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Abstract—Cache-based timing side-channel attacks are preva-
lent and correspond to a security threat for both high-end and
embedded processors. In this paper, we propose and implement
a fine-grained dynamic partitioning countermeasure relying on
a hardware-software collaboration. The proposed approach ex-
tends the RISC-V Instruction Set Architecture (ISA) with lock
and unlock instructions to allow a program to explicitly lock
cache lines in the data cache memory, ensuring constant-time
accesses. Experimental results show that the proposed solution
defeats contention-based cache side-channel attacks such as
PRIME+PROBE and leads to a low area overhead (<3%), a low
impact on binary code size (<0.3%) and a low impact on miss
rate (<2%).

Index Terms—Cache Architecture, RISC-V, Security, Cache
Side-Channel

I. INTRODUCTION

The observation of physical effects resulting from processor
execution can be used to retrieve confidential information [1].
Among them, this work focuses on cache-based timing attacks
[2]. These attacks rely on the capacity of a malicious process to
deduce secret information about a victim process by observing
its use of shared cache memories. They usually rely on both
cache contention and cache profiling and exploit a timing side-
channel due to memory hierarchy latency.

Numerous countermeasures have been proposed to thwart
cache-based timing attacks. At the software level, a code trans-
formation is performed to remove secret-dependent memory
accesses [3]. Although effective, this approach is tedious for
the programmer and requires an extensive knowledge of the
hardware and the associated compiler.

Hardware-wise, cache randomization and cache partitioning
are the two main protection techniques. The objective of
randomized caches [4]–[6] is to prevent attackers from finding
eviction sets by scattering addresses with identical indexes.
However, PRIME+PRUNE+PROBE [7] defeats most random-
ized cache solutions. It allows one to find an eviction set after
a few hundred accesses, reducing the security efficiency of
randomized cache. Thus, the random mapping needs to be
refreshed regularly to maintain the security level. This costly
operation limits the adoption of randomized cache.

The alternative hardware mitigation relies on resource par-
titioning with the aim of preventing an attacker to manipulate
victim’s data by allocating dedicated cache resources. A class
of solutions such as NOMO-CACHE [8] or SECDCP [9]
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proposes to allocate a set of ways to sensitive applications.
However, He and Lee [10] highlight that this class leads to
important performance loss due to coarse-grained partitioning.
PLCACHE [4] is a lightweight partitioning mechanism that
reserves cache lines through lock and unlock instructions
to protect against contention-based cache side-channel attacks.
A locked cache line cannot be evicted by any other process.
Nevertheless, PLCACHE suffers from security limitations [11],
[12]. First, depending on the cache state and the current state
of the replacement policy metadata, data stored in locked
cache lines can be implicitly evicted by the owner process.
Second, memory access can circumvent the cache hierarchy
when the replacement policy targets a locked cache line owned
by another process. Consequently, an attacker can manipulate
the replacement policy metadata in order to take advantage
of the two previous statements and force non-constant time
memory accesses to victim’s data. In [11], authors propose
new definitions of the lock and unlock instructions to
guarantee constant-time access to data locked in cache lines. In
this approach, only the explicit use of the unlock instruction
allows the eviction of locked data. However, the proposed
solution is limited to the protection of a single process and
leads to a high area overhead (+39%). Finally, the security
evaluation is limited to an instruction and cache simulator.
In this paper, we go beyond previous works by proposing
a low-cost, flexible, secure, and efficient solution to mitigate
cache-based timing attacks targeting low area system-on-chips.
Contributions of this paper can be summarized as follows:

● We introduce a strict cache locking mechanism consider-
ing a multitask embedded system.

● We propose a low-overhead hardware implementation of
this mechanism, targeting a Field Programmable Gate
Array (FPGA).

● We evaluate both timing performance and security using
a set of benchmarks and considering the PRIME+PROBE
attack.

Section II gives the prerequisites. Section III describes our
threat model. Section IV describes our strict cache locking
mechanism. Section V details our implementation and syn-
thesis results. Sections VI and VII evaluate security and per-
formance of our solution. Section IX discusses our approach.
Finally, Section X concludes the paper.
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II. BACKGROUND

Main cache-based timing attacks rely on the contention on
shared cache memories and the exploitation of timing side-
channels caused by the temporal distance of memory accesses
induced by the memory hierarchy to monitor victim’s activities
and deduce sensitive information such as cryptographic keys.
To perform such attacks, an attacker should be able to tamper
the state of the target cache memory and distinguish between
cache hits and cache misses, through time measurements,
when accessing its own data. The following three steps are
performed in most cache-based timing attacks:

1) The attacker sets the cache (or part of it) in a known
state by filling it with its own data or by flushing a set
of data.

2) The victim executes and may load or evict some data
monitored by the attacker.

3) The attacker times its own memory accesses to deter-
mine whether the victim has evicted or accessed the
monitored data.

Based on these three steps, numerous attacks variations have
been studied to conform to the specifications of the ISA
(e.g. EVICT+RELOAD [13]) or to circumvent the latest coun-
termeasures (e.g. PRIME+PRUNE+PROBE [7]). The PRIME+
PROBE [14] technique is the most popular attack exploiting
cache contention. In the PRIME step, the attacker program
fills different cache sets with its own data. The attacker then
goes into an idle state, in which it lets the victim execute. In
the PROBE phase, the attacker observes its own filled cache
by monitoring the time to load data that has been cached
during the PRIME phase. By repeating this process along the
victim execution and by analyzing which data has been evicted
by the victim, the attacker obtains information on memory
addresses accessed by the victim. From this information, the
attacker deduces sensitive information that is associated with
these memory accesses (e.g. AES S-Box access pattern or
instructions flow).

III. THREAT MODEL

In [15], authors demonstrate that cache-based timing side-
channel attacks can be exploited on mono-core CPU to extract
sensitive information. In this paper, we assume two processes
running on an in-order mono-core processor, including a single
level of shared data cache. These processes do not share their
memory spaces. The attacker has knowledge of the binary code
of the program belonging to the victim (e.g. via open-source
cryptographic library or through reverse engineering). The
attacker can infer the cache state before and after the victim’s
execution and after each context switch. The attacker can
accurately measure time through the processor cycle counter
register, thus determining if its memory accesses result in a
cache hit or a cache miss. The attacker is able to synchronize
with the victim process by triggering its execution.

The entire software stack in charge of process scheduling is
part of the Trusted Computing Base. We assume that the con-
trol flow of the victim does not leak any sensitive information

(e.g. using constant-time programming techniques [3], [16]).
Thus, only memory accesses can be secret-dependent. As a
consequence, the attacker focuses on contention-based attacks
such as PRIME+PROBE to manipulate the cache, attempting to
infer information about the secret-dependent accesses of the
victim.

IV. DYNAMIC PARTITIONING THROUGH CACHE LOCKING

From the aforementioned threat model and literature, we
consider the locking mechanism introduced in [11] to thwart
cache-based attacks in our system. It consists of a software-
driven fine-grained partitioning that allows data to be locked in
cache memories at the cache line granularity. An extension of
the ISA allows using the proposed mechanism by implement-
ing two instructions: lock and unlock. Any access to data
stored in a locked cache line leads to a cache hit. A locked
cache line cannot be evicted, regardless of which process is
manipulating the cache. The only way to unlock a cache line
(and then evict it) is that the owner process explicitly uses the
unlock instruction. Once the cache line is unlocked using
the unlock instruction, the cache line can be evicted by any
process.

A. Cache access procedure

The use of this locking mechanism is motivated by the need
to optimize the cache usage by protecting a limited range of the
memory space for a limited period of time. For a programmer,
the motivation is to lock a set of data which accesses are
secret-dependent. Despite that unavailable cache space may
result in a drop in performance for other running processes,
this on-demand approach allows the protected process to
release the locked cache lines as soon as possible and then
continue its execution. In order to prevent an access from
bypassing the cache because all the ways of the accessed set
have been locked, at least one free way is kept available to
ensure a minimum performance for running applications. An
hardware exception is raised when a lock instruction targets a
fully-locked cache set. This exception has to be caught by the
software stack to pause or stop the current process.
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Fig. 1. Cache access procedure with locking mechanism.

Figure 1 details the procedure when accessing the cache
with the proposed locking mechanism. First, a test checks
whether the accessed data is already cached ❶ (cache hit), if



not, the replacement policy selects the way to cache the data.
Then, if a lock is requested ❷, a test determines whether the
state of the cache set permits to lock the accessed cache line
❸. If a way is available, the accessed cache line is marked
as locked and the Least Recently Used (LRU) replacement
policy is updated for candidate ways. Otherwise, an exception
is raised. If an unlock request is received ❹, and if the
accessed cache line is locked ❺, the unlock is achieved by
re-introducing the cache line among the LRU candidates. Oth-
erwise, the request concerns a non-locked cache line and the
request is discarded. Conventional load or store requests
(❻) are treated as follows: if a locked cache line is accessed,
the LRU is not updated. Otherwise, the LRU is updated for
each non-locked way in the set.

B. Extending LRU for locking mechanism

In this paper, we propose to extend the LRU replacement
policy metadata and its update process to support the locking
mechanism. Considering an N -way set associative cache and
the original LRU, the metadata associated to a way can be
associated to N states (e.g. for a 4-way set associative, states
are included from 1 to 4). This state reflects the age of the
cache line in the cache set (e.g. 1 as most recently used, and
4 as least recently used). Our solution relies on an extra LRU
state dedicated to locked cache lines (locked state equals to
0). Thus, N +1 states have to be considered. When a memory
access is performed, the LRU metadata is updated taking into
account the following rules. If the request is associated to a
lock instruction and the lock is allowed (see Section IV-A),
the selected way state is updated to the lock state and the
rest of non-locked ways metadata of the set are updated with
state values between Nlock + 1 and N , where Nlock < N is
the current number of locked cache lines in the set (e.g. if
Nlock equals to 2, two states are 0 and the 2 remaining states
are respectively 3 and 4). If the request is associated to an
unlock instruction, the selected way state is updated to a
state value equals to Nlock. In this case, the rest of non-locked
ways metadata of the set does not need to be updated. Finally,
if any other memory access is performed, the LRU metadata
of the non-locked ways of the set are updated with state values
between N and Nlock.

C. Practical use-case
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Fig. 2. Use-case : Behavior of LRU states considering our lock mechanism
with N=4 ways.

Figure 2 presents a pedagogical example highlighting the
behavior of LRU states for three memory accesses considering
consecutively a lock, a conventional access (lw) and a
unlock where the addresses mapped to the same cache set. It
presents the replacement policy metadata (i.e. LRU states) for

each way of a cache set. The cache set is composed of N=4
ways (wX) and is warm, i.e. already used. Data a, b, c,
and d are stored in the 4 ways. Before considering the access
lock @e, we can notice that least recently used way is w1
(LRU state = N ). Moreover, there is no locked cache line (i.e.
Nlock = 0 and LRU states ≥ Nlock + 1 for all ways). Then,
after performing the lock @e memory access instruction,
data a has been evicted and w1 is now considered as locked
(LRU state = 0) as well. Also, states of the other non-locked
ways have been updated, and now there remains three LRU
candidates where LRU state ≥ Nlock + 1 with Nlock = 1. w1
cannot be selected by the replacement policy as it is locked.
After loading a word at address f (lw @f), data d has been
evicted by data f and way w4 becomes the most recently
used LRU state = Nlock + 1. LRU states for w2 and w3 have
been updated while w1 is still locked. There are still three
candidates for the replacement policy. Finally, w1 is unlocked
by executing instruction unlock @e, and has been inserted
back as a potential candidate and is now considered as the
most recently used.

D. Software utilization

1 void fct(int* sensitive_table, int* input){
2 //lock phase
3 for(int i=0; i<sizeof(sensitive_table); i+=16)
4 lock_macro(&sensitive_table, i);
5

6 //algo accesses table depending on secret
7 algo(sensitive_table, input);
8

9 //unlock phase
10 for(int i=0; i<sizeof(sensitive_table); i+=16)
11 unlock_macro(&sensitive_table, i);
12 }

Listing 1. Example of use of the cache locking mechanism.

1 c.mv t4,a4 # move &table in t4
2 c.mv t5,a5 # move i in t5
3 c.add t4,t5
4 lock x0,0(t4)

Listing 2. lock_macro in assembly.

In the proposed approach, the lock mechanism has to be
explicitly used by the programmer to protect a set of sensitive
data. Listing 1 shows a function fct that implements the
lock mechanism to secure the secret-dependent accesses within
the called function algo. It illustrates the insertion of lock
and unlock instructions, which are inserted before and after
algo in line 7. During the lock phase, a for loop is used on
lines 3-4 to parse the sensitive table with a step size equal to
the cache line size B = 16 bytes. In order to lock the whole
table, an assembly macro, presented in listing 2, is called
for each cache line. Furthermore, it is important to highlight
that the number of locked cache lines should not depend on
the secret manipulated by algo. After the execution of the
sensitive algorithm, the sensitive table is unlocked from the
cache with a similar for loop in lines 10-11. This loop uses



an unlock macro, which is similar to Listing 2, except that
instruction in line 4 is replaced by an unlock instruction.

Listing 1 shows how a programmer can explicitly lock a
set of cache lines. It is worth noting that this task could be
automated by coupling programmer’s annotations and taint
propagation techniques. However, this work is out of scope
of this paper and could be part of future works.

V. PROPOSED IMPLEMENTATION

A. Hardware design

We choose to extend the CV32E40P RISC-V core [17],
which has been designed for low-cost embedded systems. This
four-stage in-order core implements the RV32IMC instruction
set. Figure 3 shows the enhanced CV32E40P architecture.
Shaded blocks highlight our modifications of the microarchi-
tecture.
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Fig. 3. CV32E40P block diagram with proposed hardware extensions to
support a fine-grained locking mechanism.

The main extensions concern the three following features:
1) the decoder has been extended to support both lock
and unlock instructions; 2) a first-level data cache (L1D
Cache in Figure 3) has been associated to the core; 3) the
core Load/Store Unit (LSU) has been extended to include a
static Physical Memory Protection (PMP) module for process
isolation. Furthermore, since the original CV32E40P core pro-
poses non-constant time arithmetic operations, we also sightly
modified the execution stage to prevent some timing-attacks
exploiting arithmetic operation latency. For that purpose, a
dedicated Control and Status Register can be set by a sensitive
process to enable a constant-time mode where multi-cycle
arithmetic computation such as division is performed with a
fixed latency (i.e. the worst execution time of the operator). In
our core, it only concerns division and modulo instructions.

1) Cache architecture: We couple the CV32E40P core by
implementing an 8 kB 4-way set associative L1 data cache
as presented in Figure 4. It implements S = 128 sets and
cache lines of B = 16 bytes. Since in each set, a maximum
of 3 ways can be locked, a maximum of 6 kB of data can
be simultaneously protected. The core accesses the memory
hierarchy using addresses of size A = 22 bits. The cache
manipulates the address as follows: the log2(B) = 4 least
significant bits are used as an offset in 16-byte cache lines,
the log2(S) = 7 following bits of the address are used to
select the cache set among the 128 available sets, and the
11 remaining bits are used as a tag to compare whether the
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Fig. 4. A 4-way set associative cache architecture extended with the proposed
locking mechanism.

accessed address is legitimate. The cache operates cache lines
consisting of 16 bytes of data, A − log2(B) − log2(S) = 11
bits of tag and one validity bit, resulting in a total of 140 bits
per cache line. With 128 sets, each way consists of 17,920
bits (128 sets ∗140 bits) and a total of 71.680 bits are stored
in Block-RAMs (BRAMs). In order to optimize the cache
access latency, 8 BRAMs are implemented (i.e. 2 BRAMs per
way on Xilinx 7 series FPGAs). Indeed, using four separate
BRAMs banks allows one to perform parallel tag comparisons.
If a tag comparison matches, meaning a cache hit, the access
continues with the corresponding way. Otherwise, a cache miss
occurs and the LRU replacement policy selects the way to be
evicted. In both cases, metadata of the replacement policy is
then updated as mentioned in Figure 1.

2) Locking mechanism: In order to support the lock and
unlock instructions, we both extended the core microar-
chitecture and the compilation toolchain. In this paper, we
focus on the hardware extension. The lock and unlock
instructions are mainly decoded as conventional load in-
structions. However, 2 additional control signals indicating a
lock or unlock operation are generated and propagated to the
cache interface through the LSU. In order to implement the
locking mechanism presented in Section IV, the replacement
policy metadata states have been extended (see Section IV-B).
In Figure 4, the LRUmetadata signal represents the state
of the LRU candidates of the selected cache set, while the
LRUupdated represents the updated state by LRU-Lock logical
module. Considering 4 ways, each LRU candidate can have 5
different states: state 0 which stands for the locked status and
states 1, 2, 3, 4 which stand for LRU status. Thus, 3 bits are
used to store the state of each way, resulting in 12 bits per
set. In total, 1,536 bits (128 sets ∗12 bits) for the LRU states
have to be stored (e.g. in half a BRAM considering a Xilinx
7 series FPGAs).

B. Synthesis Results

Table I shows the post-implementation area results targeting
a Xilinx Kintex-7 chip with Vivado 2022.2. Cache area is
extracted from CPU results, as well as the replacement policy
area from the cache to present the results.



TABLE I
POST-IMPLEMENTATION AREA RESULTS ON KINTEX-7 FPGA.

Cache CPU

LUTs 980 5,661
Baseline FFs 1,065 3,465

BRAMs 8.5 8.5

LUTs 1,007 (+2.8%) 5,683 (+0.7%)
Protected FFs 1,077 (+1.1%) 3,481 (+0.3%)

BRAMs 8.5 8.5

Results show that our solution does not impact the num-
ber of required BRAMs. In both baseline and protected
designs, 8 BRAMs implement the cache memory and half
a BRAM stores the LRU metadata. Contiguous to this post-
implementation result, the number of bits stored is hidden in
BRAM for a FPGA target. However, this metric is relevant
for an Application-Specific Integrated Circuit (ASIC) where
bit storage is not hidden in a BRAM number. Regarding
our cache configuration, the baseline cache stores 72,704 bits
(cache lines + LRU metadata) of which we add 512 bits to
implement our lock mechanism: it results in an overhead of
0.7%. Regarding LUTs and Flip-Flops registers considering
the Cache column of Table I, our cache locking mechanism
leads to 2.8% and 1.1% overheads, respectively. While for the
CPU column, of which core and cache are gathered, the lock
mechanism leads to an overhead of 0.3% for LUTs and 0.7%
for Flip-Flops registers. It is worth noting that the overhead
considering a CPU with a low-end processor is low. Regarding
the maximum frequency, we obtain 105 MHz without our
protection and 104 MHz with our protection. Consequently,
our proposed implementation leads to a very low area overhead
and a negligible impact on timing performance. The following
evaluations consider the Digilent Genesys 2 board running at
100 MHz. In addition to the CPU and the cache, the memory
hierarchy is completed with a 36-cycle Double Data Rate
Random Access Memory (DDR RAM) of 32-bit data bus.

VI. SECURITY EVALUATION
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Fig. 5. PRIME+PROBE on AES-128 locking S-Box, key = 0x42.

In this section, we evaluate the security of our solution.
For that purpose, we considered the PRIME+PROBE attack on
the AES-128 encryption algorithm. This case study focuses on
the first key byte. We considered a known-plaintext attack and
an AES S-Box Lookup Table implementation where memory
accesses are both plaintext- (P ) and key- (K) dependent. Con-
sequently, the PRIME+PROBE attack can be used to determine

which index of the substitution table has been accessed, and
as a consequence, the attacker infers values for the target key
byte by relying on the fact that cache line accesses are made
to entries SBOX[Pi⊕Ki] with 0 ≤ i ≤ 16.

Figure 5(a) illustrates a PRIME+PROBE analysis performed
after 1 round of an unprotected AES encryption process for
the 256 possible values of the first plaintext byte and a set key
value (0x42). It is worth noting that the AES substitution table
fills one way in 16 cache sets. The Y-axis represents the probed
cache line, and the X-axis represents the value of the first byte
of the plaintext. The other bytes of the plaintext are filled
randomly for each experiment. These heat maps represent the
average hit rate measured by the attacker over 300 encryptions.
In Figure 5, the darker the square is, the more the victim has
evicted the attacker data from this cache set after the PRIME
phase of the attack. We can distinguish a pattern representing
the substitution table accesses pattern induced by the fixed
plaintext byte and the secret key value. Figure 5(b) shows
that the emphasis of the pattern is reduced when the attacker
probes after the second round of AES due to the diffusion
property of this encryption algorithm. Thus, in the following
security analysis, we consider the worst-case scenario where
the attacker is able to perform his analysis after the first round
of AES.

In order to evaluate our locking mechanism, Figure 5(c)
shows that the attacker cannot infer any information when the
victim locks the entire AES substitution table in the cache
memory. An attacker can only observe a constant hit rate
of 75% in the locked range due to self-eviction. Indeed, the
attacker uses a prime set of 4 addresses to fill the cache set,
and during the probing phase, the attacker evicts itself one
of its primed addresses since one way is locked for the AES
substitution table.

VII. PERFORMANCE EVALUATION

This section studies the impact of the proposed cache
locking mechanism on performance. We first evaluate the
performance overhead and binary code size introduced by the
use of lock and unlock instructions on the encryption al-
gorithms. Subsequently, we analyze the performance overhead
induced by locked cache lines on a process that does not rely
on the locking mechanism during its execution.

A. Performance of protected process

TABLE II
EXECUTION TIME OVERHEAD (%) INTRODUCING CACHE LOCKING

MECHANISM TO CAMELLIA AND AES-128.

Nb 1 4 8 16 64 128 512 1024

Camellia 367.7 99.6 54.22 28.88 7.62 3.85 0.97 0.48
AES-128 2.77 0.71 0.35 0.18 0.04 0.02 - -

In order to conduct the evaluation, we consider two sym-
metric block ciphers: AES-128 and Camellia, both encrypting
128-bit plaintext blocks. AES-128 accesses a 256-byte S-Box
while Camellia accesses four 1024-byte substitution tables.
Table II compares execution times between a conventional



and a protected encryption of Nb plaintext blocks. While
the conventional execution consists only in the encryption,
the protected execution consists in a three-step process (in
accordance with Section IV-D): lock the entire S-Box, en-
crypt Nb plaintext blocks and finally unlock the entire S-
Box. Considering Camellia, when a single block is encrypted
(Nb = 1), the execution time overhead increases to 368%.
This cost is caused by the execution of lock and unlock
instructions to lock the four 1024-byte S-Boxes. However, the
performance overhead drops below 1% for 512 consecutive
encryptions. The insertion of lock and unlock leads to
an overhead of 0.23 % in the binary code size. Regarding
AES-128, we observe a 2.8% performance overhead when
encrypting a single block and drops to 0.7% when Nb = 4.
The binary code size overhead is about 0.28% for AES-128.
These results show that the impact of the proposed protection
on performance can be considered as negligible as soon as the
number of blocks to be encrypted is sufficient.

B. Impact on non-protected processes
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(a) Miss rate results.
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(b) Performance efficiency results.

Fig. 6. Embench-IoT 1.0 results when a concurrent process locks Nl cache
lines. Blue dotted vertical line represents the need for an AES-128 process.
Red dotted vertical line represents the need for a Camellia process.

In this section, we study how locking cache lines affects
processes not relying on the locking mechanism during their
execution. Figure 6 shows performance results related to the
Embench-IoT 1.0 benchmark suite [18] while a concurrent
process locks a given amount of cache lines (Nl). Figure 6(a)
focuses on the miss rate metric, while Figure 6(b) focuses

on the performance efficiency metric. While most kernels
maintain a low and stable miss rate, some show increased
miss rates as Nl tends to 384. Indeed, at this point, the cache
behaves like a direct-mapped cache. Nevertheless, we can
notice a visible degradation for the minver kernel when the
concurrent process locks more than 230 cache lines. From this
threshold, the minver kernel stack collides with its own data
and causes a self-eviction due to the constraint space available
in cache. picojpeg exhibits similar behavior when Nl = 256.
Regarding the performance efficiency, Figure 6(b) shows the
same behavior as performance efficiency is related to the miss
rate metric. It is a matter of fact that an increase in miss rate
results in a concomitant decrease in performance efficiency
due to the greater number of accesses to main memory.

In order to illustrate relevant usage of the lock mechanism,
two vertical dotted lines are inserted in both Figure 6(a)
and Figure 6(b). The blue line, located at 16 locked caches
lines, represents the number of cache lines to be locked to
protect the AES-128 S-Box, while the red line, located at
256 locked cache lines, represents the four Camellia S-Boxes.
AES-128 does not affect other concurrent applications because
of its light load on the cache memory, for both miss rate and
performance efficiency metrics. The 256 cache lines locked
from Camellia increases the average miss rate by 0.36%.
Notably, the minver kernel suffers from a significant rise
from 0.55% to 5.33%, while other kernels have negligible
effects. Regarding performance efficiency, Camellia affects the
average performance efficiency by 1.08%. The minver kernel
is affected by 12.5%, while matmult-int and wikisort
kernels are affected by less than 2.5%.

VIII. RELATED WORK

Table III sums up the performance and area overheads for
many countermeasures thwarting cache-based timing attacks.
Most of the performance overheads have been extracted from
Deng et al. evaluations [19] relying on high-end systems. The
first solution, Winderix et al. [3], is a software transformation
of the code through the compiler to make it constant time.
This solution brings a performance overhead of 19% to 76%,
depending on the program mitigated, and requires no hardware
modifications, saving on surface area.

Regarding the hardware countermeasures modifying the
cache architecture, we first focus on the randomized solutions
[4]–[6]. These solutions propose hardware remapping of cache
memory accesses. They imply a low performance overhead
(<10%) and an area overhead ranging from 5 to 10%. It is
important to notice that the performance overhead applying
a randomization-based countermeasures does not consider the
PRIME+PRUNE+PROBE attack where a frequent rekeying (or
remapping) is required to maintain an acceptable level of
security but leading to an higher performance overhead.

Then, partitioning-based solutions [8]−[9] propose a parti-
tioning among cache ways, where cache ways are allocated to
a process or a group of processes to be protected. This coarse
grained partitioning introduces an acceptable performance
overhead (<12%), however the evaluation results depend on



TABLE III
COMPARISON WITH CACHE DESIGNS THWARTING CACHE-BASED TIMING ATTACKS FROM THE LITERATURE.

Countermeasure Mechanism Type Constant-time Performance Overhead [19] Area Overhead

Winderix et al. [3] Compiler-Assisted Hardening Software ✓ 19-76% 0%
[4]–[6] Randomization Hardware ✗ 1-10% 5-10%
NOMO-CACHE [8] Fixed way partitioning Hardware ✗ 5% -
SECDCP [9] Dynamic way partitioning Hardware ✗ 12% -
PLCACHE [4] Dynamic cache line partitioning Hybrid ✗ 12% -
Our contribution Dynamic cache line partitioning Hybrid ✓ 2% <3%

the application requirements. Although PLCACHE [4] relies
on a similar approach, the performance and area overhead
would be higher than our contribution because of the need
to support cache bypassing and the complexity to handle an
access passing through the cache. Nevertheless, none of the
proposed solutions guarantee constant-time accesses.

IX. DISCUSSION

We have implemented and evaluated our cache locking
mechanism on a low-cost and low area core. However, we
believe that the proposed locking mechanism can be integrated
into a performance-oriented processor integrating optimiza-
tions such as out-of-order execution, speculation or deeper
pipeline. Such microarchitectural optimizations would not
impact the security level offered by the proposed mechanism
since a locked cache line cannot be tampered until a dedicated
unlock instruction is executed. However, this claim remains
true if and only if the software developer does not introduce
software structure in which unlock instructions could be spec-
ulatively executed.

Security-wise, we are aware that an attacker is able to
deduce the number of locked cache lines. As mentioned in
Section VI, since the attacker hit rates depend on the number
of locked cache lines in a cache set, he deduces that one cache
line is locked if his PROBE phase leads to a hit rate of 75%.
The attacker observes a 50% hit rate when 2 cache lines are
locked, 25% for 3 cache lines. Consequently, the number of
locked cache lines should never be secret-dependent.

The management of the proposed solution at the OS level is
out the scope of this paper. However, when the limit of locked
cache lines is reached and causes an exception, we believe
that the process scheduling could be paused until resources
are released (i.e. unlocked). Moreover, we believe that the
proposed mechanism should be available for a reduced set
of critical kernels (e.g. critical OS services) to limit the risk
of Denial of Service attacks.

X. CONCLUSION

In this paper, we propose a fine-grained partitioning re-
lying on a cache locking mechanism to thwart cache-based
timing attacks. In order to provide an on-demand solution,
the proposed cache locking mechanism is software-driven by
extending the RISC-V ISA with new lock and unlock
instructions. We detail our hardware implementation on a low
area RISC-V processor and show that the proposed implemen-
tation leads to a very low area overhead (<3%).We demonstrate
the security capacity of our solution using a PRIME+PROBE
attack on AES-128. Our performance evaluation shows a low

overhead for protected processes when using the proposed
protection mechanism. The impact on concurrent processes is
lower than 2% on a realistic framework. As a perspective,
we aim to explore generalizing the locking mechanism to
multi-level cache and implementing the proposed approach
on multicore systems. We also plan to study and develop
operating system services dedicated to the management of the
proposed lock mechanism.
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