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In the medical field, usually, practitioners mainly base their analysis on 2D slices
produced from MRI or CT-scans that correspond to restricted views of a pathology. To
facilitate the work of doctors, increase diagnostic accuracy and cross-reference multi-
modal data, a 3D reconstruction is required. However, most of the time, reconstruction
methods fail at visualizing complex and noisy data made up of several tissues. Indeed,
these methods often build each tissue independently so that the consistency of the global
model is not ensured: overlaps may appear between segments whereas some disjointed
volumes exhibit empty spaces. This paper presents a complete topologically consistent
reconstruction system from 3D medical acquisitions such as MRI or CT-scans. Com-
pared to other methods, our system offers a single volumetric representation of an organ
corresponding to a 3D space partition, where a semantic label is associated to each vol-
ume to identify the represented tissue and adjacency between volumes is explicitly and
precisely defined. This partition is controlled and free from topological and geomet-
ric defects usually found in other 3D reconstruction approaches. Experimental studies
were conducted on MRI datasets of brains resulting in consistent reconstructions. An
application of the model for calculating the distribution of physiological data in brain
tissue is also shown.

1. Introduction

Imaging technologies such as Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI) are now commonly
used in medicine. Usually, practitioners mainly base their anal-
ysis on 2D slices produced from those acquisition systems, that
only correspond to restricted views of a pathology. Recently, vi-
sualization and operations on 3D reconstruction from medical
acquisitions have been expanding since they supply practition-
ers with a more global representation of organs, improving the
identification of their components and allowing them to perform
additional analysis of anatomical functional activity.

For that purpose, a voxel-based model [1] is directly gen-
erated from a segmentation process that determines to which
physiological element each voxel belongs to (each anatomical
tissue correspond to one segment). However the use of such
a discrete representation presents many disadvantages: (1) it

is difficult to deal with holes and cavities, (2) the connectivity
should be defined for both the object and its complementary (as
required in discrete topology [2]) and is not easy to handle, (3)
the borders are not smoothed, (4) the computation of geometric
properties are limited to the size of voxels [3].

To overcome these limitations, the use of 3D meshes was
widely studied in the literature as this kind of representation
disregards voxels resolution. Many frameworks provide recon-
structed (surface) meshes from medical data for precise visu-
alization and analyses [4, 5, 6]. However they are not ade-
quate for correctly visualizing noisy data composed of multi-
ple tissues corresponding to anatomical elements. They usu-
ally require a very long runtime and use extensive processes
that often need a user intervention to correct defects (overlaps
of tissues, non-labeled volumes) that prevent a final mesh to
be consistent within its domain. For example, the widely-used
FreeSurfer software is the primary framework for neuroscien-
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tists to build continuous models of brains [7]. It provides many
tools for computing 2D and 3D information to analyze MR im-
ages [3], such as an accurate cortical thickness computation
[8], a skull-stripping algorithm [9] and an automated segmen-
tation of neuro-anatomical structures [10]. Nonetheless, it suf-
fers from the drawbacks mentioned above, especially in case
of noisy input MRI data. It does not compute any topological
neighborhood between reconstructed components. In the best
case, their surfaces are juxtaposed and may exhibit some ap-
proximate “contact zones”, but in the worst case, their volumes
can overlap, thus not preserving the topology of the segmenta-
tion.

To obtain a correct reconstruction of anatomical structures
with several tissues, it is necessary to know and explicitly rep-
resent the topological relationships between the distinct regions
(adjacency, inclusion, etc.) according to physiological con-
straints. More precisely, it is essential that the global volumetric
mesh corresponds to a 3D space partition in which each compo-
nent has its own disjoint space, neighborhood adjacency zones
and characteristics (i.e. a space partition with no overlapping
regions nor discontinuities between volumes to closely match
the anatomical reality). For example, in the context of a 3D
brain reconstruction, it is crucial to accurately separate white
matter from gray matter and cerebrospinal fluid.

In this collaborative research work with a clinical partner,
we propose a new reconstruction system to extract a volumet-
ric model of segmented anatomical objects composed of sev-
eral tissues. Our contribution resides in the 3D mesh consis-
tency with topological and semantic constraints, in the explicit
representation of adjacency relations, and in the cleaning phase
able to leverage voxel information efficiently compared to other
methods. More specifically, our main contributions are summa-
rized as follows:

• The construction of a 3D space partition corresponding to
a segmentation of the multiple input structures. This space
partition contains no empty spaces (that is, volumes with
unidentified content), is free of overlaps and has its own
neighborhood adjacency zones and all properties are de-
fined by a formal topological model;

• All adjacency relationships between physiological vol-
umes are given explicitly. Thus, all inconsistencies like
neighborhood incoherence in the anatomical structure or
artifacts generated by the acquisition are detected and cor-
rected automatically;

• The process relies on a minimum of geometrical compu-
tation and uses local topological operations which reduces
the computation time. It offers a reconstruction respecting
the anatomical structure and the topological constraints.

Finally, to illustrate the strength of our model, we highlight
a potential application, involving complex geometric manipula-
tions, for improving the visualization of data acquired by Mag-
netic Resonance Spectroscopy with respect to anatomy.

2. Related Work

To obtain a precise and topologically correct mesh, we have
chosen to combine a parallel Marching Cubes algorithm with a
formal topology-based volumetric representation. Related work
on these two key elements are presented in this section.

2.1. 3D Geometric reconstruction method
Reconstruction methods aim at building a surface in 3D

corresponding to the boundary of a single Region Of Interest
(ROI). Methods can be grouped into several categories.

Deformable models. This kind of reconstruction methods have
been extensively used in medical images. There are basically
two types of deformable models: parametric deformable mod-
els and geometric ones. Parametric models [11, 12] generate
an initial mesh in the continuous domain and apply geomet-
ric transformations to make its surface match the ROI. Thus, it
has a subvoxel precision but expensive computational is needed
to avoid self-intersections. These approaches require a tar-
get topology at the beginning or the end of the deformation.
Thus, they can only be used in the case of an known topol-
ogy, which makes the assumption that the reconstructed organ
is healthy. Geometric deformable models give solutions to ad-
dress their limitations. They are based on curve evolution the-
ory [13] and level set methods [14, 15, 16], representing curves
and surfaces implicitly. These models can easily avoid self-
intersection [17, 18] and can suffer topological changes along
evolution. However, with level set methods, we are not guar-
anteed to obtain a mesh with a desired topology. To address
this limitation, topology correction [19] and topology preserva-
tion [20, 21] tools have been proposed, but this limits the use of
geometric deformable models to topology-known applications.

Deep learning approach. Two classes, implicit and explicit
methods, categorize the widespread application of deep learn-
ing approaches. The former use a deep neural network (DNN)
to learn an implicit surface representation [22, 23, 24], then tri-
angulate the final mesh using an isosurface extraction method
(such as the Marching Cubes method explained below). Ex-
plicit methods operate a DNN to deform an initial mesh to a tar-
get [25, 5], to produce an explicit mesh directly. The same lim-
itation as geometric deformable models appears: Deep learning
approaches need to train on a initially-known topology. For
instance, a neural network of cortical reconstruction methods is
trained to reproduce meshes that are homeomorphic to a sphere,
which is a wrong assumption if a tumor is present or in case of
post surgery.

Isosurface reconstruction. One of the widely-used algorithms
for 3D reconstruction is Marching Cubes (MC) [26]. From an
input (acquired) voxel grid, the MC grid is constructed as its
dual representation. This means that each cube in the MC grid
is formed by considering the midpoints of eight neighboring
voxels from the input grid. Edges in the MC grid connect the
centers of adjacent voxels from the input grid. The simplic-
ity, robustness, and speed of MC explain its popularity. How-
ever, guaranteeing topological correctness is a challenging is-
sue when the acquisition resolution is not sufficient to clearly
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identify local topology and causes ambiguities. Many methods
with asymptotic decider have been proposed to deal with this
problem [27, 28, 29]. Besides, new approaches emerged, such
as Dual Marching Cubes [30] that replace triangles by quads
to eliminate poorly-shaped triangles existing in MC surfaces.
Some improvement has been made [31] to circumvent the topo-
logical ambiguities. Extra research has been done with neu-
ral networks to refine the mesh produced by Marching cubes
[32, 33]. Moreover, each produced mesh is smoothed indepen-
dently, leading to a loss of connectivity when multiple objects
are reconstructed.

Reconstruction with control. Some reconstruction methods
take into consideration connectivity and global topology to re-
construct data with multiple labels. They are not limited to
specific surface reconstruction contrary to deep learning ap-
proaches [22, 24]. This kind of reconstruction methods allows
for a topology control of a reconstructed surface by defining the
exact property to match during the building process. Lazar et al.
propose a surface reconstruction [34] that follows, in addition
to a fixed genus, connectivity constraints on each sub-surface
separately. Without using such constraints, Bruel et al. pro-
pose, based on persistent homology, to refine the implicit func-
tion from which the final surface is extracted afterwards [35].
Their approach is guaranteed to work with multi-label models
only if they share the same topological properties. Based on
dual contouring, Frisken et al. keep sharps boundaries to pro-
duce smooth meshes without discontinuities, by preserving the
topology of the segmentation [36]. However, their method does
not apply any kind of correction, and does not take into account
the anatomical knowledge.

Current limitations. The main issue faced by the presented
methods is that an accurate reconstruction of a non-arbitrary
number of segments is not guaranteed. From medical data,
a 3D space partition is needed, but overlaps and discontinu-
ities may appear in some cases with these methods, especially
between volumes of different segments. The various kind of
reconstruction methods reviewed before can be used in a sys-
tem, but will suffer from the same limitations. The meth-
ods that only consider a single surface, independently, are not
suitable to connect multiple surfaces (overlaps, holes). That
is why systems that incorporate multiple tissues in their re-
construction process are important. Under these conditions,
in the medical field, we find exclusively systems such as the
well-known FreeSurfer[7], along with any deep learning ap-
proach (DeepCSR[4], FastSurfer[22, 12, 24, 25]), which pro-
duce meshes homeomorphic to a sphere, without any adjacency
relationships. These systems are useful for cortical reconstruc-
tion, but are not suitable for the reconstruction of a whole brain,
especially in the presence of tumor tissue, because of the cavity
created by the tumor (the mesh is no longer homeomorphic to
a sphere). To our knowledge, no other tools are available, thus
more generic tools that reconstruct multi-segment meshes and
associate a topological structure are considered. Reconstruction
methods with control can reconstruct any number of segments,
but either the lack of control after the reconstruction step gen-
erates artifacts (superfluous connected components) and cavi-

ties [36] or some volumes are deleted without considering the
anatomy [34]. The library CGAL [37] provides a system to
reconstruct multi-label mesh with its corresponding topologi-
cal model [38]. However, it overlooks medical data, leading
to likely incorrect adjacency relationships between anatomical
structures. Finally, isosurface reconstruction methods also of-
fer the possibility to reconstruct any number of segments, by
interpreting each segment as an implicit surface defined as F :
R3 → R, such that the set of point {X ∈ R3 : F(X) = constant}
represents the surface (in most case constant corresponds to
an isovalue). Many approaches have been proposed to do so
[39, 40, 41], but it is necessary to ensure that the method builds
manifold and watertight surfaces, without geometric interpola-
tion. Also, it needs to avoid creating overlaps between distinct
reconstructed surfaces. To control the topology of the model,
a reconstruction relying on a topology-based model offers all
tools to help building a correct partition of 3D space, by dealing
with discontinuities, connected components and cavities due to
artifacts or insufficient acquisition sampling.

2.2. Topological models

The concept of topology encompasses major properties such
as the number of connected components, the adjacency of ob-
jects, the inclusion of an object in another, and so on.

Discrete approach. To study topology directly in voxel space, a
discrete approach can be used [42]. However, it is topologically
ambiguous so that it can lead to different interpretations. For in-
stance, when two pieces of any segment are only connected by
the corner of two voxels (also known as 26-connectivity), it is
not immediately possible to state if these pieces are connected
or just close or even in contact. Furthermore, despite the effi-
ciency of segmentation methods, the content of some voxels, at
the border of an area of interest, may remain ambiguous. For
instance, in medical data mining, any voxel is considered to
contain only one type of tissue after a segmentation, despite it
may actually cover more than one type of tissue. This prop-
erty comes from the resolution of the MRI images acquired that
cannot capture precise details. Typically, the cerebral cortex is a
very fine structure with very fine folding patterns only partially
represented by a voxel-based discretization. As a consequence,
a segmentation method suffers from imprecision, unclear adja-
cency and small isolated volumes generated mainly from the
acquisition noise.

Continuous approach. Using a continuous method seems more
appropriate to control topology since it represents the shape of
reconstructed objects more precisely. Unfortunately, even if
each segment is reconstructed correctly, merging all of them
does not necessarily provide a correct global topology. In prac-
tice, overlaps or discontinuities (empty spaces) between vol-
umes may appear, due to voxel ambiguities. To reconstruct a
consistent multi-segment object, a powerful, topology-based,
volumetric model must be used. Topology-based models rep-
resent meshes as a subdivision of cells of different dimensions
(0 for vertices, 1 for edges, 2 for faces, 3 for volumes) that are
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linked with explicit adjacency relations [43]. Some data struc-
tures such as winged-edges and half-edges [44, 45] are well-
known, but they are restricted to surface meshes, that is, objects
are only represented as a set of faces. Among these objects,
volumes correspond to closed sets of faces. Using 2D topolog-
ical models, it is easy to look for these sets and find volumes
by following adjacent faces, but it is not possible to link these
volumes to represent a 3D partition (the same way as faces are
linked to create a surface). We therefore need a model that (1)
explicitly represents volumes, (2) does not constraint the num-
ber of faces in volumes and the number of edges in faces and
(3) links volumes to create complex 3D objects or partitions.
Combinatorial maps suit these objectives well. This family of
nD models includes oriented combinatorial maps (an extension
of half-edges) and generalized maps (G-maps) [46] ( Appendix
A for more details).

From volumetric medical data, a 3D mesh is generated, and
an explicit representation of its volumes is needed. Connec-
tivity and thus discrete approaches are not enough to represent
them. A continuous representation is more appropriate in this
regard and can also topologically manage multi-segment object
with explicit adjacency links. Even if the reconstructed mesh is
dense (i.e., composed of a large number of faces and volumes),
nD models can process it efficiently by doing all the operations
locally, thus reducing the computation time. In this context, we
chose to use generalized maps based on these criteria.

3. Overview

Discrete data given by medical acquisition systems consist in
a bounded part of 3D space represented as stacked slices. Each
slice appears as an image with a given thickness. It is com-
posed of a number of voxels which size is in accordance with
the spatial resolution of the acquisition (the smaller the voxels,
the higher the resolution). In many systems (MRI, CT, etc.),
each voxel is characterized with only a single value. A seg-
mentation algorithm uses a duplication of an input voxel grid
but separates the copy into multiple tissues, that we will refer
to as Regions of Interest (ROI) or more simply, segments in
our work. They usually correspond to different anatomical tis-
sues. After a segmentation process, voxels are annotated with
the label of the ROI to which they belong. Thus, the repre-
sentation of segmented brain tissues is a grid of voxels where
each voxel has a single value that determines its ownership to a
tissue. However, since, in practice, a voxel may cover several
tissues, the segmentation processes can also give probabilities
of ownership for each tissue. This is called the Partial Volume
Effect (later referred as PVE)[47]. In our case, we chose the
highest value in the PVE to determine the final ownership of a
voxel.

To obtain an accurate and topologically-correct mesh, we
need to convert the discrete data into a 3D volumetric mesh as-
sociated with a formal topology-based representation. For this
starting step, the required isosurface is extracted from the seg-
mented grid using the Flying Edges (FE) algorithm [48]: a par-
allel version of the MC algorithm.

Some important properties of the built surfaces are expected.
First, the algorithm must ensure that built surfaces are manifold

and watertight to form closed volumes, and that every vertex
must be positioned at the midpoint of cube edges, to ensure that
two surfaces from different segments intersecting a same cube
edge, share the same vertex. Second, the algorithm needs to
prevent overlap in cube configurations with multiple segments,
where several surface constructions are possible, and no hole
should appear either (ambiguous configurations of MC [49]).
Although another Marching Cubes implementation could have
been chosen, FE algorithm meets all these requirements, it is
parallelized and thus fast in terms of computation time, so it is
a good candidate for our method.

The different steps of our method are presented in Figure 1
and the following gives its overview.

Starting from a reconstruction based on the FE algorithm
that produces a continuous closed surface for each ROI, the
first stage consists in a topological reconstruction to associate
those generated surface to G-maps and consider them as vol-
umes thereafter. Semantic information is stored to preserve the
nature of the tissues and a cleaning process is applied to remove
unwanted elements corresponding to artifacts from the acquisi-
tion (see Section 4.1).

During the second stage, segments are integrated in the same
space (a single G-map) and then topologically linked by their
common faces when they are adjacent. This step uses topo-
logical properties to detect and correct neighborhood inconsis-
tencies, that are (i) empty spaces, more precisely, volumes that
do not belong to any segment, which results in discontinuities
between identified volumes and (ii) anatomical incorrect neigh-
borhood. This step only requires topological and semantic in-
formation to make these corrections. Since no new elements
are created, we do not encounter the case where the insertion of
a vertex is too close to an existing one, and thus avoiding the
numerical instabilities inherent in geometric calculations (see
Section 4.2).

In the last stage, a transformation that preserves topology
(homeomorphism) and semantic constraints is applied to com-
pute a shape as close as possible to the original data (see Section
4.3). By deforming according to voxel information, we ensure
a better fitting of the surface to the input data. This voxel infor-
mation can be statistical data calculated from voxel intensity.

To summarize, our method produces automatically a parti-
tion of 3D space corresponding to a volumetric mesh from sev-
eral segmented ROI; in other words, the mesh is free from
empty spaces and volume overlaps. This partition shows ex-
plicit adjacency relationships defined by a formal topological
model (G-map).

4. Topological reconstruction

In this section we describe the different steps of the method
for constructing a 3D mesh following topological and seman-
tic constraints. It first starts reconstructing and cleaning every
segment before merging all of them together while applying
topological operations to resolve inconsistencies. Finally, a fine
geometric deformation is applied on the whole model to be as
close as possible to the acquired data.
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Fig. 1. Our reconstruction system is described as follows: (1) Topological reconstruction based on Marching Cubes and artifacts cleaning for each ROI. (2)
Merging of all reconstructed segments, detecting and correcting semantic and neighborhood inconsistencies. (3) Continuous deformation of the curvature
of the mesh to adjust its surface as closed as possible to the original data.

4.1. Reconstruction and cleaning of one segment

To obtain a clean volume representation of each segment, two
steps are performed. First, each ROI is reconstructed indepen-
dently. A ROI is usually composed of more than one volume,
therefore each of its volumes is generated separately, geometri-
cally and topologically. Then, a classification is applied to re-
move undesired volumes (e.g., artifacts) and keep only relevant
ones.

4.1.1. Topological reconstruction of volumes
Starting from a segmented voxel grid of MRI images, the

FE method is applied to reconstruct a closed surface triangle
mesh (Figure 2) for each tissue. The voxel grid is divided as
follows: Each voxel is labelled by a single value, either 0 if it is
a background voxel or a number up to the number of segmented
regions (information given by the segmentation). To reconstruct
a segment, a corresponding black & white grid is automatically
generated: each voxel is binary, depending on whether or not it
belongs to the current segment.

The chosen reconstruction algorithm, FE, ensures that each
voxel edge is only intersected once, to produce a manifold and
watertight mesh from each segment. In fact, the input voxel
grid given to FE is a grid composed of 0 and 1 values. An
imposed isovalue of 0.5 during the reconstruction of the isosur-
face generates vertices at the midpoint of each MC intersected
edge. More formally, the surface built by FE corresponds to
the isosurface associated with isovalue 0.5, represented by the
set of points {X ∈ R3 : F(X) = 0.5}, for a field sampled at
each cube vertex, with only 0 and 1 values. Also, since the
isovalue of the isosurface is different to the one associated to
the segmentation voxel grid, triangles that have (at least) one

null edge (at least two coincident vertices) are not created. Al-
though such degenerate triangles do not raise issues during our
reconstruction process, they are not desirable for further mod-
eling operations (for instance, the cutting method described in
Section 6). The choice of not dealing with geometric aspects
(finding a more precise intersection position) at this point of the
method ensures that we can make the merge phase possible in
the next stage without dealing with computation accuracy.

(a) (b) (c)

Fig. 2. In a classical way, the MC method is applied to the different regions
(a), and produces (in 3D) a set of faces (b). Here, face’s vertices are always
placed at midpoint of edges of the MC grid (these edges link voxel centers).
This process is applied independently to each ROI producing a 3D model
of each structure (c).

Geometry can indeed be corrected, and even refined, after
all topological corrections, to ensure a right match of the real
structure shape. As explained in the MC method requirements
in Section 3, the resulting model is guaranteed to have neither
self-intersection nor overlap.

Once meshes are produced, their corresponding G-map is
constructed by using the workflow described in [50]. This
workflow applied to the surface mesh provided by the FE
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Geometrical view Topological view

Fig. 3. Mesh is associated to the corresponding 3G-map. Topological view
shows links of dimension 2 between faces.

method generates topologically closed, watertight volumes. In
these volumes, adjacent faces are explicitly bound at their com-
mon edge by topological links of dimension 2 (Figure 3), called
2-links or α2 involution (see Appendix A). Note at this point
that inclusion links (volumes completely included in another
volume), are not reconstituted.

4.1.2. Classification and cleaning
The second step consists in the removal of volumes corre-

sponding to artifacts produced during the acquisition phase for
each segment separately. At this stage, each volume (or 3-cell,
see Appendix 2) is identified and recognized directly as a single
connected component. The characteristics of a volume are lo-
cal, so any geometric or topological properties, such as its size
or its number of faces, can be computed locally. The computa-
tion time is thus strongly reduced.

To clean up the artifacts present in the reconstructed mod-
els of each tissue, a classification of the topological volumes is
carried out. In our case, the term “classification” is used to sep-
arate volumes that are considered as artifacts, and the ones that
have to be kept and also be labeled as main components. In par-
ticular, main components are determined as the largest objects
in terms of volume and number of faces. In our case, smaller
volumes located far from the main components are classified
as artifacts, whereas larger volumes in close proximity to these
primary elements are retained, as they are likely to result from
a detachment or separation of said components. The distance
between two volumes is calculated by computing the shortest
Euclidean distance between any vertex coming from the first
surface mesh and any vertex from the second. Figure 4 shows
the result of the multi-criteria classification where the volumes
that are considered as useless can be deleted. For instance,
in accordance with medical experts, a volumes is considered
“small”, if its size is less than 4mm, and “distant” if the gap
from a main component is greater than 2mm (in our case, these
sizes respectively correspond to 4 and 2 voxels in the case of
MRI images from 3T scanners). In other words, it is a conjunc-
tion of boolean expressions for each criterion. So in this case,

if both condition are respected, it will give a high probability to
keep elements that have been detach of a main component dur-
ing the segmentation process. The removal of these unwanted
volumes, seen as single connected components, relies on a local
deletion (see Section Appendix A.2).

Finally, for each segment, a set of volumes is identified and
associated to a semantic label corresponding to its anatomical
structure. Without a topology-based model, these usually te-
dious treatments require a fine-tuning of lots of parameters. In
our case, they are treated automatically while maintaining all
topological and semantic properties. Note that some remaining
connected components correspond to cavities that are handled
in a further step (see Section 4.2.2).

Smaller / distant

Bigger / closest

Bigger and distant

or

Smaller and closest

Fig. 4. Multi-criteria for artifacts detection: smaller volumes in size and
distant from the main components are classified as artifacts and can be
deleted.

4.2. Merging all segments

To construct a 3D space partition corresponding to a segmen-
tation of the multiple input structures, all the possible sets of
volumes corresponding to each segment are integrated in the
same space. A first topological operation is applied: It aims
at joining adjacent volumes by their identical faces, through
links of dimension 3, called 3-links or α3 involution (see Ap-
pendix A). Then defects such as discontinuities between vol-
umes (those including faces with no α3 link) are detected and
corrected.

4.2.1. Adding topological links between adjacent volumes
The previous step has created a volumetric mesh with our

topological model (G-map), possibly including several vol-
umes, but rid of artifacts, for each segment. The end result of
the merging process is a global, unique, G-map representation
of the multi-object of a segmentation altogether (in other words,
a volumetric partition).

Since the FE method reconstructs all segments from the same
segmentation and with the same isovalue, this implies that there
is no overlap between built volumes. Indeed, reconstructed sur-
face meshes always intersect the MC grid edges at their mid-
point (isovalue at 0.5, see Section 4.1). This property guar-
antees that adjacent volumes are built using the same vertices
and faces in their adjacency zones (Figure 5.a). Therefore, the
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merging process consists in identifying and linking the identi-
cal faces of different adjacent segments by α3. Thus, each face
of a segment is compared to the faces of the other segments (it
is useless to test a segment with itself). To avoid error-prone
equality tests between floating-point values, the matching test
between two faces is made by comparing the identifiers of the
MC edge supporting each of their vertices. If they match, this
means that their volumes are adjacent and can be α3-linked.

Figure 5.b shows also the topological sewing process cor-
responding to the segmentation present in Figure 2. Besides,
faces with no match are left free (i.e. without adjacent volume).
They are handled in the topological correction (Section 4.2.2).

(a) (b)

Common faces between 
the segments which 

have an exact fit

Topological links in 
dimension 3.

Fig. 5. Topological link of volumes corresponds to (a) identify and (b)
link the identical faces between the different segments. In the following,
topological links are not represented for a better readability.

4.2.2. Topological correction
During the merging process, the correctness of the adjacency

relationships in the merged mesh has not been controlled. In-
deed, some possible free spaces might be present in the model.
This results from three possible causes. First, the segmenta-
tion can misclassified some voxels as “background” and, due
to acquisition noise, some of these voxels might, incorrectly,
correspond to cavities included in other segments. For a homo-
geneous treatment of topological correction, our method does
not build the “background” segment and leave these cavities
as empty spaces. Second, during the artifacts correction, some
small volumes can be deleted, but, in the merged model, they
can correspond to cavities enclosed in another segment. Af-
ter deletion, only empty cavities remain in the containing seg-
ments. Third, as explained in the MC requirements, some am-
biguous cube configurations including several segments may
exhibit non covered area. These appear as empty spaces in the
merged model. The goal of this step is to properly fill these
spaces, with the correct semantic. The fill operation is only
topological and locally computed, so our model is not prone to
geometric accuracy issues (no insertion of new vertices which
could be very closed to existing vertices).

Thanks to 3D topological neighborhoods, the spaces of
unknown semantic are directly localized (they are defined by
faces without α3-links) and a topological closure operation
(implemented over the generalized map algebra), applied on
the mesh, permits to directly build the volume corresponding to
the empty space. Then, these volumes are labeled “unnamed”
and surrounding faces are no longer free. Using α3-links
to study the neighbourhood of “unnamed” volumes, we can
classify them into three distinct cases (Figure 6).

(a) (b)

Fig. 6. Empty volumes identified during topological correction. (a) MRI
image, segmented ROI and voxels marked in blue (case 1), red (case 2) and
purple (case 3). (b) MRI image and voxels in blue (case 1), red (case 2) and
purple (case 3).

In some cases, these inconsistencies are corrected by per-
forming a local stochastic study. This process finds the tissue
with which to fill this gap both by collecting and comparing the
types of its adjacent tissues and by anatomical knowledge.

• Case 1: The neighborhood of an unnamed volume corre-
sponds only to a single segment. This comes from the fact
that, at least, one of the segments has not been topologi-
cally constrained in previous step. Each volume has its se-
mantic modified by the one of the volumes that surrounds
it, leading to its suppression (Figure 7).

• Case 2: The neighborhood of an unnamed volume corre-
sponds to several segments and this volume could recon-
nect two volumes that must, by anatomical knowledge, be
linked (Figure 8 - case 2).

• Case 3: The neighborhood of an unnamed volume cor-
responds to several segments without explicit anatomical
knowledge to exploit. In this case, corrections are done
by using a probabilistic information, as such as PVE[47]
already explained in Section 3. The most probable seg-
ment (corresponding to the highest value in the set of vox-
els covered by the unnamed volume) is selected for recon-
nection (Figure 8 - case 3).

At this point, the most probable semantic content of each
empty space has been identified and a new label corresponding
to an anatomical structure has been applied to every unnamed
volume. It is therefore possible to topologically merge these
volumes with their neighbors with the same label, by erasing
their common face(s).

Throughout the correction process, semantic and topologi-
cal information is updated and remains consistent. At the end
of this stage, we have a 3D space partition corresponding to
a segmentation of multiple input structures. All volumes have
a semantic information and the volumetric mesh is free from
topological and geometric defects.
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Topological
closure

Topological
reconstruction

Isoleted hole,
only one neighborhood,

deleted

Case 1

Voxelized
segmentation

Fig. 7. Isolated cavity: “unnamed” volumes with only one neighbor seg-
ment that can be directly deleted.

Topological
closure

Multi neighborhoods,
needs a deeper 

analysis 

Connect two volumes 
that anatomically 

must be linked

Decision 
depending on the 

voxel data 

Topological
reconstruction

Voxelized
segmentation

Topological operations: local and without geometric computing

Case 2Case 3

Voxel analysis
and topological

deletion

Fig. 8. Multi-connected cavity: after topological closure of the g-map as-
sociated to the mesh, if the generated volume is required to connect two
volumes that, anatomically, must be linked, corresponding semantic is di-
rectly affected (case 2). Otherwise, a voxel analysis permits to define the
right semantic (analysis on bottom left and case 3). Finally, useless faces
are detected (face between the same structure) and deleted with a topolog-
ical operation.

4.3. Geometric interpolation

By using FE to process the input data, the vertices of the gen-
erated meshes are conveniently computed at the midpoint of the
MC grid edges that the surface to build intersects (Section 4.1).
This procedure allows us to obtain an exact match between ad-
jacent segments during the merging step (Section 4.2). How-
ever, this geometric positioning is arbitrary and only roughly
approximates the real anatomical shape of segments (error is
however bounded to half the size of voxels).

More precisely, the duality between the MC grid and that of
the segmentation must be considered to understand how isosur-
face vertices should be positioned. Vertices of the MC grid are
placed in the center of voxels from the segmentation. There-
fore, an edge of the MC grid links centers of two adjacent vox-
els (Figure 9.b). The isosurface can actually intersect this edge
anywhere between these centers.

To compute a smoother reconstruction without overlapping
respecting the anatomical structure and the topological con-
straints, it is possible to use a statistical information or scalar
value extracted from these voxels. For instance, voxel intensity
could be used. In brain imaging, such information can be com-

puted from PVE. By gathering locally the average probability
of ownership from voxels which supports a vertex, the nature
of the tissue of the highest value is also used to modify the po-
sition of the vertex. We use this data to define a new isovalue
associated with the vertex and thus modify its coordinates. Let
us call P, a vertex, defined as the intersection between the iso-
surface and the segment P1P2, where P1 and P2 are midpoints
of adjacent voxels. The position of P can be approximated us-
ing linear interpolation. Actually, by knowing the voxels Vox1
and Vox2 of P1 and P2, we can have access to the PVE value
of all tissues within, and the nature of the tissue in each voxel.
Using these information, we compute the mean PVE of each
tissue, assign the highest mean value to vp and keep the asso-
ciated tissue type. If the tissue type of the highest mean PVE
value is the same as the one of Vox1, we consider v1 as 0 and
v2 as 1, and the other way around in the other case. Finally, by
linear interpolation, we have P = vp−v2

v1−v2
P1 +

vp−v1

v2−v1
P2.

It is important to note that the calculated isovalue vp is strictly
in between v1 and v2. This modification is carried out within the
voxels, preventing self-intersections. As shown in Figure 9, the
corresponding pair of voxels are stored for each vertex to keep
the relation between the built mesh and the voxel grid.

(a) (b) (c)

Fig. 9. Geometric warping: (a) original voxel data and corresponding
segmentation and topological 3D reconstruction. (b) Displacement of each
vertex by estimating its position based on an interpolation of voxel statisti-
cal information. (c) New geometric position of these vertices, closest to the
real anatomy.

The adjacency relationships between segments established
previously are kept during this deformation process. Neither
volumes discontinuity nor overlap can appear. Indeed, if a ver-
tex belongs to one or more shared faces of adjacent volumes,
the shape of these volumes is modified when this (shared) ver-
tex is moved. Figure 10 shows a visualization of the geometric
warping displacement, the average variation is of the order of
an seventh of a voxel length, depending of the direction.

5. Results and comparisons

This section presents results of our volumetric reconstruc-
tion process on synthetic MRI scans and real ones provided by
our clinical partner (numbered Brain1, . . . , Brain42). All real
images are acquired on a Magnetom Skyra 3 Tesla (Siemens
Healthineers, Erlangen, Germany). The sequence used is a 3D
T1 MPRAGE 0.9 mm isotropic (TE= 2.41 ms, TR=1950 ms,
TI= 816 ms, FOV = 256×213 mm2, matrix: 240×288, slices:
192, turbo factor: 224). Original DICOM data are converted to
NIFTI to be used in our homemade automated pipeline. As a
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Fig. 10. Transformation of the vertices geometry due to the voxel data, so
that the model is as close as possible to the real anatomy. The displacement
distance cannot exceed half a voxel, i.e. 0.5mm in this case. Most variations
are around 0.1/0.2mm.

post-processing step, FSL-BET [51] is applied to remove sub-
cutaneous fat to create a mask of brain only. Then, FSL-FAST
[52] is launched to obtain the 3 segmentation classes: (i) Cor-
tex also known as Gray Matter, (ii) White Matter, (iii) Cerebral
Spinal Fluid.

All statistics presented in this section have been produced on
an Intel core(TM) I9-9900 3.10 GHz processor, with 8 cores
and 96 GB of memory. Our method was implemented by inte-
grating the kernel of a topological modeler Moka [53] within the
open-source software 3D Slicer [54], in the form of a module in
C++ and using the VTK and ITK libraries. Moka provides the
topological modeling part and all necessary topological opera-
tions, while 3D Slicer is used to handle the MRI images (and
the corresponding segmentation voxel grid) and to visualise all
data (images and model). Both Moka and 3D Slicer commu-
nicate to keep the model and the view up-to-date, especially
after the use of a topological operation. Our work is compati-
ble with the latest stable release of 3D Slicer (5.6.2), but also
with previous release up to 4.10. We also discuss the choice of
the input iso-extraction method as well as comparisons between
our reconstruction with those obtained from FreeSurfer and the
CGAL surface reconstruction package.

5.1. Statistics and performance

Model Number of faces Total
Resolution seg1/seg2/... time

Eye 66x56x29 41 292 / 57 100 36s
Kidney 84x79x127 82 500 / 162 892 43s
M. Brain 256x256x130 504 068 / 71 800 1min 18s

Brain3 240x288x192 899 480 / 1 390 964 / 852 804 8min 30s
Brain8 240x288x192 831 376 / 1 402 964 / 998 092 10min 02s
Brain20 240x288x192 974 876 / 1 426 144 / 822 284 10min 35s
Brain27 240x288x192 1 042 564 / 1 529 272 / 1 092 692 13min 52s

Brain7T 512x512x176 2 492 868 / 4 047 448 / 2 870 800 37min 06s

Table 1. Characteristic of our set of test models and total computation time
of the entire method (section 4). Note that the number of surfaces gen-
erated is not directly linked to the grid resolution, but to the density and
multiplicity of the segmented tissues. The lowest number of faces recon-
structed and fastest total computation time are highlighted in blue, while
the highest number of faces and slowest time are in red.

Table 1 presents the number of faces generated by the iso-
surface extraction method used as input to our topological re-
construction for each ROI, as well as the total computation
time of the complete processing chain. We first show statis-
tics on three synthetic examples: Eye, Kidney, M.Brain. We
also report performances on a representative sample of our real
dataset. Brain3 and Brain27 are respectively the samples with
the most and least amount of reconstructed faces, while Brain8
and Brain20 are average in this characteristic. All statistics of
this dataset are available as supplementary material. Finally,
we present the statistics on a higher resolution voxel grids (and
noisier segmentation) from a mri 7T scan as Brain7T .

Case 1:
Neighbor of a single substance  

Case 2:
Neighbor of several substances  

Case 3:
Must connect 2 components

Fig. 11. Visualization of empty volumes classification as described in 4.2.2
in a complete reconstructed brain model composed of several structures.

Processing times for the reconstruction and cleaning (Sec-
tion 4.1) for each segment are shown in Table 2. It can be seen
that the different steps remain of the same order of magnitude
in terms of computation time depending on the number of faces
constituting the segment to reconstruct. The variations during
the cleaning phase are due to the quality of the segmented data.

Table 3 presents the calculation times required to merge the
reconstructed segments. The method detects and processes sev-
eral thousand inconsistencies in a few minutes as illustrated by
Figure 11. These defect volumes are then classified and cor-
rected according to their semantics and topological neighbor-
hood.

The medical accuracy of our model heavily relies on the input
segmentation. However, regardless of the segmentation’s qual-
ity—whether noisy or not—our reconstruction method consis-
tently produces an accurate model aligned with it. Also, our
model can detect anatomical problems (using the neighborhood
relations between volumes and their semantic information), and
automatically guide correction when possible.

5.2. Comparison with usual reconstruction methods

To justify our choice of using an isosurface generator and to
evaluate the geometric and topologic qualities of our method,
we compare the models reconstructed for a given segment us-
ing our process and three different methods of 3D reconstruc-
tion algorithm , that do not employ any topological solution for
multi-segments cases.

• Dual Marching Cubes (DMC) method that uses an asymp-
totic decider and replaces triangular meshes by quad
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Model Number of Reconstruction Number and percentage Classification and Process
reconstructed volumes time of deleted volumes cleaning time Time

Eye 62 / 328 2s / 5s 6 (10%) / 75 (23%) 2s / 1s 12s
Kidney 189 / 225 3s / 4s 74 (39%) / 102 (45%) 5s / 7s 25s
M. Brain 43 / 17 19s / 5s 4 (10%) / 2 (10%) 12s / 6s 1min 02s
Brain3 365 / 704 / 386 47s / 1min 04s / 38s 0 / 211 (30%) / 89 (23%) 0s / 1min 32s / 46s 4min 47s
Brain8 950 / 2222 / 541 35s / 1min / 41s 0 / 366 (16%) / 189 (35%) 0s / 1min 18s / 50s 6min 15s
Brain20 256 / 501 / 316 39s / 59s / 35s 0 / 91 (18%) / 130 (41%) 0s / 1min 32s / 1min 04s 7min 16s
Brain27 841 / 2959 / 1208 47s / 1min 02s / 47s 0 / 1298 (44%) / 225 (19%) 0s / 1min 35s / 49s 8min 04s
Brain7T 3 922 / 15 272 / 19 888 1min 35s / 2min 33s / 1min 53s 919 (23%) / 3239 (20%) / 11 261 (57%) 1min 44s / 2min 32s / 2min 51s 16min 38s

Table 2. Quantitative information and computation time of each step of Section 4.1 with our dataset. For real brain models, the lowest number of recon-
structed volumes, percentage of deleted ones, fastest reconstruction and total computation time are highlighted in blue, while the highest are in red.

Model Semantic/Topologic process Voxels Process
Case1 Case2 Case3 modified time

Eye 31 0 569 717 17s
Kidney 22 0 569 441 18s
M. Brain 39 0 166 626 17s

Brain3 144 1688 1840 1329 3min 27s
Brain8 155 4045 1798 2384 3min 27s
Brain20 68 1698 1533 916 3min 03s
Brain27 292 4685 3668 3329 5min 32s

Brain7T 3 493 17 872 4 907 23 127 18min 22s

Table 3. Quantitative information and computation time of each step of the
method described in Section 4.2 with our dataset. Voxels corresponding to
each “unnamed” volume are modified according to their semantic/topolog-
ical case. For real brain models, lowest number of applied corrections and
total computation time are highlighted in blue, while the highest are in red.

meshes which tends to eliminate the poorly-shaped trian-
gles occasionally present in MC surfaces [31];

• Multi-level Partition of Unity (MPU) method that uses im-
plicit models [14] and interprets the contours (i.e., segmen-
tation boundary inside the volume) as points in R3;

• Flying Edges (FE) used at the start of our process. It is
interesting to study the differences between FE (especially
when the built mesh is smoothed) and our method due to
the geometric warping applied at the end of our process.

We first compare these methods from a topological point of
view. As shown in Figure 12, smooth FE, MPU and DMC
leads to inaccurate connectivity between elements (disjointed
volumes or, on the contrary, overlaps), while our model pre-
serves the one from the segmentation. More precisely, smooth
FE, MPU and DMC are not directly usable to group and merge
several volumes together, because of their construction system
that does not produce faces allowing a direct topological linking
of adjacent volumes. Indeed, the main source of overlapping is
the post-processing step performed by counterpart approaches
after surface extraction. That is why, FE (without smoothing)
does not produce overlap/discontinuity (since any surface that
crosses a given cube edge always intersect it at its midpoint,
surfaces from different segments match exactly). Nevertheless,
this method still exhibits unidentified empty volumes that our
algorithm fills in. Topologically speaking, our model gives bet-

FE (smoothed)Our method

MPU DMC

Fig. 12. Reconstruction of a kidney with a tumor from the 2019 KiTS Chal-
lenge [55, 56]: on top, the built 3D models, from left to right: our method,
FE(smoothed), DMC, MPU. By using MPU or DMC, an empty space be-
tween the surface of the reconstructed kidney and tumor is exhibited, while
with FE, overlaps appear due to surface smoothing (FE, DMC and MPU
do not use any topological solution).

ter results than FE, DMC and MPU since it does not include
empty spaces, overlaps and artifacts.

As a comparison from a geometrical point of view, the fig-
ure 13 shows the standard deviation and arithmetic mean of the
distance computation from the object to the segmentation done
on our real medical dataset (forty brains). To obtain the distance
value, we generate a point cloud corresponding to the midpoint
of each voxel of the segmentation, and compute for each point
of the reconstructed mesh the shortest Euclidean distance to the
point cloud generated from the segmentation. It can be noticed
that our method is better when compared to FE, DMC and
MPU. This behavior is independent of the complexity of the
model or the noise level since, for all forty brains, our method
still gives better results. The goal of the proposed method is
to follow, as closely as possible, the segmentation used as en-
try and supposed to be correct. Indeed, it is important to note
that the reconstructed model is completely based on the seg-
mentation result and can build incorrect tissue surfaces if the
segmentation is wrong.

Finally, to visualize the impact of the geometric deforma-
tion step (see Section 4.3), we propose to use a synthetic object
with a known geometry, namely a sphere. The aim is to com-
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Fig. 13. The standard deviation (a) and arithmetic mean (b) of error values
for all forty cerebral cortices reconstructed with our method, FE, DMC
and MPU.
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Fig. 14. Test of geometric warping on a discretized sphere: (a) superpo-
sition of the three 3D models (yellow for the initial sphere, blue for FE’s
one and orange for ours); calculation of the Euclidean distance between
the reconstructed models from the geometry of the real sphere (b) for our
method and (c) for FE.

pare the Euclidean distance between the objects reconstructed
by our method and then by FE in comparison to the sphere’s
real geometry. To achieve this, the sphere is discretized into a
regular grid: voxels that are entirely contained within the sphere
have the value 1, those entirely outside have 0. For a voxel par-
tially covered by the sphere, a coverage rate calculation (statis-
tical value) is performed, based on a random selection of several

thousand points located inside this voxel to calculate the ratio
of the number of points located inside the sphere. This ratio
is stored as the density associated with the voxel. Figure 14
shows the result of the comparison between our reconstructed
model and the sphere, and similarly for the FE. We notice that
our model is closer to the real geometry, thanks to the statistical
value used in the geometric deformation step (the majority of
distances are below 0.2mm, compared to 0.33mm for the FE).

5.3. Comparison with FreeSurfer

FreeSurfer is a set of software tools for the study of cortical
and subcortical anatomy [7]. Currently, it is the main frame-
work for neuroscientists to take benefit from 3D [57, 58]. In
its cortical surface reconstruction stream, provided tools con-
struct models of the boundary between white matter and cor-
tical gray matter as well as the pial surface [8]. The volume-
based stream is designed to preprocess MRI volumes and label
subcortical tissue classes. A high dimensional nonlinear volu-
metric alignment is performed on a given atlas and volumes are
labeled (fully described in [59]).

Qualitatively, the Freesufer reconstruction of the cortical area
is accurate thanks to the use of data atlases. However, as the
method is based on an independent reconstruction of each hemi-
sphere, it induces a high degree of inaccuracy at the junction
of the two lobes (Figure 15). The tissues are ultimately con-
structed independently and it is not possible to easily calculate
the topological neighborhood between the meshes of the differ-
ent structures. Moreover, this method can only produce a single
model representing the mixture of cortical and subcortical inter-
faces. It cannot discriminates between all brain segments. An
automatic cleaning process is available, but in the case of ex-
cessively noisy data, manual intervention is required and leads
to a tedious semi-automatic process for reconstruction.

When compared to FreeSurfer, our method not only pre-
serves distinctions between all brain segments but also outper-
forms FreeSurfer in terms of computation time. Few minutes
are needed to reconstruct the whole brain, compared to several
hours with FreeSurfer pipeline.

5.4. Comparison with 3D Mesh generation of CGAL

The Computational Geometry Algorithm Library (CGAL)
[37] is a software project that provides easy access to efficient
and reliable geometric algorithms used in many fields. Among
the available operations, we are interested in the 3D mesh gen-
eration [38]. This package is designed to generate a 3D mesh
from a point cloud [60]. A Delaunay refinement is applied to
produce a volumetric tetrahedral mesh. The main difference
with a standard Delaunay triangulation is the addition of Steiner
points to the input data to improve the quality of the final mesh.
The reconstruction is highly customizable with different param-
eters for surface facets and mesh cells (more details [61]). The
result is described as a 3D model based on tetrahedra, with
much less information than our topological model. It can be
converted to a surface model (a FaceGraph) by extracting tri-
angles and describing their connectivity using a refined version
of half-edges (a topological model used for 2D manifolds only)
to describe faces.
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Our method Our methodFreeSurfer FreeSurfer

Fig. 15. Comparisons between our method and FreeSurfer’s on two cross-sectional views of the brain (top row) and closeups as insets (bottom row).
Starting from the same segmentation, we note that FreeSurfer is unable to distinguish between ventricules (green) and the white matter (orange) whereas
ours clearly shows the contours of the two segments (left). FreeSurfer also suffers from surface overlaps between the two lobes (right).

(a) (b)

Fig. 16. Examples of the reconstruction of all 3 segments by CGAL 3D
Mesh Generation : (a) ROIs independently reconstructed (the color match-
ing of the surfaces are: orange for cerebral spinal fluid, white for white
matter and green for gray matter) showing overlaps and empty spaces (re-
spectively in yellow and black); (b) All ROIs at once, in one mesh, without
tissue differentiation.

Using CGAL, a first possible strategy consists in building
each segment one after the other. Nevertheless, figure 16.a
shows that the different ROI of the segmentation cannot be re-
constructed separately because it suffers from overlaps and gaps
created by unadjusted surfaces. Therefore, the mesh must be re-
constructed in one step, including every ROI, which is another
strategy proposed by CGAL. Since all segments are built using
the same Delaunay refinement, this leads to the absence of voids
and overlaps as in Figure 16.b. However, the reconstruction pro-
cess does not produce a mesh for each segment, but, instead, a
global mesh that merges all segments and loses tissue informa-
tion. The tissues cannot be separated in the obtained model. Be-
sides, the refinement process (additional Steiner points) aims at
producing a high quality 3D mesh but approximates the shapes
and leads to an inaccurate anatomical reconstruction. To sum
up, due to loss of semantic information and inaccuracy of the
geometry, CGAL’s reconstruction method appears unsuitable
for medical uses.

6. Case study: Magnetic Resonance Spectroscopy

To highlight the benefits of the models produced by our re-
construction method, we present a use of these models for the
visualization of data acquired by Magnetic Resonance Spec-
troscopy (MRS). It is a non-invasive imaging tool associated
with MRI that provides metabolism data of covered tissues.
MRS yields measurements with a much coarser resolution than
MRI leading to data that are hard to interpret since the represen-
tation of the resulting values does not take into consideration the
heterogeneity of tissues in an acquisition volume.

To cross-reference the anatomical and physiological modal-
ities, the spectroscopic grid needs to be superimposed on the
anatomical 3D model. To do this, a 3D model reconstructed
using our method is perfectly suited, thanks to its geometric
precision and its topological and semantic information. MRS
volume is registered with MRI one, to work in the same space.
However, the acquired spectroscopy grid is not, in practice,
aligned with the corresponding MRI images. Working with a
continuous model is more suitable, because we become inde-
pendent from discretization, making it easier to compute in-
tersections more exactly, and as we are closer to real data, it
enables us to achieve smaller resolutions and give more infor-
mation in this case study to practitioners. From our volumetric
reconstruction, we apply successive planar cuts to extract the
parts of the anatomical model corresponding to each voxel in
the spectroscopic grid (Figure 17). This is a complex process
due to the need to preserve topological and semantic informa-
tion and manage volume inclusions, while taking into account
accuracy issues [62, 63]. The strength and robustness of our
model make it possible to overcome these problems by follow-
ing a refinement process. We use the process described by Bel-
haouari et al. [50] propagating planar intersections between ad-
jacent tissues using a topologically-based approach.

At the end of the process, for each voxel of the MRS grid we
obtain the covered brain sub-region (as seen in Figure 17). This
multi-modal modeling allows doctors to study the physiological
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Fig. 17. 3D Anatomical topological construction matching the spectroscopy grid. Using the information of the spectroscopy grid and its voxels, the 3D
brain model is split in accordance with the number of rows and columns of the initial grid. Resulting model is composed of identifiable volumes, each from
a specific spectroscopy voxel and brain tissues, and used for multi-modal modeling.

distributions in the different anatomical tissues and evaluate if
the measured metabolisms correspond to standard values for the
covered types of tissue, or not [64]. This is a major scientific
challenge for detection and analysis of brain tumors.

7. Conclusions

Our main objective is to produce high-quality volumetric
meshes from discrete 3D acquisitions. In this context we pre-
sented a new reconstruction method to reconstruct a partition of
space from a multi-label segmentation. A topologically consis-
tent process is applied to merge efficiently every cleaned seg-
ment in a single volumetric model. Topological corrections are
also applied using semantic data followed by a geometric warp-
ing that deforms the shape of the reconstructed segments while
not altering the overall topology.

The proposed reconstruction method is a general approach
that is not tied to our implementation choices. Another topo-
logical structure than Generalized-maps can be considered as
long as it allows sewing volumes together and guarantees ad-
jacency relations (e.g. oriented maps [43]). In the same way,
using another iso-extraction method could be considered if it
shares the criteria discussed in Section 5.2. A potential suit-
able candidate for future work could be some variants from the
surface-net approaches [36].

In the future, we aim at applying our process to non-healthy
brains with tumors. Since our volumes are topologically cor-
rect, we could track their evolution over time and study it on
the concrete case of cancerous tumors. As stated in the arti-
cle, these topologically-correct volumes could help doctors re-
fine the measurements taken by low-resolution acquisition sys-
tems (as in the case of spectroscopic analysis) by improving
data interpolation across volumes instead of coarse voxels for
instance. Finally, a reconstruction pipeline should be scalable
so it would be interesting to carry out a scale-up study to inves-
tigate how topological formalisms can be adapted to out-of-core
approaches.
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Appendix

Appendix A. Notations and additional notions

Appendix A.1. Generalized maps

Generalized maps define the topological structure of geomet-
ric objects. They are based on a single type of basic elements
(called darts) and involutions (called α) defined on these darts
represent object cells and adjacency/incidence relationships.

Each involution αi, with 0 ≤ i ≤ n (n being the dimension
of the considered space), represents the adjacency relationships
between i-dimensional cells (called i-cells). α0 represents link
between two vertices (0-cells), α1 links two edges (1-cells), α2
links two faces (2-cells) and α3 links two volumes (3-cells) (cf.
FigureA.18).
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Fig. A.18. n-Gmaps representation: (a) 1 2D object containing 3 faces, 6
edges and 5 vertices; (b) Corresponding generalized map: the set of darts
{1,2,3,4} represents edge e1, the set of darts {3,4,5,6,7,8,9,10} represents
face F1; (c) 3D object composed of 2 volumes represented with 3-Gmap,
volumes are linked by α3; (d) Symbolic representation of involutions. In
most cases, α0 links are not represented for the sake of readability.

Definition 1 (Generalized map [46] ). A generalized map in
dimension n ≥ 0 (or n-Gmap) is an algebra G = (D, α0, ..., αn),
where:

• D is a finite set of darts;

• α0, ..., αn are involutions (An involution f is a one to one
mapping such that: f 2 = Id)

• αiα j is an involution ∀i, j such that 0 ≤ i < i + 2 ≤ j ≤ n.

Generalized maps are defined homogeneously in any dimen-
sion, so that operations implemented in 2D can be naturally ex-
tended in 3D or in higher dimension. In addition, all descrip-
tions made in dimension 2 are extensible to dimension 3.

Two darts d and d′ are i-sewed if αi(d) = d′ with d , d′, and
d is i- f ree if αi(d) = d. A dart d is i-free when it belongs to a
boundary of an i-cell, i.e. d belongs to an i-cell which has no
other i-cell adjacent along this dart. A n-Gmap is with boundary
(or open) if it contains some free darts; it is closed otherwise.

The orbit associated with a given dart d and a set of involu-
tions is ⟨ f1, ..., fk⟩(d), the set of all the darts obtained starting
from d, and using any composition of the given involutions.

Any i-cell is a particular orbit composed with all involutions
except αi. Two cells are incident when their intersection is
non empty, i.e. when there is at least one dart shared by the
two cells. Two i-cells c1 and c2 are adjacent if there is one
(i − 1)-cell incident to both c1 and c2. In Figure A.19, the
different cells which compose a 3-Gmap are represented.

Definition 2 (i-cell). Let d ∈ D, N = {0, . . . , n} and let
i ∈ N. The i-cell containing dart d is the orbit ⟨⟩N−{i}(d) =
⟨α0, . . . , αi−1, αi+1, . . . , αn⟩(d).

(a) (b)

(c) (d)

Fig. A.19. Each cell can be obtained from a dart and an orbit: ⟨α1, α2, α3⟩

for vertices, ⟨α0, α1, α3⟩ for edges, ⟨α0, α1, α3⟩ for faces and ⟨α0, α1, α2⟩ for
volumes.

Appendix A.2. Removal for n-Gmaps

In a general way for an n-dimensional space, the removal of
an i−cell consists in removing this cell and in merging its two
incidents (i + 1)−cells: so removal can be defined for 0 . . . (n −
1)−cells (vertices, edges and faces in 3D).

It is not always possible to remove a given i-cell C. Indeed,
if there are more than two (i + 1)-cells incident to C, C can
not be removed because there is no rule to re-attach these cells
after the removal. This condition is formalized in def 3 by the
removable condition.

Definition 3 (Removable cell [65]). An i-cell C in an n-Gmap
G = (D, α0, ..., αn) is removable if:

• i = n − 1;

• or 0 ≤ i < n−1, and, ∀d ∈ C, αi+1◦αi+2(d) = αi+2◦αi+1(d).

Def 4 gives the remove operation of a removable i-cell.
Intuitively, this operation consists in modifying the αi links
of the darts which were previously i-sewn with the removed
cell. Figure A.20 illustrates an example of a 0−removal and a
1−removal in a 2-Gmap.
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Fig. A.20. Example of removal operation: (a) a 2D objet; (b) the result of
the removal of the vertex V1; (c) the result of the removal of the edge E1.

Definition 4 (Removal operation [65]). Let G =

(D, α0, ..., αn) be an n-Gmap and C be a removable i-cell.
Let Ds = αI(C) C be the set of darts i-linked with C which do
not be belong to C. the n-Gmap resulting for i-removal of C in
G is GRi (C) = (D′, α′0, ..., α

′
n) defined by:

• D′ = D/C

• ∀ j ∈ {0, . . . , n} , j , i, α′j = α j/D′

• ∀d ∈ D′ DS , α′i(d) = αi(d)

• ∀d ∈ DS , α′i(d) = (αi ◦ α(i+1))k ◦ αi(d),
k being the smaller positive integer s.t. (αi◦α(i+1))k◦αi(d) ∈
DS
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