas seems to behave in a similar71

manner (Fyfe & Montgomery 1979), i.e., the turbulence also tends to form large72

scale structures. This link between the formation of space-filling structures in73

two-dimensional flows and the H-mode was stressed in experiments (Shats et al.74

2005). However, the magnetic field is also present in the L-mode, so that the75

dynamics should not be far from two-dimensional. Therefore it is not only the76

two-dimensional character of the flow which allows to explain the LH-transition.77

In the present study we use a representation of a toroidal plasma which is delib-78

erately simplified as much as possible to study the dynamics of two-dimensional79

flow in bounded toroidal geometry. Thereby we certainly miss a number of80

features important to describe the dynamics of fusion plasmas, but this approach81

allows to understand a critical transition between nearly two-dimensional flow82

with three dominant flow components, to a purely two-dimensional flow and83

the influence of this transition on confinement properties. The present study is84

thereby complementary to investigations of simple models of plasma turbulence in85

periodic slab-geometry, such as the Hasegawa-Mima (Hasegawa & Mima (1978)),86

Hasegawa-Wakatani (Hasegawa & Wakatani (1987)), which ignore the toroidal87

boundaries, while it remains simpler to interpret than toroidal simulations us-88

ing the full three-dimensional MHD system or even more complex gyrokinetic89

descriptions Goerler et al. (2011); Grandgirard et al. (2006).90

The motivation for the present work finds its origin in recent insights from91

theoretical studies on axisymmetric turbulence, which we will now briefly re-92

view. We consider purely axisymmetric flows, where not only the average flow93

quantities, but also every fluctuation is exactly axisymmetric. In the absence of94

magnetic fields or other body-forces, in neutral fluids such a flow in the turbulent95

regime is difficult to establish. Therefore, in the fluid mechanics community,96

this type of flow has received interest only recently, mostly in order to extend97

ideas from statistical mechanics of two-dimensional flows to a case closer to98

three dimensions (Leprovost et al. 2006; Naso et al. 2010; Thalabard et al. 2014).99

Since such a turbulence is hard to reproduce experimentally, the assessment of100

theoretical ideas has been mainly achieved through direct numerical simulations101

of the axisymmetric Navier-Stokes equations (Qu et al. 2017, 2018). In a recent102

investigation (Qin et al. 2020) it was observed that a critical transition between103

two types of axisymmetric turbulence can be observed, where one of the flow104

states is characterized by typical two-dimensional behavior, i.e., self-organization105

of large velocity structures, whereas the other flow is two-dimensional, but in-106
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Figure 2: Spectral element mesh on the poloidal plane. The mesh consists of a
central part and a boundary-adapted circular part. The major radius of the

torus is R and the minor radius is denoted a.

volves three velocity components (see Fig. 3(a,b) for an illustration). Even though107

this latter state is essentially 2D, the large-scale flow structures are inherently108

unstable and tend to loose their energy to smaller scales, a feature reminiscent109

of 3D turbulence: this change in cascade direction is a major difference between110

2D and axisymmetric 2D3C turbulence.111

Whereas neutral fluid turbulence is rarely in a close to axisymmetric state,112

this changes for the case of electrically conducting fluids, or plasmas. Indeed,113

the presence of a strong azimuthal magnetic field limits the variations in the114

direction of the field (Moffatt 1967; Favier et al. 2010; Gallet & Doering 2015a).115

In a tokamak, a strong toroidal magnetic field is present, which renders the flow116

close to axisymmetric. In general the strength of this field is an order magnitude117

larger than the poloidal field (associated with a toroidal current) which we will118

neglect in our approach. The plasma in a tokamak is thereby close to a strictly119

axisymmetric state and can be described, at first order, by an axisymmetric fluid120

flow. We suggest that the transition which was discovered between two different121

axisymmetric turbulent states (Qin et al. 2020) should carry over to the dynamics122

of tokamaks. To illustrate this possibility, we have set-up a numerical experiment123

in toroidal geometry and we will show the confinement properties of the two124

axisymmetric flow states from a pure fluid mechanics perspective.125

We are not aware that such an elementary fluid set-up has been investigated126

previously. Most fluid mechanics studies in toroidal geometry have focused on127

liquid metal flows (Baylis & Hunt 1971), and very few studies consider the128

axisymmetric limit (Poyé et al. 2020). We think that, even if the transition that129

we will assess is shown in a too simple set-up to claim a one-to-one correspondence130

with the LH transition, it does illustrate the robustness of the 2D3C-2D2C131

transition in toroidal geometry, and its ability to dramatically change the flow-132

physics and self-organization properties of the flow.133

In the next section, we describe in detail the model we use to describe a134

turbulent plasma in toroidal geometry. In Sec. 3 we discuss the numerical details.135

In Sec. 4 we present the results of our numerical experiments. Finally in Sec. 5136

we conclude.137

Focus on Fluids articles must not exceed this page length
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2. Modeling and governing equations138

The system we consider is a model representation of a magnetically confined139

plasma in toroidal geometry. Since we assume axisymmetry, the dynamics can be140

described by a three-component dynamics in the poloidal plane. This simplifies141

the numerical experiments considerably. The poloidal domain on which we focus142

is shown in Fig. 2, where we indicate the coordinate system. The major radius is143

R and the minor radius a. The cylindrical coordinate system is centered around144

the major (z-)axis of the torus. In this coordinate system the radial and vertical145

direction in the poloidal plane are defined r, z. We also define a local coordinate146

system, centered in the circular cross-section, with polar coordinates ρ, θ.147

In the present section we will first introduce the fluid-description. Then we will148

focus on the forcing protocol, representing the plasma instabilities, and we will149

explain how we measure the confinement quality of the plasma.150

2.1. A fluid mechanics modeling of toroidal plasmas151

Plasmas can be described by a hierarchy of physical models (Boyd et al. 2003).152

The most precise, but thereby also least tractable, description is a kinetic ap-153

proach involving all charged particles of the plasma and their nonlocal interactions154

(Diamond et al. 2010). The coarsest approach is probably a fluid approach, where155

the plasma is described using continuum mechanics (Biskamp 1997). In the156

present investigation it is this latter description which is adopted. We will omit157

all kinetic effects from our system. Furthermore we will assume the dynamics158

isothermal, solenoidal and we do not model the detailed interaction of the plasma159

with electrical currents and magnetic fields. The only influence of magnetic160

fields which is retained in the present system is the influence of a toroidal161

magnetic field, assumed to be strong enough to render the dynamics perfectly162

axisymmetric. Physically this corresponds to the fact that charged particles163

can freely move along magnetic field lines, whereas perpendicular motion is164

constrained by Coulomb-forces. This quasi-bidimensionalisation of the flow is165

well documented in magnetohydrodynamical turbulence (Bigot & Galtier 2011;166

Alexakis 2011) and can even be exact when the magnetic Reynolds number is167

low enough (Gallet & Doering 2015b).168

In such an axisymmetric set-up, the dynamics are entirely described by the two169

velocity components in the poloidal plane uP = (ur, uz), and one component uT170

perpendicular to it (see Fig. 1). Such a system does not represent the instabilities171

associated with temperature, density and magnetic field gradients. It is in fusion172

plasmas these gradients which are at the origin of the turbulent fluctuations and173

these sources of instabilities are here modeled explicitly by appropriate external174

force terms.175

We start by writing the axisymmetric Navier-Stokes equations.176

∂uP

∂t
+ uP · ∇uP +∇P − ν∆uP = N P + FP (2.1)177

∂uT

∂t
+ uP · ∇uT − ν∆uT = NT + FT . (2.2)178

179

The pressure P , in which we absorbed the constant density, ensures incompress-180

ibility through the condition181

1

r

∂rur

∂r
+

∂uz

∂z
= 0. (2.3)182
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The last terms on the left hand side of Eq. (2.1) and Eq. (2.2) represent the183

viscous stresses, with ν the kinematic viscosity. In these terms the ∆ indicates184

the axisymmetric vector-Laplacian in polar coordinates.185

The left-hand-sides (LHSs) of Eq. (2.1) and Eq. (2.2), respectively, describe186

purely two-dimensional fluid motion, represented by the velocity vector-field187

uP (x, t) advecting the toroidal (out of plane) component of the velocity uT (x, t).188

In a toroidal geometry the curvature introduces the N terms, which couple the189

two fields. The curvature terms are190

N P = u2

T/rer (2.4)191

NT = −uTur/r. (2.5)192
193

These terms are reminiscent of the vortex-stretching terms, essential in three-194

dimensional energy transfer, but absent in purely two-dimensional systems. All195

toroidal derivatives, ∂/∂φ are zero since we consider the axisymmetric case. Phys-196

ically this assumption is justified by the presence of a strong toroidal magnetic197

field.198

Before discussing the forcing terms FP and FT , we will focus on the invariants199

of the system. In the absence of forcing and dissipation the nonlinear interaction200

conserves a certain number of integral quantities. these quantities are not the201

same in the 2D2C or the 2D3C state. In the 2D2C case, the inviscid poloidal202

dynamics conserve the poloidal energy defined as203

EP =
1

2
〈‖uP ‖

2〉, (2.6)204

where the brackets denote a volume averaging. Furthermore, in this limit205

the enstrophy Z = 〈‖∇ × uP‖
2〉 is conserved. Furthermore, an infinite206

number of Casimirs (functions of the vorticity ∇ × uP ) can be defined207

(Kraichnan & Montgomery 1980). These latter quantities play an important208

role in statistical mechanics, but are less important in determining the cascade209

directions of the system.210

In the (curved) 2D3C case, the nonlinear dynamics conserve the total energy211

ET + EP , where the toroidal energy is defined as212

ET =
1

2
〈u2

T 〉. (2.7)213

The enstrophy is no longer a conserved quantity, but the helicity,214

H = 〈(∇× u) · u〉 (2.8)215

becomes an invariant of the system. In cylindrical geometry (Qin et al. 2020), it216

was shown using energy and transfer spectra that the 2D3C to 2D2C transition217

changes the cascade properties associated with the above invariants. The inverse218

transfer of poloidal energy EP in the 2D2C case changed towards a direct transfer219

of the total energy EP + ET to small scales in the 2D3C configuration. The220

assessment of energy cascades and fluxes is less convenient in the present set-up221

since we will consider solid boundaries and spatially localized forcing-terms. We222

will therefore focus on a physical space characterization of the system.223

An interesting feature is that, when the major radius of the torus tends to224

infinity (more precisely the ratio R/a, see Fig. 1), the curvature and the associated225

N terms tend to zero. The axisymmetric 2D3C system tends to a cartesian 2D3C226

system where it is no longer the total energy which is conserved, but ET and EP227
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are conserved independently, and the poloidal dynamics behave as in the 2D2C228

case. In such a 2D3C geometry, the helicity degenerates to a correlation between229

the toroidal vorticity and the toroidal velocity, a quantity recently investigated230

in Linkmann et al. (2018) and Yin et al. (2024). It is not known at present how231

large R/a must be to neglect the transfer. However, in the present investigation232

we will not vary the geometry, and the N terms cannot be neglected. The transfer233

between the components is thus possible and the total energy is an inviscid234

invariant of the system.235

2.2. Forcing protocol236

An important feature associated with a heated magnetized plasma is the presence237

of a number of instabilities leading to the generation of turbulent fluctuations. The238

forcing terms FP and FT are added to our system to reproduce the main features239

of sources of turbulent fluctuations in realistic plasmas (such as the interchange240

instability (Boyd et al. 2003)), which are located at the tokamak edge, where the241

pressure, density and temperature gradients are large. Modeling the ensemble of242

these instabilities together by artificial force terms might not represent certain243

important features associated with the feedback between the flow and the forcing,244

and this is necessarily left for future study.245

To generate the poloidal velocity fluctuations, we add a Rayleigh-Bénard type246

instability as follows. We compute the advection of a scalar-field by the poloidal247

velocity field,248

∂b

∂t
+ uP · ∇b = κ∆b+ S′. (2.9)249

The term S′ represents a source of scalar in the edge region of the plasma. More250

precisely, the value S′ is constant and is non-zero only in a shell near the boundary.251

The boundary condition at r = a is the Dirichlet condition b = 0. Thereby, on252

average a negative radial gradient builds up between the radial location of the253

source term and the boundary. The poloidal forcing term is254

FP = CP beρ + Fβ. (2.10)255

The first term in this expression leads then to the Rayleigh-Bénard-type (linear)256

instability, through the coupling of the poloidal velocity (Eq. (2.1)) and the scalar257

(Eq. (2.9)).258

The second term, Fβ is a symmetry-breaking term, reminiscent of the259

anisotropic nature of a magnetized plasma. Indeed, in magnetized plasmas,260

a natural tendency to organize into concentric, toroidally invariant structures is261

observed related to the radial density gradients. The resulting zonal-flows are262

equivalent to the zonal-flows in rapidly rotating flows, such as the bands on263

Jupiter or the earth. To mimic this effect in the present set-up a body-force264

is added to the poloidal forcing in the spirit of the Hasegawa-Mima equation265

(Hasegawa & Mima 1978; Gürcan & Diamond 2015),266

Fβ = β′ρeT × uP . (2.11)267

This contribution to the poloidal force does therefore not inject energy in the268

system. As we will see below, the term Fβ term is not essential to trigger the269

transition from 2D3C to 2D2C, but it leads to enhanced confinement if the270

transition to a 2D2C state is obtained. Simulations with and without this force271

will be presented.272
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The toroidal fluctuations are also assumed to originate from a linear mechanism273

and are simulated by a linear forcing term. More precisely, for the toroidal forcing274

we use275

FT = CT

[

uT − τ−1

σ

〈uT r〉

R

]

(2.12)276

and is applied on the same shell as the source term S′. The notation 〈·〉 indicates277

a spatial average over the poloidal domain. The second term allows to avoid278

the build-up of toroidal angular momentum. Indeed, the spontaneous generation279

of angular momentum 〈uT r〉 (or spin-up) in the system is of major interest280

(Rice et al. 2007), but we want to disentangle this effect from the investigation of281

the transition between 2D2C and 2C3C flows. The present form of the toroidal282

forcing term does therefore dominantly excite the toroidal velocity fluctuations283

avoiding the build-up of mean angular momentum. In plasma experiments, a284

transition to a 2D2C flow, like the one we discuss here, might be accompanied285

by a global rotation associated with this angular momentum, which makes the286

identification of the transition less trivial.287

2.3. Passive tracer to measure confinement288

Eventually, we are interested in the confinement quality of the plasma. In practice,289

a good confinement in our system is associated with a small value of the radial290

turbulent diffusion. To measure turbulent diffusion, a passive tracer is injected291

continuously in the center of the domain, while homogeneous Dirichlet conditions292

are imposed on the wall. The quantity ξ, which follows the flow as a small amount293

of ink in a water-flow, does not affect the flow, but allows to measure the diffusion294

associated with the turbulent fluctuations. The governing equation is, as Eq. (3.3)295

an advection-diffusion equation,296

∂ξ

∂t
+ uP · ∇ξ = κ∆ξ + fξ (2.13)297

where fξ = CξX(ρξ − ρ), where X is the heaviside function, ρξ the radius of298

the source and Cξ a constant. When the turbulent fluctuations are strong, the299

diffusion allows efficient transport of the scalar, thus bad confinement, and the300

temperature in the center of the domain drops. Thereby the center-temperature301

(ξ(ρ = 0)) directly measures the confinement quality of the flow. In the remainder302

of this article, we will call the scalar ξ temperature, since we introduce it to303

measure the confinement of heat by the system. It is important to distinguish it304

from the other scalar b, associated with the poloidal forcing, since in our numerical305

set-up we decouple the dynamics of both scalars. This decoupling is voluntary here306

since we want to independently measure the confinement and adjust the forcing307

terms. In a fusion plasma the improved confinement of heat will necessarily lead308

to modified temperature gradients in the plasma, so that confinement and forcing309

are there coupled.310

3. Normalization and Numerical set-up311

Before performing the numerical simulations, it is convenient to introduce an312

appropriate normalization of the governing equations. This allows to identify313

the key parameters that will be varied. In this section we discuss the non-314
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dimensionalization, the parameters used in our simulations and the numerical315

method.316

3.1. Dimensionless equations317

In order to non-dimensionalize the equations, we choose as a typical timescale the318

inverse of the poloidal forcing rate T ∗ = C−1

P . As lengthscale we use the minor319

radius L∗ = a. This allows to normalize the equations using ũ = uT ∗/L∗, ∇̃ =320

L∗∇, and analogous for ∆,P, b, ρ, ∂t. Removing after normalization all tildes, for321

notational ease, we obtain the non-dimensional set of equations,322

∂uP

∂t
+ uP · ∇uP +∇P −

1

Re
∆uP = (3.1)323

u2

T/rer + ber + βρeT × uP , (3.2)324
325

and326

∂b

∂t
+ uP · ∇b =

1

Pe
∆b+ S. (3.3)327

These two equations define the poloidal dynamics. For the toroidal velocity328

component we have in normalized form,329

∂uT

∂t
+ uP · ∇uT −

1

Re
∆uT =330

−uTur/r + γ

[

uT − τ−1

σ

〈uT r〉

R

]

(3.4)331

332

and for the passive scalar333

∂ξ

∂t
+ uP · ∇ξ =

1

Pe
∆ξ + fξ. (3.5)334

In these equations we define,335

Re =
CPa

2

ν
, Pe =

CPa
2

κ
(3.6)336

γ =
CT

CP

, β =
β′a

CP

, S =
S′

aC2

P

. (3.7)337

The parameter γ = CT /CP measures the toroidal forcing strength compared to338

the poloidal forcing. This means that if γ is small, the instability mechanisms339

mainly drive the fluid flow in the poloidal plane. This ratio γ is the main control-340

parameter of our system.341

3.2. Parameters342

The major radius of the torus is R = 2 and the minor radius a = 1. The ratio343

R/a = 2 is of the order of magnitude of typical tokamaks. For instance the JET344

tokamak is characterized by an aspect ratio R/a = 2.4, ITER by a value close to345

three, while spheromaks have R/a ≈ 1.346

The Reynolds number is Re = 5000, which is a high enough value to ensure347

turbulent motion in our system. A change in its value does not qualitatively348

change the main results of the present investigation, as long as the flow remains349

turbulent. The Péclet number is chosen equal to the Reynolds number Pe = Re.350

The value of CP = 10 is fixed and the forcing ratio γ is varied in the range351
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γ ∈ [0, 1.8]. The value of β = 0; 2; 8. The relaxation time for the suppression of352

angular momentum is τσ = 0.25.353

For the active scalar b the injection shell near the boundary is defined by inner354

and outer radii [ρ1 : ρ2] = [0.87a : 0.90a] and the value of the source term is355

S = 0.8. For the passive scalar ξ the source term is confined to a circular surface356

of radius ρξ = 0.1 in the center of the poloidal plane with injection rate Cξ = 0.1.357

3.3. Numerical set-up358

Direct numerical simulations are performed using the Nek5000 code (Fischer et al.359

2008), a robust and well-tested open source code, based on the spectral element360

method (Patera 1984). We solve the discretized Navier-Stokes equations and361

two scalar advection-diffusion equations. We impose simple non-slip boundary-362

conditions on the circular walls of the numerical domain for the velocity, and363

trivial Neumann-conditions for the scalars.364

All simulations of the axisymmetric system are performed on a 2D grid which365

allows fast computations compared to a full three-dimensional description. The366

computational domain is a disk representing a poloidal cross section of the367

tokamak (see Fig. 2). The numerical grid consists of 640 spectral elements,368

with n = 12 the order of Lagrangian interpolant polynomials. The time-step369

is adaptative with a Courant–Friedrichs–Lewy condition CFL= 0.3. All results370

are reported during statistically steady states.371

4. Numerical experiments of the 2D3C-2D2C transition372

Now that the system is modeled and the numerical set-up is specified, we will373

here discuss the results of our simulations.374

4.1. Characterization of the 2D3C-2D2C transition375

As we will show, enhanced confinement needs, from the fluid mechanics view-376

point, two ingredients. We will first focus on the first part, the transition from a377

2D3C to a 2D2C flow. We illustrate this by changing the anisotropy of the forcing,378

γ = CT/CP . In Fig. 3(a) we show a time-series of the toroidal and poloidal kinetic379

energy for a representative case (Re = 5000, β = 0, CP = 10).380

For t < 2850 the flow is in the 2D3C regime, with a value γ = 1.7. During381

this time interval the order of magnitude of the two components of the kinetic382

energy is comparable with a somewhat more bursty behavior of the toroidal383

kinetic energy. At t = 2850 the strength of the toroidal forcing is instantaneously384

lowered resulting in γ = 1.35. This value of γ is apparently below the critical385

value for the transition and the flow becomes purely poloidal as is illustrated by386

the purely poloidal dynamics in Fig. 3(d). Indeed, the value of the toroidal energy387

drops to zero. The poloidal energy is not significantly affected. Decreasing the388

value of the toroidal force-coefficient can therefore trigger the 2D2C state.389

In Fig. 3(b) we report the results of a parameter-sweep for the parameter390

γ = CT/CP for a fixed value of CP . All the data for the energy corresponds to391

temporal averages in a statistically steady state. We observe, when increasing γ, a392

critical transition from the 2D2C state (characterized by ET/EP = 0) to a 2D3C393

state, where the toroidal energy is non-zero. The influence of the parameter β394

will be discussed below.395

Visualizations of the flow-field in the two regimes are shown in Fig. 3(c,d). The396

Rapids articles must not exceed this page length
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Figure 3: (a) Time-evolution of the volume-averaged poloidal energy EP and
toroidal energy ET . For time t < 2850 the value γ = 1.7. For time t > 2850 the

value the ratio of the forcing strength is lowered to γ = 1.35. The volume
averaged energies illustrate a transition from a 2D3C (c) to a 2D2C state (d),
respectively. The movement is in these visualizations plotted in the poloidal
plane by colors indicating the strength of the stream-function. The toroidal
velocity is illustrated by the out-of-plane morphology. (b)Influence of the

forcing anisotropy on the ratio ET /EP for β = 0. The two values of the forcing
anisotropy γ = 1.35; 1.7 associated with the timeseries in Fig. 3 are indicated by

red and green symbols, respectively.

main feature is the non-zero value of the toroidal velocity fluctuations in Fig. 3(c).397

However, another outstanding feature is the tendency to self-organization. Indeed,398

as observed by inspecting the stream-function associated with the velocity pattern399

in the poloidal plane, in the 2D2C regime [Fig. 3(d)] a large scale self-organization400

is observed consisting of two counter-rotating toroidal vortex rings.401

4.2. Assesment of the confinement quality of the flow402

Indeed, the double toroidal vortex rings observed in Fig. 3(d) are a generic403

feature of fluid simulations in toroidal geometry (Bates & Montgomery 1998;404

Morales et al. 2012). Such a self-organization of the flow into two toroidal vortex405

rings does not seem beneficial for confinement in the center of the fusion-device,406

since the fluid or plasma between the large-scale structures will be rapidly407

expelled. We have tested this by measuring the turbulent diffusion of a passive408

scalar, injected in the center of the poloidal cross-section.409

We solve the additional advection-diffusion equation (3.5), with a constant410

source term in the center of the poloidal cross-section. By measuring the average411

profile of the scalar, the confinement is quantified: a large value of the temperature412
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Figure 4: (a) Stream-function patterns for 2D2C flows with two different values
of the symmetry-breaking force (β = 2 and β = 8). (b) Ratio of the scalar

profiles associated with a passive scalar injected in the center of the domain. In
addition to values associated with (a) and (b) we also show the profile for

β = 0. In this representation TH(ρ) is the scalar profile in the 2D2C regime and
TL(ρ) the profile in the 2D3C regime. These profiles are obtained by averaging

over time and over the poloidal angle θ.
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Figure 5: (a) Overview of the dependence of the system on the parameter
CT /CP for fixed CP and β = 8, where we also show how the confinement is
enhanced by this transition, as measured by the temperature in the center of

the toroidal domain. (b) Influence of the forcing anisotropy on the nature of the
flow for three different values β, associated with the symmetry-breaking term.

in the center corresponds to good confinement and, conversely, a low core-413

temperature indicates bad confinement. Indeed, as illustrated in Fig. 4, for β = 0.414

the confinement is changed at most 10% between the two regimes.415

Switching from a 2D3C state to a 2D2C flow is thus not enough to enhance416

the confinement properties of an axisymmetric toroidal fluid flow. The case of417

non-zero β, corresponding to the presence of an anisotropic force in the poloidal418

dynamics, will be discussed now.419

4.3. The importance of symmetry breaking420

Indeed, one additional effect is needed to enhance the confinement. This is the421

symmetry breaking, allowing to modify the double vortex-pattern, observed in422

Fig. 3(d) to a concentric pattern in the poloidal plane. In tokamak plasmas,423

this symmetry breaking is associated with the strong radial gradients of density,424

pressure and temperature. We show the effect of an anisotropic force-term in425
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Fig. 4. The presence of this force allows to re-organize the large-scale structuring426

in a more concentric pattern, beneficial for confinement. In Fig. 5(b) we show the427

results of a parameter-scan for CT/CP for the values of β = 0, 2, 8. For all three428

values, a critical transition is observed as in Fig. 3(b) around a given ratio γ. The429

transition is therefore present for simulations with and without the symmetry430

breaking force, but the value of this critical ratio γ decreases as a function of β.431

Most importantly, the resulting 2D2C flow, for the non-zero values of β consid-432

ered here, confines the scalar significantly better. Indeed, in Fig. 5, it is observed433

that for a same constant scalar injection rate, the temperature in the center of434

the domain increases by a factor around two.435

The transition of the flow is therefore triggered by the anisotropy of the forcing.436

This transition allows to enter a fully poloidal flow regime for small values of437

CT /CP . Such a purely poloidal flow has a tendency to self-organize. Indeed, in the438

absence of toroidal flow, the system can be described by purely two-dimensional439

hydrodynamics. The shape of the self-organized structures does depend on other440

factors, such as here the poloidal β-effect.441

5. Conclusion442

From the results presented in the previous paragraphs, it can be concluded that443

a recently discovered critical transition in axisymmetric turbulence (Qin et al.444

2020) survives in toroidal geometry, forced by instabilities near the toroidal445

boundaries. Indeed, this mimics in a crude way the dynamics of a tokamak,446

where a toroidally confined plasma develops instabilities at the boundaries where447

the pressure, density and temperature gradients are most important.448

The present results share some properties with the LH-transition, but given the449

complexity of a tokamak plasma, the ideas cannot be carried over directly. In the450

present simplified fluid system to enhance confinement, one needs two ingredients.451

First, a dominance of the poloidal forcing over the toroidal forcing is required452

to be under a threshold for the critical 2D3C instability. Secondly, the self-453

organization resulting from the purely two-dimensional two-component-dynamics454

needs a symmetry-breaking mechanism, allowing the system to organize into a455

concentric pattern in the poloidal plane (zonal flows). The main observations can456

then be summarized by Fig. 5(a), showing simultaneously the dependence of the457

energy ratio and the confinement quality as a function of γ.458

A feature which is deliberately removed from the dynamics by adding the459

damping in Eq. (2.12) is intrinsic rotation. Indeed, linear forcing mechanisms460

lead, in toroidal geometry, quite easily to build-up of toroidal rotation. While461

this is certainly an important feature in tokamak operation, the addition of a462

global rotation in the toroidal direction does not necessarily add to the three-463

dimensional character of the flow. Indeed, in the presence of global rotation,464

the present transition should be assessed in a frame-of-reference moving with465

the global rotation. In the presence of helically twisted field-lines this will result466

in a far less obvious observation of a transition from 2D2D to 2D3C and an467

investigation of this is left for future studies.468

An important point to be improved if the present set-up is to be compared469

to more realistic approaches is to replace the artificial forcing terms by a self-470

consistent flux-driven forcing, with an injection of temperature in the core of471

the plasma. This would possibly allow to add to the critical transition some of472

the tokamak features which are absent in the present set-up, such as hysteresis473
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between increasing or decreasing the drive and the fact that zonal-flows can474

exhibit a predator-prey like dynamics (Gürcan & Diamond 2015).475

In the present set-up it is not the zonal flows which trigger the transition:476

they are the consequence of the 2D2C nature of the flow. In the 2D3C mode we477

observe a forward energy cascade, which will destroy the coherence of large-scale478

structures, preventing thereby the emergence of zonal flows. Once these zonal479

flows appear, they enhance the confinement. With respect to these observations,480

a link can possibly be found between the importance of the poloidal forcing to481

reach a mode of enhanced confinement and the observation that in gyrokinetic482

simulations the injection of vorticity can trigger transport-barriers and thereby483

improve confinement (Strugarek et al. 2013; Lo-Cascio et al. 2022).484

The observations reported here are simple and robust. We have not added485

any more physics to the system than an axisymmetric fluid-description with486

linear force terms. We think that this identification of the essential ingredients487

of the transition is the most important insight that we have gained. The fact488

that the observations do not contain any precise plasma-instability, magnetic-489

field structure or kinetic effects allows to transpose the present observations to490

more specific plasma configurations.491

Note finally that while magnetohydrodynamical and kinetic effects are492

obviously fundamental in understanding the details of the LH transition493

(Connor & Wilson 2000), the objective here is to show that a transition observed494

in a minimal fluid dynamics model can reproduce certain of its characteristics.495

Further understanding can be gained by transposing these ideas to a more496

realistic setting. For instance, in future experimental campaigns it can be tried497

to, either enhance poloidal energy injection, or to reduce toroidal fluctuations,498

leading to possibly unexplored magnetic fusion confinement protocols.499
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Z. 1982 Regime of improved confinement and high beta in neutral-beam-heated divertor633

discharges of the asdex tokamak. Phys. Rev. Lett. 49, 1408–1412.634

Yin, Xi-Yuan, Agoua, Wesley, Wu, Tong & Bos, Wouter JT 2024 The influence of the635

vorticity-scalar correlation on mixing. arXiv preprint arXiv:2402.16762 .636


	Two-dimensional turbulence and toroidal fusion plasmas
	Modeling and governing equations
	A fluid mechanics modeling of toroidal plasmas
	Forcing protocol
	Passive tracer to measure confinement

	Normalization and Numerical set-up
	Dimensionless equations
	Parameters
	Numerical set-up

	Numerical experiments of the 2D3C-2D2C transition
	Characterization of the 2D3C-2D2C transition
	Assesment of the confinement quality of the flow
	The importance of symmetry breaking

	Conclusion

