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Abstract

This paper introduces new descriptors and invariants for hypergraphs. We
develop a new type of Zeta functions and density functions, that are proved
to have useful invariance and monotony properties. Links with hypergraph
entropies are established as well. New matrices linked with hypergraphs are
also proposed, from which a new type of Laplacian associated with hyper-
graphs is derived.
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1. Introduction

The theory of networks and hyper-networks is explored in many fields of
human activity. These structures are represented in most cases by graphs
or hypergraphs. Their study often involves descriptors and invariant charac-
teristics. As an example, many have been introduced, particularly in chem-
istry [32, 39, 23].

These indices are of various nature: arithmetic, topological geometric,
algebraic, combinatorial, but also analytical [5, 6, 35, 29]. Over the past
twenty years, many works have been carried out on these indices, which
proved useful in other fields than those where they were introduced. This
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shows that finally this study has become an autonomous field of graph theory,
as illustrated e.g. in [18, 44] .

The algebraic theory of graphs has demonstrated its relevance in several
application fields. It is used in classification, deep learning, image analysis
and many other sciences. The study of the spectrum of the adjacency matrix
and the Laplacian matrix is key in these applications. The study of eigen-
values and eigenvectors gives excellent information on the combinatorics of
graphs, thus making it possible to bring more precision on topological pa-
rameters of these structures. Most of the classical matrices associated with
graphs can be seen as operators acting on a set of functions defined on ver-
tices or edges. This led to the introduction of functional analysis in a discrete
version. The tools derived from analysis, notably in physics such as Dirich-
let’s problem or Green’s functions, were introduced in graph theories, and
combinatorial versions of the great theorems of mathematical physics were
developed, thus showing their usefulness for the different network applica-
tions [15, 16].

The theory of hypergraphs is more recent than that of graphs. For about
fifteen years, given the development of algorithmics on hypergraphs, these
are widely used in applied sciences [10]. Naturally several mathematicians
and computer scientists have tried to adapt the tools of the graph theory to
hypergraphs. Invariants, such as Randic index, Wiener index, Estrada index
for example, have been generalized with more or less success. However, work
on these generalizations is not as advanced as that on graphs. While the
representation by adjacency matrix of a graph fully characterizes it, this is
not the case for a hypergraph. This creates some problems, particularly
in the definition of the Laplacian, for example. Consequently, there is a
relatively large loss of information. Interesting attempts have been made
to address these issues [13, 14, 2]. Starting from the diffusion processes of
modern physics such as the heat equation or wave equations, some authors
have given definitions of classical operators of functional analysis which have
shown their validity in the study of hypergraphs [13, 14].

In this article we propose to extend the various analyzes that have been
carried out in the work cited above. The philosophy of our work is to start
from invariants inspired for example by Randic index and others, then to
develop new basic parameters, associated with hypergraphs, and which allow
us to introduce new matrices associated with hypergraphs. This, as we will
see, is in our opinion more relevant than those which have been introduced so
far because they take better into account the topology of the hypergraphs.
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Thirdly, thanks to these matrices and therefore introduced invariants, we
develop the classic tools of functional analysis.

The paper is organized as follows. Section 2 recalls the definitions related
to hypergraphs which are used throughout the article. Section 3 introduces
new hypergraph invariants. They are based on the combinatorial topology
of these structures and are inspired by the notion of Riemann ’s function.
Elementary properties are developed in Section 4, which allows us on the
one hand to connect different notions of entropies with our invariants, and
on the other hand to identify the links between some hypergraph parame-
ters and the Zeta function as well as the density function. A comparative
study between the Zeta function and the density functions is carried out in
Section 5. This shows that these functions could play an interesting role
in additive-multiplicative number theory. This, to some extent, justifies the
names given to these invariants. To illustrate the use of the invariants intro-
duced in our work, some applications of the proposed Zeta-like functions are
given in Section 6, in particular to characterize certain types of hypergraphs.
Section 7 introduces new matrices associated with hypergraphs, which allow
us to show that the proposed Zeta functions form bounds of the Estrada
function, which is well known in mathematical chemistry for instance. More-
over a Laplacian operator is introduced, along with its properties.

in Section 8, we will introduce some applications in order to illustrate the
relevance of the concepts introduced throughout this article.We approached
two areas, chemistry and image analysis where the use of the tools forged in
this work can be promising. Obviously, other sectors could be investigated,
but this section is simply an introductory illustration.

In the last section we explore some avenues for future work, notably on
dynamic hypergraphs which are increasingly important in (hyper)network
theory.

2. Preliminaries

Let us first recall some useful notions on hypergraphs [10]. A hypergraph
H denoted by H = (V,E) is defined as a pair of a finite set V of vertices and
a finite family E = {ei, i = 1...m} of hyperedges (only finite hypergraphs
are considered in this paper). Hyerpedges can be considered equivalently as
subsets of vertices or as a relation between vertices of V . The first inter-
pretation is considered here, and we will note x ∈ ei the fact that a vertex
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x ∈ V belongs to the hyperedge ei. In this paper, it is further assumed that
E is non-empty, that each hyperedge is non-empty (i.e. ∀ei ∈ E, ei 6= ∅), and
that H is simple (i.e. ∀(ei, ej) ∈ E2, ei ⊆ ej ⇒ i = j, which implies that H
is without repeated hyperedges). The degree of a vertex x of V is defined as
d(x) =

∑
e∈E 1x∈e, where 1x∈e = 1 if x is a vertex of e and 0 otherwise. For

a simple hypergraph H, we have d(x) = |{e ∈ E | x ∈ e}| = |H(x)| where H
is the star of x in H (see below).

In order to study the fine structure of an hypergraph, the following notions
are important in this paper:

• A partial hypergraph H ′ of H generated by J ⊆ {1...m} is a hypergraph
(V ′, {ej, j ∈ J}), where ∪j∈Jej ⊆ V ′ ⊆ V . This definition induces a
partial ordering between hypergraphs, denoted by H ′ ≤ H: H ′ ≤ H if
H ′ is a partial hypergraph of H.

• A hypergraph H = (V,E) is isomorphic to a hypergraph H ′ = (V ′, E ′)
(H ' H ′), if there exist a bijection f : V → V ′ and a bijection π :
{1...m} → {1...m′}, where m = |E| and m′ = |E ′|, which induce a
bijection g : E → E ′ (if H is simple, g(e) = {f(x) | x ∈ e}) such that
g(ei) = e′π(i) for all ei ∈ E and e′π(i) ∈ E ′. The mapping f is then called
isomorphism of hypergraphs. Obviously it implies m = m′.

Let H = (V,E) be a hypergraph with |V | = n, |E| = m. The incidence
matrix of H is defined by: I(H) = ((ai,j))(i,j)∈{1...m}×{1...n} where ai,j = 1 if
xj ∈ ei, and ai,j = 0 otherwise. Let H = (V,E) be a hypergraph with |V | =
n, |E| = m, the transposed of I(H), I(H)t, gives rise to a new hypergraph
called dual hypergraph denoted by H∗ = (V ∗, E∗), with |V ∗| = m and |E∗| =
n, and the incidence matrix of H∗ is I(H)t.

A hypergraph H = (V,E) is said connected if ∪e∈Ee = V (i.e. there is
not isolated vertex), and ∀(e, e′) ∈ E2,∃k ∈ N,∃(e1...ek) ∈ Ek, e1 = e, ek =
e′,∀i < k, ei ∩ ei+1 6= ∅.

A star centered at x in a hypergraph H = (V,E) is the collection of hy-
peredges which contain x: H(x) = {e ∈ E | x ∈ e} (which is a multiset if the
hypergraph has repeated hyperedges), hence |H(x)| = d(x). A hypergraph
H = (V,E) is called a star if there exists a vertex x ∈ V such that H(x) = E.

A hypergraph H = (V,E) is linear if it is simple and ∀(ei, ej) ∈ E2, i 6=
j, |ei ∩ ej| ≤ 1.

Let H = (V,E) be a loopless hypergraph (i.e. ∀e ∈ E, |e| ≥ 2), a hyper-
path in H is an ordered sequence (e1, e2, . . . , ek) such that two consecutive
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hyperedges intersect in exactly one vertex and non-consecutive hyperedges
are disjoint. Moreover, if the sequence is cyclic, i.e. |ek ∩ e1| = 1, then it is a
hypercycle. By extension, a hypergraph H = (V,E) is called hypercycle if all
the hyperedges can be numbered as e1...em such that the sequence (e1...em)
is a hypercycle.

Convention 1. In this paper, all considered hypergraphs are simple, without
isolated vertex, without empty hyperedge, and finite, i.e. the cardinality of the
sets of both vertices and hyperedges are finite.

3. Hypergraph characteristics from Zeta function

3.1. Combinatorial parameters

Let H = (V,E) be a hypergraph with |V | = n, |E| = m.

Definition 1. For any e ∈ E we define the multiplicative degree and the
additive degree of e as

d×e =
∏
x∈e

d(x) and d+
e =

∑
x∈e

(d(x)− 1).

Note that for a vertex x that belongs only to one hyperedge e, then d(x) = 1
(and d(x) − 1 = 0), which means that this vertex does not play any role
in d×e nor d+

e . Moreover, isolated vertices are not involved at all in these
characteristics.

Definition 2. The hyperedge mutiplicative degree and hyperedge addtive
degree of H are defined b y:

δ×(H) =
∑
e∈E

d×e and δ+(H) =
∑
e∈E

d+
e .

Note that these two characteristics of H only depend on hyperedges (hence
their names), and are independent of potential isolated vertices in H. Since
∀e ∈ E, d×e ≥ 1 (hyperedges are assumed to be non-empty), δ×(H) ≥ 1. By
contrast, we can have δ+(H) = 0 in the case where every vertex belongs at
most to one hyperedge. Intuitively, these characteristics represent how much
H is “connected”, i.e. they increase when vertices belong to more hyperedges.
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From these parameters we define two discrete probability distributions
on E, if δ+(H) 6= 0 for the second one:(

p×e
)
e∈E =

(
d×e

δ×(H)

)
e∈E

and
(
p+
e

)
e∈E =

(
d+
e

δ+(H)

)
e∈E

Intuitively, these distributions illustrate how “homogeneous” is the topology
of H among the hyperedges.

3.2. Zeta functions, density functions

In the sequel we use the notation • to denote either × or +. Recall that
the Zeta function is defined for any s ∈ C, as ζ(s) =

∑+∞
n=1

1
ns

. By analogy,
we define Zeta functions on hypergraphs, as follows.

Definition 3. The multiplicative-additive Zeta functions of a hypergraph
H, or for short Zeta functions, as:

ζ•H(s) =
∑
e∈E

(
1

d•e

)s
(1)

where the sum is restricted to e such that ( 1
d+e

)s is well defined.

Definition 4. Similarly, we define (multiplicative-additive) density func-
tions of H as:

k•H(s) =
∏
e∈E

(
1

d•e

)s
(2)

where the product restricted to e such that ( 1
d+e

)s is well defined.

Note that in these definitions, no restriction applies for d×e since these
values are always greater than or equal to 1. For d+

e , the following result
allows using a limit value when the real part of s is negative.

Proposition 1. Let σ = Re(s). We have limd+e →0( 1
d+e

)s = 0 for σ < 0.

Therefore, for d+
e = 0, we can set

(
1

d+
e

)s =


0 if σ < 0
1 if s = 0
undefined otherwise

These two functions measure the complexity of the topology of H, as
shown in the following examples.
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Example 1. If H is such that there is no intersection between any two hy-
peredges (every hyperedge is “isolated” and there are as many connected com-
ponents as hyperedges), then ∀e ∈ E,∀x ∈ e, d(x) = 1, and d×e = 1, d+

e = 0.
Therefore ∀s ∈ C, ζ×H(s) = |E| = m, and k×H(s) = 1. Using the convention
in the previous proposition, we have ζ+

H(s) = k+
H(s) = 0 if Re(s) < 0, and

ζ+
H(0) = m,k+

H(0) = 1. Otherwise, these two quantities are undefined. A
generalization of this example will be given in Section 4.

Example 2. If the hyperedges are “chained”, i.e. ∀i < m, ei ∩ ei+1 = {xi}
and xi 6= xj,∀i 6= j, then d+

e1
= d+

em = 1, d+
ei

= 2, ∀i, i 6= 1, i 6= m, and
d×e1 = d×em = 2, d×ei = 4,∀i, i 6= 1, i 6= m. Therefore ∀s, ζ+

H(s) = 2 + (m −
2)2−s,k+

H(s) = 2−s(m−2), while ζ×H(s) = 2.2−s+(m−2)4−s,k×H(s) = 2−2s(m−1)

(hence they depend on s).

In the same way, we can define two functions for the dual H∗ of H, as:

ζ•H∗(s) =
∑
x∈V

(
1

d•x

)s
(3)

k•H∗(s) =
∏
x∈V

(
1

d•x

)s
(4)

with similar restrictions on the x involved in the sums, where

d×x =
∏
e3x

|e| and d+
x =

∑
e3x

(|e| − 1),

and
δ×(H∗) =

∑
x∈V

d×x and δ+(H∗) =
∑
x∈V

d+
x .

Remark 1. In the following we will restrict the study to the analytic func-
tions of H, while keeping in mind that other combinatorial parameters can
be exploited by considering the dual.

Remark 2. While the definitions above are given in general for s ∈ C (ac-
cording to the definition of the Zeta function), some of the results in the
sequel will be proved only for restricted cases, with s ∈ R or s ∈ N.
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3.3. Hypergraph entropies

A usual way to measure complexity is via entropy. While several no-
tions of graph or hypergraph entropy have been defined [7, 20, 17], here new
definitions are proposed, using the probability distributions introduced in
Section 3.1.

Definition 5. Let H be a simple hypergraph such that δ+(H) 6= 0. We define
three entropies:

S•(H) =−
∑
e∈E

p•e ln p•e hypergaph Shannon entropy (5)

R•s(H) =
1

1− s
ln(
∑
e∈E

(p•e)
s), s ∈ R+ \ {1} hypergaph Renyi entropy (6)

T •s (H) =
1−

∑
e∈E(p•e)

s

s− 1
, s ∈ R \ {1} hypergaph Tsallis entropy (7)

For δ+(H) = 0, i.e. ∀x, d(x) ≤ 1 and ∀e, d+
e = 0, we set p+

e = 1
m

, expressing
the “regularity” of H, where all hyperedges are disconnected from each other.
Then S+(H) = R+

s (H) = lnm and T+
s (H) = 1−m1−s

s−1
.

By duality we have similar formulas for H∗.

Remark 3. For the sake of simplicity we use the natural logarithm in all
these definitions.

Remark 4. The limit of the Tsallis entropy when s → 1 is the Shannon
entropy, i.e. −

∑
e∈E p

•
e ln p•e [42].

4. Properties

In this section, we prove a number of properties of the defined functions,
as well as some links between them.

4.1. Basic properties

The different analytic functions defined in Section 3 can be linked accord-
ing to the following properties.

Proposition 2. Let H = (V,E) be a hypergraph, we have the following prop-
erties:
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1. for all s ∈ R+, ζ•H(−s) = (δ•(H))s e(1−s)R•s(H) (for s = 1, where the
Renyi entropy is not defined, we take the limit, i.e. (1 − s)R•s(H) =
ln
∑

e∈E(p•e)
s, which is defined for s = 1);

2. for all s ∈ R, ζ•H(−s) = δ•(H)(1− (s− 1)T •s (H));
3. ζ•H

′(0) = − ln (k•H(−1)), where ζ ′ denotes the derivative of ζ with re-
spect to s;

4. ζ•H
′(−1) = δ•(H) [− ln δ•(H) + S•(H)].

Proof:

1. ln ζ•H(−s) = ln
∑

e∈E (d•e)
s = ln (δ•(H))s + ln

∑
e∈E (p•e)

s =
ln (δ•(H))s+(1−s)R•s(H); consequently ζ•H(−s) = (δ•(H))s e(1−s)R•s(H);

2. ζ•H(−s) =
∑

e∈E (d•e)
s = (δ•(H))s

∑
e∈E p

•
e
s = (δ•(H))s (1− (s− 1)T •s (H))

(and this also holds for s = 1);
3. ζ•H

′(s) = −
∑

e∈E (d•e)
−s ln d•e; hence, ζ•H

′(0) = −
∑

e∈E ln d•e = − ln
∏

e∈E d
•
e =

− ln (k•H(−1));
4. ζ•H

′(−1) = −
∑

e∈E d
•
e ln d•e = −

∑
e∈E δ

•(H)p•e ln (δ•(H)p•e) = −δ•(H) ln δ•(H)+
δ•(H)S•(H).

4.2. Combinatorial parameters and analytic functions

Proposition 3. Let H = (V,E) be a hypergraph with |V | = n and |E| = m
(m > 0). We have the two following properties:

1. ζ•H(0) = m;
2. ζ•H(−1) = δ•(H);
3. k•H(0) = 1.

Proof: We have: ζ•H(s) =
∑

e∈E e
−s ln d•e . So

1. ζ•H(0) = |E| = m;
2. and ζ•H(−1) =

∑
e∈E d

•
e = δ•(H).

3. The proof of (3) is direct.

The following property is an important result, since it shows that the
Zeta and density functions are invariant characteristics with respect to iso-
morphisms (which is not surprising since they only involve the topology of
the hypergraph), and that they are monotonous with respect to the partial
ordering ≤. These are important features to use these functions as hyper-
graph descriptors.

9



Proposition 4. Let H = (V,E) and H ′ = (V ′, E ′) be to hypergraphs, then

1. If H ' H ′ then for all s ∈ C, ζ•H(s) = ζ•H′(s) and k•H(s) = k•H′(s).

2. If H ′ ≤ H then for all s ∈ R, s ≤ 0, ζ•H(s) ≥ ζ•H′(s), k•H(s) ≥ k•H′(s).

Proof:

1. Assume that H ' H ′. Let f be an isomorphism between H and H ′.
Then the two hypergraphs have the same size, i.e. |V | = |V ′| and
|E| = |E ′|, and the same topology. Hence, for all x ∈ V , f(x) ∈ V ′

and d(x) = d(f(x)); for all e ∈ E, g(e) ∈ E ′ (g being the bijection
induced by f between E and E ′) and d•e = d•g(e). This implies that

ζ•H(s) = ζ•H′(s) and k•H(s) = k•H′(s).
Note that the result also holds if H and H ′ are only isomorphic up
to isolated vertices (although not considered in this paper), since only
hyperedges are involved in the Zeta and density functions.

2. Assume now that H ′ ≤ H (i.e. H ′ is a partial hypergraph of H). Since
by definition E ′ ⊆ E, the degree of a vertex in H is higher than in H ′.
Let g be the natural injection from E ′ into E (induced by the inclusion):
∀e ∈ E ′, g(e) = e. Then we have d•e ≤ d•g(e) for all e ∈ E ′, where d•e is

meant in H ′, while d•g(e) is in H, and for s ≤ 0, ( 1
d•e

)s ≤ ( 1
d•
g(e)

)s, and the

reverse inequality for s > 0. Consequently, since ζ•H(s) contains terms
for e also belonging to E ′ and additional terms for e ∈ E \ E ′ (which
do not appear at all in ζ•H′(s)), we can conclude for s ≤ 0 but not for
s > 0. For k•H(s), the additional terms are greater than 1 for s ≤ 0
and involved in a product, so we can also conclude in this case. Finally
we get: if s ≤ 0 then ζ•H(s) ≥ ζ•H′(s), k•H(s) ≥ k•H′(s).

Recall that a a hypergraph H = (V,E) is a matching if for all e, e′ ∈ E,
e 6= e′, we have e ∩ e′ = ∅ (i.e. E is a set of pairwise disjoint hyperedges).

Proposition 5. Let H = (V,E) be a hypergraph, and s ∈ R. We have the
following properties:

1. H is a matching if and only if for all s > 0, ζ+
H(−s) = 0.

2. H contains at least one isolated hyperedge if and only if for all s > 0,
k+
H(−s) = 0
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Proof:

1. Assume that ζ+
H(−s) = 0 for s > 0.

We have ζ+
H(−s) =

∑
e∈E (d+

e )
s
. For all x ∈ e, d(x) ≥ 1, and therefore

d+
e ≥ 0, for all e. Hence ζ+

H(−s) = 0 implies that for all e ∈ E, d+
e = 0

(since s > 0), and therefore for all x ∈ V , d(x) = 1 if x belongs to a
hyperedge (then exactly one), or d(x) = 0 if x is isolated; so H is a
matching.
Conversely suppose that H is a matching. In this case for any e ∈ E,
we have ∀x ∈ e, d(x) = 1; consequently

∑
e∈E
(∑

x∈e(d(x)− 1)
)s

= 0,
so ζ+

H(−s) = 0.

2. We have the following equivalences, for s > 0:
k+
H(−s) = 0 ⇔ ∃e ∈ E, d+

e = 0 ⇔ ∃e ∈ E,∀x ∈ e, d(x) = 1 ⇔ ∃e ∈
E, e isolated.

Remark 5. These results suggest a counter-example illustrating the fact that
in the first item of Proposition 4 the converse is not true. For instance take
two hypergraphs H,H ′ which are both matchings, and which have the same
number m of hyperedges. Assume than in the first one there is an hyperedge
whose cardinality is greater than the one of every hyperedge of the second one,
then H 6' H ′. Since H and H ′ are matchings, we have ζ+

H(−s) = ζ+
H′(−s)

for all s > 0, ζ+
H(0) = ζ+

H′(0) = m, and the two functions are undefined
otherwise. This means that for all s for which the functions are defined, they
are equal. But the two hypergraphs are not isomorphic.

4.3. Hypergraph entropy and regularity

A hypergraph H = (V,E) is multiplicative degree regular if there exists
k ∈ N such that d×e =

∏
x∈e d(x) = k for all e ∈ E, and it is additive degree

regular if there exists k′ ∈ N such that d+
e =

∑
x∈e(d(x) − 1) = k′ for all

e ∈ E.

Proposition 6. Let H = (V,E) be a hypergraph with |E| = m. The two
following properties are equivalent:

1. H is multiplicative (respectively additive) degree regular;

2. S×(H) = lnm (respectively S+(H) = lnm).
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Proof: Assume that H is multiplicative degree regular, and let k be the
constant value of d×e . We have:

∀e ∈ E, d×e = k =⇒
∑
e∈E

d×e = mk

=⇒ ∀e ∈ E, p×e =
k

mk
=

1

m

=⇒ S×(H) = −
∑
e∈E

1

m
ln

1

m
= lnm.

Conversely, if S×(H) = lnm, then the discrete distribution is uniform, and
p×e = 1

m
for all e. This implies that d×e is constant for all e, i.e. there exists

k ∈ N such that d×e = k.
The proof for S+(H) is similar.

Note that a similar result holds for R•s and T •s for s 6= 0. Indeed the
extremal values of R•s (i.e. lnm) and of T •s (i.e. 1−m1−s

s−1
are achieved for

uniform distributions (i.e. p•e = 1
m
,∀e). The other direction ((1) ⇒ (2)) is

direct. Note that for s = 0, these two entropies do not depend on p•e, and
(2) does not imply (1).

5. Comparison between the density function and the Zeta function

In this section we establish further relations between the Zeta function
and the density function.

Lemma 1. Let F = {x1, x2, . . . , xm} ⊂ N with xi ≥ 2, for all i ∈ {1, 2, . . . ,m}.
Let s ∈ R and s ≥ 1, then for all subfamily {xi1 , xi2 , . . . , xik} ⊆ F , 1 ≤ k ≤ m
we have:

xsi1 + xsi2 + . . . xsik ≤ xsi1x
s
i2
. . . xsik ; (8)

1

xsi1

1

xsi2
. . .

1

xsik
≤ 1

xsi1
+

1

xsi2
+ . . .+

1

xsik
. (9)

Proof: Let us prove the first inequality by induction on k.

• For k = 1 the result is obvious.

• For k = 2, let us assume, without loss of generality, that xi1 ≤ xi2 .
Then xsi1 ≤ xsi2 since s ≥ 1. We also have 2 ≤ 2s ≤ xsi1 . Hence
xsi1 + xsi2 ≤ 2xsi2 ≤ xsi1x

s
i2

.

12



• Assume that Equation 8 is true for k, i.e. Sk ≤ Mk, where Sk =∑k
j=1 x

s
ij

and Mk =
∏k

j=1 x
s
ij

. Then Sk + ssik+1
≤Mk + ssik+1

. Two cases
may arise:

– If xsik+1
≤ Mk, then Sk+1 ≤ 2Mk ≤ Mkx

s
ik+1

since xik+1
≥ 2, and

therefore Sk+1 ≤ Mk+1, where Sk+1 et Mk+1 are defined similarly
as Sk and Mk.

– If xsik+1
≥Mk, then Sk+1 ≤ 2xsik+1

≤Mkx
s
ik+1

, and Sk+1 ≤Mk+1.

Then, by the induction hypothesis, we can conclude that Equation 8 is
true for all k ≤ m.

Let us now prove the second inequality. From Equation 8 we have
∏k

j=1
1
xsij
≤

1∑k
j=1 x

s
ij

. Let us assume without loss of generality that xsi1 ≤ xsij for all j. We

then have xsi1 ≤
∑k

j=1 x
s
ij

and 1
xsi1
≥ 1∑k

j=1 x
s
ij

. Finally

k∏
j=1

1

xsij
≤ 1∑k

j=1 x
s
ij

≤ 1

xsi1
≤

k∑
j=1

1

xsij

Theorem 1. Let H = (V,E) be a hypergraph, then

1. if for all x ∈ V , d(x) ≥ 2, then k×H(s) ≤ ζ×H(s) if s ≥ 1, and k×H(s) ≥
ζ×H(s) if s ≤ −1;

2. if for all x ∈ V , d(x) ≥ 3, then k+
H(s) ≤ ζ+

H(s) if s ≥ 1, and k+
H(s) ≥

ζ+
H(s) if s ≤ −1;

Note that while it is convenient to express general conditions on the degrees
of the vertices, the result holds for weaker conditions. Indeed it is sufficient
to have ∀e, d•e ≥ 2 for the inequalities to be true. This means that for • = ×
it is sufficient to have ∀e,∃x ∈ e, d(x) ≥ 2 (i.e. no isolated hyperedge), while
for • = + the condition would be ∀e, ∃x ∈ e, d(x) ≥ 3 or ∃x, x′ ∈ e, x 6=
x′, d(x) ≥ 2 and d(x′) ≥ 2 (which implicitly assumes that e contains at least
two vertices).

Proof: By applying Lemma 1.

Let us now show that, under some conditions, equality cannot occur.

13



Lemma 2. Let x1, x2, . . . , xm ∈ N, and m ≥ 3. If xi ≥ 2 for all i ∈
{1, 2, . . . ,m}, then for all s ≥ 1:

xs1 + xs2 + . . .+ xsm 6= xs1x
s
2, . . . x

s
m

In a similar way, for m ≥ 3 and s ≥ 1,
∑m

i=1( 1
xi

)s 6= Πm
i=1( 1

xi
)s.

Proof: Let x1, x2, . . . , xm ∈ N with xi ≥ 2 for all i ∈ {1, 2, . . . ,m}, and
m ≥ 3. Let s ≥ 1. Assume that xs1 + xs2 + . . . + xsm = xs1x

s
2, . . . x

s
m. Suppose

(without loss of generality) that x1 ≤ x2 ≤, . . . , xm−1 ≤ xm. Then xs1 + xs2 +
. . . + xsm ≤ m.xsm. By hypothesis this is equivalent to xs1x

s
2, . . . x

s
m ≤ m.xsm,

and since xm > 0 xs1x
s
2, . . . x

s
m−1 ≤ m. Because xi ≥ 2 for all i ∈ {1, 2, . . . ,m}

we have:
2s(m−1) ≤ xs1x

s
2, . . . x

s
m−1 ≤ m

which is impossible since s ≥ 1 and m ≥ 3. Hence the hypothesis is false
and xs1 + xs2 + . . .+ xsm 6= xs1x

s
2, . . . x

s
m.

The proof for the product is similar.

Theorem 2. Let H = (V,E) be a hypergraph such that for all x ∈ V , d(x) ≥
3. Then, for all s ≥ 1:

k•H(s) 6= ζ•H(s);

and
k•H(−s) 6= ζ•H(−s).

As in Theorem 1, these results hold actually under the weaker condition
that ∀e, d•e ≥ 2.

Proof: Directly by applying Lemma 1 and Lemma 2.

These results show that the two functions k•H and ζ•H are actually different
characteristics of hypergraphs.

Remark 6. If the conditions of Lemma 2 are not verified we can have the
equality, for instance

x1 = x2 = 2 then x1 + x2 = x1x2;

x1 = 3, x2 = 2 and x3 = 1, then x1 + x2 + x3 = x1x2x3

14



This theorem is very close to certain problems in number theory. This leads
us to bring the following problem:

Problem 1. Let x1, x2, . . . , xm ∈ N∗, m ≥ 2, and s ≥ 2. What is the set of
solutions of the following equation:

xs1 + xs2 + . . .+ xsm = xs1x
s
2, . . . x

s
m?

and is this set non-empty for any m ≥ 2 and s ≥ 2?

These solutions exist, for instance: let s = 2, m = 10, then (2, 2, 1, 1, 1, 1, 1, 1, 1, 1)
is a solution of the above equation.

6. Hypergraphs characterization from k•
H and ζ•

H functions

We show in this section that some hypergraphs can be fully characterized
by their k•H and ζ•H functions.

Theorem 3. Let F = {x1, x2, . . . , xr} ⊂ N∗ with r ≥ 1, then the two follow-
ing properties are equivalent:

1. ∏
xi∈F

xi −
∑
xi∈F

xi = 1− r; (10)

2. there is at most one element xj ∈ F such that xj > 1.

Proof: Assume that (2) is true. Two cases have to be considered:

• ∀i, xi = 1, then
∏

xi∈F xi −
∑

xi∈F xi = 1− r.

• Let xj ∈ F such that xj > 1 (and then ∀i 6= j, xi = 1); hence we have:∏
xi∈F

xi −
∑
xi∈F

xi = xj − (r − 1)× 1− xj = 1− r

This shows that in both cases (1) is true.
Now assume that (1) is true, i.e.

∏
xi∈F xi −

∑
xi∈F xi = 1 − r (with

r ≥ 1), and prove (2) by induction on r = |F |.

• If r = 1, it is obvious.
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• If r = 2, then x1x2 − (x1 + x2) = −1; hence, x1x2 < x1 + x2, and
by Lemma 1 there is at least one i ∈ {1, 2}, such that xi < 2. Since
F ⊂ N∗, xi = 1 (and therefore at most one is strictly greater than 1).

• Assume now that our assertion is true for any r ≥ 2, and prove it for
F with |F | = r + 1 ≥ 3. By hypothesis∏

xi∈F

xi −
∑
xi∈F

xi = 1− (r + 1) = −r

Since
∏

xi∈F xi <
∑

xi∈F xi, from Lemma 1 there is at least one l ∈
{1, 2, . . . , r, r + 1}, such that xl = 1. Therefore∏

xi∈F

xi −
∑
xi∈F

xi =
∏

xi∈F\{xl}

xi −
∑

xi∈F\{xl}

xi − 1 = −r

Hence ∏
xi∈F\{xl}

xi −
∑

xi∈F\{xl}

xi = 1− r

By induction hypothesis, there is at most one element xt ∈ F \ {xl},
such that xt > 1; since xl = 1, this concludes the proof.

Proposition 7. Let H = (V,E) be a linear connected hypergraph with |E| =
m, m ≥ 2, then the three following properties are equivalent, for s 6= 0:

1. H is a star;
2. ζ+

H(s) = m
(

1
m−1

)s
, ζ×H(s) = m

(
1
m

)s
and H is multiplicative and addi-

tive degree regular;
3. k+

H(s) =
(

1
m−1

)ms
, k×H(s) =

(
1
m

)ms
and H is multiplicative and additive

degree regular.

Proof:

• Let us first show (1)⇒ (2). From the definition of a star (see Section 2),
there exists a vertex x common to all hyperedges. Since H is linear,
this x is unique, and we have d(x) = m and ∀x′ ∈ V \ {x}, d(x′) = 1
if x′ is not isolated (0 otherwise). Hence d×e = m and d+

e = m − 1
for each e ∈ E. This shows that H is multiplicative and additive

regular. Moreover, we have ζ+
H(s) =

∑
e∈E

(
1
d+e

)s
= m( 1

m−1
)s and

ζ×H(s) =
∑

e∈E

(
1
d×e

)s
= m

(
1
m

)s
.
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• Let us show (2) ⇒ (3). Since H is multiplicative regular, there is a
constant k such that ∀e ∈ E, d×e = k. From ζ×H(s) = m

(
1
m

)s
= m

(
1
k

)s
we derive k = m if s 6= 0. Therefore k×H(s) =

∏
e∈E

(
1
d×e

)s
=
(

1
k

)ms
=(

1
m

)ms
(which also holds for s = 0). The proof for k+

H(s) is similar,
using the fact that H is additive regular and that m− 1 > 0.

• Let us now show (3) ⇒ (1). As above, it is easy to derive from the
expression of k×H(s) and from the fact that H is multiplicative regular
that, for s 6= 0, ∀e ∈ E, d×e = m. Similarly, from the expression of
k+
H(s) and from the fact that H is additive regular, we derive that
∀e ∈ E, d+

e = m− 1. Then d×e − d+
e = 1, and we have:∏

xi∈e

d(xi)−
∑
xi∈e

d(xi) = 1− |e|.

From Theorem 3, there is at most one x in e such that d(x) > 1. Two
cases arise:

– There is none, then e is an isolated hyperedge, which is impossible
since H is assumed to be connected with m ≥ 2;

– There is a unique x ∈ E such that d(x) = k, k > 1. Then there
exists a family of k hyperedges which share the vertex x ∈ e, and
since H is linear and connected this is them same x for each e ∈ E,
and consequently H is a star.

Note that for s = 0, we have k+
H(0) = k×H(0) = 1 whatever the values

of d+
e and d×e , and we cannot conclude anything on H.

Finally we have (1)⇒ (2)⇒ (3)⇒ (1) which shows the equivalence between
all three propositions.

Proposition 8. Let H = (V,E) be a loopless connected hypergraph with
|E| = m,m ≥ 2, then the three following properties are equivalent for s 6= 0:

1. H is a hypercycle;

2. ζ+
H(s) = m

(
1
2

)s
, ζ×H(s) = m

(
1
4

)s
and H is mutiplicative-additive degree

regular;

3. k+
H(s) =

(
1
2

)ms
, k×H(s) =

(
1
4

)ms
and H is mutiplicative-additive degree

regular.
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Proof:

• Let us show (1) ⇒ (2). From the definition of a hypercycle (see Sec-
tion 2), it is easy to show that ∀e ∈ E, d×e = 4 and d+

e = 2. Then the
proof of (2) is similar as the proof of Proposition 7.

• Proving that (2)⇒ (3) is similar as for Proposition 7.

• Let us now show that (3) ⇒ (1) for s 6= 0. From (3) we have that
d×e = k, d+

e = k′ where k, k′ are constant, and:

k+
H(s) =

∏
e∈E

(
1

d+
e

)s
=

(
1

k′

)ms
=

(
1

2

)ms
hence k′ = 2, and similarly

k×H(s) =
∏
e∈E

(
1

d×e

)s
=

(
1

k

)ms
=

(
1

4

)ms
hence k = 4. Therefore we have: d+

e = 2 and d×e = 4, for all e ∈ E.
Now, since d×e =

∏
x∈e d(x) = 4, it follows that d(x) is a divisor of 4,

i.e. equal to 1, 2 or 4. Assume that d(x) = 4, for x ∈ e. Then

d+
e =

∑
x∈e

(d(x)− 1) ≥ 3 > 2

which is impossible. Similarly it is impossible to have d(x) = 1 for all
x ∈ E. Therefore there exists at least one x ∈ E such that d(x) = 2.
Then

d+
e =

∑
x∈e

(d(x)−1) = 2 =
∑

y∈e\{x}

(d(y)−1)+d(x)−1⇒
∑

y∈e\{x}

(d(y)−1) = 1

consequently, there is exactly another vertex z ∈ e such that d(z) = 2,
and for all y ∈ e, y 6= x, y 6= z, d(y) = 1. This means that there exist
two other hyperedges e′, e′′ ∈ E \ {e}, e′ 6= e′′ such that x ∈ e′, z ∈
e′′, |e ∩ e′| = 1, |e ∩ e′′| = 1. Therefore e′, e, e′′ are consecutive. Since
this holds for any e (by repeating the reasoning process to e′′ and so
on), and E is finite, the set of all hyperedges can be organized in a
cyclic hyperpath, and therefore H is a hypercycle.

Finally we have (1)⇒ (2)⇒ (3)⇒ (1) which shows the equivalence between
all three propositions.
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7. Zeta-density matrices and Laplacian

In this section we introduce new matrices associated with hypergraphs
and we define new types of Laplacians. The problem of the Laplacian as-
sociated with a hypergraph comes from the adjacency matrix, which does
not convey the topological structure of the hypergraph (how the hyperedges
intersect with each other). It is a vertex-vertex matrix, where if x, y are
vertices then the coefficient of this matrix ax,y is equal to the number of
hyperedges which contain x and y. With this type of matrix we loose a lot
of information. This loss is passed on to the associated Laplacian. For in-
stance two different hypergraphs may have the same adjacency matrix. To
overcome this problem, many authors have introduced a tensorial represen-
tation of hypergraphs [12, 27, 32, 34, 36, 45]. It is, in a way, a generalized
matrix. Despite the interest of such a representation and the richness of the
derived results, it raises other problems. For example the calculation of the
eigenvalues is difficult.

Therefore, we propose new matrices which area relevant in the sense that
they better represent the topology of the hypergraphs. In addition, they
convey information on the hyperedges and on the vertices, such as the de-
grees. Furthermore, they are linked to the Zeta and density functions defined
above.

7.1. Zeta-density matrices

Let H = (V,E) be a hypergraph, with E = {e1...em}. We assume that
for all e ∈ E, d•e ≥ 1. Note that this is always the case for d×e . For d+

e this
imposes an additional constraint on the topology of the hypergraph, i.e. at
least one vertex of each e is also belongs to another hyperedge. Let s ∈ N
(the results below can be easily generalized by taking s ∈ R).
Zeta-density matrices are defined as the matrices Z+(s) and Z×(s) whose
general terms are respectively:

Z+(ei, ei)(s) = 0, Z×(ei, ei)(s) = 0

and for i 6= j

Z+(ei, ej)(s) =


(

1
d•ei+d

•
ej

)s
if ei ∩ ej 6= ∅;

0 if ei ∩ ej = ∅.
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Z×(ei, ej)(s) =


(

1
d•eid

•
ej

)s
if ei ∩ ej 6= ∅;

0 if ei ∩ ej = ∅.
Note that in these definitions, d• can be either d× or d+ (i.e. we have four
different matrices).

Note that these matrices are well defined thanks to the hypothesis that
for any e ∈ E, d•e ≥ 1.

7.2. Laplacian operator

Let F denote the set of functions from E to R: F = RE. Let f ∈ F .
The gradient ∇f of f on H = (V,E) is defined as follows:

∀(e, e′) ∈ E × E, ∇f(e, e′) = (f(e)− f(e′))1e,e′

where

1e,e′ =

{
1 if e ∩ e′ 6= ∅;
0 otherwise.

Let us again consider Ae = {e′ ∈ E | e′ 6= e and e ∩ e′ 6= ∅}, and define, for
s ∈ N:

ζ+(e)(s) =
∑
e′∈Ae

(d•e + d•e′)
s =

∑
e′∈Ae

Z+(e, e′)(−s)

The Laplacian operator ∆s is defined by:

∆sf(e) =
1

ζ+(e)(s)

∑
e′∈E

(f(e)− f(e′)) Z+(e, e′)(−s)

=f(e)− 1

ζ+(e)(s)

∑
e′∈E

f(e′)Z+(e, e′)(−s)
(11)

and since Z+(e, e′)(−s) = 0 when e = e′ or e ∩ e′ = ∅, then

∆sf(e) =f(e)− 1

ζ+(e)(s)

∑
e′∈Ae

f(e′)Z+(e, e′)(−s) (12)

By using the gradient operator we have:

∆sf(e) =
1

ζ+(e)(s)

∑
e′∈E

∇f(e, e′)Z+(e, e′)(−s) (13)

By duality, we can define an operator ∆s on the vertices by taking the
dual H∗. In addition we can also take as basic operator Z×(s).
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7.3. Classical results

Let H = (V,E) be a hypergraph, such that for all e ∈ E, d+
e 6= 0. Then

for all f, f ′ ∈ F , it is easy to show that

〈f, f ′〉s =
∑
e∈E

ζ+(e)(s)f(e)f ′(e) (14)

is an inner product.

Proposition 9. Let H be a connected hypergraph, and s ≥ 1. Then

i) the operator ∆s is positive semi-definite: for all f ∈ F , 〈∆sf, f〉s ≥ 0;

ii) the operator ∆s is symmetric: ∆s = ∆t
s.

Proof:∑
e∈E

ζ+(e)(s)∆sf(e)f(e) =
∑
e∈E

∑
e′∈E

(f(e)− f(e′)) f(e)Z+(e, e′)(−s)

=
∑
e′∈E

∑
e∈E

(f(e′)− f(e)) f(e′)Z+(e, e′)(−s)

(by exchanging the roles of e and e′). Now, by adding the two second mem-
bers, we get:

〈∆sf, f〉s =
1

2

(∑
e∈E

∑
e′∈E

(f(e)− f(e′))2Z+(e, e′)(−s)

)

which is positive, hence
〈∆sf, f〉s ≥ 0.

Now take the difference:

〈∆sf, g〉s − 〈f,∆sg〉s =
∑
e∈E

∑
e′∈E

(f(e)− f(e′)) g(e)Z+(e, e′)(−s)−
∑
e∈E

∑
e′∈E

f(e)
(
g(e)− g(e′)Z+(e, e′)(−s)

)
=−

∑
e∈E

∑
e′∈E

f(e′)g(e)Z+(e, e′)(−s) +
∑
e∈E

∑
e′∈E

f(e)g(e′)Z+(e, e′)(−s) = 0

by exchanging e and e′ and since e, e′ run through the whole E.
Hence, 〈∆sf, g〉s = 〈f,∆sg〉s.
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To the operator ∆s we can associate a matrix M∆s defined as:

M∆s = Im −
(

1

ζ+(•)(s)

)
◦ Z+(−s) (15)

where Im is the identity matrix of size m, and
(

1
ζ+(•)(s)

)
is a m × m-

matrix where lines are the repeated coefficient 1
ζ+(ei)(s)

m times for all i ∈
{1, 2, . . . ,m}. By denoting ei, i = 1...m, the hyperedges of H, we have

M∆s(f(e1), ...f(em))t = ∆s(f(e1), ...f(em))t

From Proposition 9 this matrix is symmetric and positive semi-definite.
Consequently its eigenvalues, denoted by µi(s), are real and positive with

0 ≤ µ1(s) ≤ µ2(s) ≤ . . . ≤ µm(s)

They are associated to an orthogonal basis formed by the eigenfunctions
{φi(s), i ∈ {1, 2, . . . ,m}}, that can be seen as functions of F .

Let us define pe,e′ = Z+(e,e′)(−s)
ζ+(e)(s)

. It is easy to verify that 0 ≤ pe,e′ ≤ 1 and∑
e′∈Ae pe,e′ = 1. Let P = (pe,e′)e,e′ , which defines on F the Markov operator

by setting:

Pf(e) =
∑
e′∈E

pe,e′f(e′) (16)

Laplace operator and Markov operator are linked by:

M∆s = Im − P = Im −
(

1

ζ+(•)(s)

)
◦ Z+(−s) (17)

Lemma 3. Let H be a connected hypergraph, and s ≥ 1. Then

i) µ1(s) = 0;

ii) µ2(s) ≤ m
m−1

;

ii) Spect(M∆s) ⊆ [0, 2], where Spect(M∆s) is the set of all eigenvalues of
M∆s.

Proof: (i) Let f ∈ F , such that for all e ∈ E, f(e) = 1 (i. e. f = 1);
then ∆sf(e) = 1

ζ+(e)(s)

∑
e′∈E (f(e)− f(e′)) Z+(e, e′)(−s) = 0. Consequently,
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thanks to the correspondence between ∆s and M∆s , µ1(s) = 0 is a eigenvalue
associated to the eigenfunction f = 1.

(ii) We have
∑m

i=1 µi(s) = Tr(M∆s) = m. Since µ1(s) = 0 and µ2(s) ≤
µj(s) for all j ≥ 2, it follows that (m− 1)µ2(s) ≤ m.

(iii) The spectral radius of a square matrix A denoted by ρ(A) is the
largest of the absolute values of the eigenvalues, hence ρ(P ) = µm(s), and by
Gershgorin circle theorem [21] we have, for all i ∈ {1, 2, . . . ,m}, |µi−pei,ei | ≤∑

e′∈E pe,e′ = 1. Consequently Spect(P ) ⊆ [−1, 1], by Equation 17, then
Spect(M∆s) ⊆ [0, 2].

7.4. Dirichlet problem

Dirichlet problem is fundamental in many areas of mathematics and
physics [22]. It appears in electrostatics, in heat conduction, in elasticity,
in theory of gravitation, among others. This problem has made it possible
to significantly advance mathematical knowledge in many directions.

This classical problem fits very well on graphs. We will now show that
we can also interpret it in the context of hypergraphs thanks to the matrices
proposed in this paper.

Before giving the main result of this section, we need to introduce a few
more definitions and a lemma.

Let H = (V,E) be a hypergraph and let f ∈ F . The function f is said
s-harmonic or harmonic on E ′ ⊆ E, if for s ∈ N∗ and for all e ∈ E ′

∆sf(e) = 0.

This expresses an equivalent of the Laplace equation in the discrete setting
provided by hypergraphs. If f satisfies this equation, then

f(e) =
1

ζ+(e)(s)

∑
e′∈Ae

f(e′)Z+(e, e′)(−s)

We can interpret a harmonic function by saying that the average value of
the function on the hyperedges which intersect a hyperedge e is equal to the
value on the function on this hyperedge.

Let H = (V,E) be a hypergraph and let E ′ ⊆ E. The adherence of E ′ is
defined as E ′ = {e ∈ E | ∃e′ ∈ E ′ such that e′ ∩ e 6= ∅}, and the boundary
of E ′ is defined as Fr(E ′) = E ′ \ E ′.
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Lemma 4. Let H = (V,E) be a connected hypergraph, H(E ′) = (V ′, E ′) its
partial hypergraph induced by E ′ ( E, E ′ 6= ∅ and |E ′| ≥ 2 (V ′ is the set
of vertices of V that are covered by the hyperedges in E ′), and assume that
H(E ′) is connected. Let f : E −→ R, and suppose that f verifies the two
following properties:

a) f is s-harmonic on E ′,

b) f reaches its maximum and minimum on E ′.

Then f is constant on E ′.

Proof: Let M = maxe∈E f(e) and denote by E ′′ = {e ∈ E | f(e) = M}.
From b) E ′ ∩ E ′′ 6= ∅, and since f is s-harmonic on E ′, we have for all
e ∈ E ′ ∩ E ′′: ∆sf(e) = 0, i.e.

0 =
1

ζ+(e)(s)

∑
e′∈A′e

(f(e)− f(e′)) Z+(e, e′)(−s) =
1

ζ+(e)(s)

∑
e′∈A′e

(M − f(e′)) Z+(e, e′)(−s).

where A′e = {e′ ∈ E ′ | e′ 6= e and e′ ∩ e 6= ∅}. This set is not empty by
definition. Since Z+(e, e′)(−s) > 0 and (M − f(e′)) ≥ 0 then f(e′) = M for
all e′ ∈ A′e. This means that every hyperedge that intersects an hyperedge
of E ′ ∩E ′′ has value M and hence belongs to E ′′. Since H(E ′) is connected,
it follows recursively that E ′ ⊆ E ′′. And similarly we conclude that E ′ ⊆ E ′′

since E ′ all hyperedges intersecting at least one hyperdege of E ′.
The same reasoning applies for the minimum.

Definition 6. Let H = (V,E) be a hypergraph, (E ′) its partial hypergraph,
for E ′ ( E, E ′ 6= ∅ and such that H(E ′) is connected. Let h : E ′ −→ R
and g : E \ E ′ −→ R be two fixed functions. The Dirichlet problem on
hypergraphs is expressed as follows: what are the functions f : E −→ R that
satisfy the following differential system

∆sf(e) = h(e) for all e ∈ E ′,
f(e) = g(e) for all e ∈ E \ E ′.

Note that the boundary E \ E ′ can be “thick” in comparison to the
classical Dirichlet problem.

Theorem 4. The Dirichlet problem for a connected hypergraph H = (V,E)
and its connected partial hypergraph H(E ′) admits a unique solution f .
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Note that if the hypergraph is not connected, then the result applies on each
connected component.
Proof: We must demonstrate the uniqueness of the solution as well as its
existence.

Uniqueness. Assume that there are two solutions f1 and f2; hence f =
f1 − f2 is a solution of the following system:

∆sf(e) = 0 for all e ∈ E ′,
f(e) = 0 for all e ∈ E \ E ′.

Assume that there is e ∈ E such that f(e) 6= 0.

1. If f(e) > 0, then f would reach its maximum M on E ′ (since
f(e) = 0 for all e ∈ E \ E ′), and from Lemma 4 f would be
constant (= M) on E ′ = E ′ ∪Fr(E ′). Since E ′ ( E, Fr(E ′) 6= ∅,
and we would get a contradiction with f(e) = 0 for all e ∈ E \E ′.

2. If f(e) < 0, then by applying Lemma 4 for miminum we have the
result.

Finally f(e) = 0 for all e ∈ E, and therefore f1 = f2.

Existence. We can write ∆sf(e) = h(e), for all e ∈ E ′, i.e.

f(e)− 1

ζ+(e)(s)

∑
e′∈E′

f(e′)Z+(e, e′)(−s)− 1

ζ+(e)(s)

∑
e′∈E\E′

f(e′)Z+(e, e′)(−s) = h(e)

Since f(e′) = g(e′), for all e′ ∈ E \ E ′, we obtain:

f(e)− 1

ζ+(e)(s)

∑
e′∈E′

f(e′)Z+(e, e′)(−s) = h(e)+
1

ζ+(e)(s)

∑
e′∈E\E′

g(e′)Z+(e, e′)(−s)

Now for all e ∈ E ′ we denote by h1(e) = h(e)+ 1
ζ+(e)(s)

∑
e′∈E\E′ g(e′)Z+(e, e′)(−s)

and ∆′sf(e) = f(e) − 1
ζ+(e)(s)

∑
e′∈E′ f(e′)Z+(e, e′)(−s). Let F ′ = {f :

E −→ R : f is a map with f ≡ 0 on E \ E ′}, which is a subspace of
RE.

The operator ∆′s is equal to ∆s �F ′ . Let f ′ and h′1 be the functions of F ′
that coincide with f and h1 on E ′, respectively. The Dirichlet problem of
our theorem can be rewritten as

∆′sf
′(e) = h′1(e) for all e ∈ E ′,
f(e) = g(e) for all e ∈ E \ E ′.
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Let f ′ ∈ F ′ such that ∆′sf
′(e) = 0 on E ′, f ′ is harmonic on E ′; since by

definition f ′ ≡ 0 on E \ E ′; hence f ′ ≡ 0 on Fr(E ′); moreover f ′ reach its
maximum on E ′; by Lemma 4 f ′ is constant on E ′ so we can conclude that
f ′ ≡ 0 on E. Consequently ∆′s is an injective linear operator on F ′ and
since it is a R-vectorial space with dim(F ′) = |E ′|, it is bijective, we obtain
a unique solution f of the Dirichlet problem by asking:

f �E′ = (∆′s)
−1h′1(e),

f �E\E′ = g.

8. Some Applications

8.1. Mathematical Chemistry

In mathematical chemistry, a molecular graph, also chemical graph is a
representation of a molecule or a chemical compound by a graph. The atoms
of a molecule are represented by the vertices and the chemical bonds are
represented by the edges. It is a good representation of a molecule when
bonds are localized: localized bonding refers to the sharing of electron pairs
(represented by an edge of the graph) between two atoms of a molecule.
There is another type of bonds. Delocalized bonds occur when electrons are
not confined to the region between two particular atoms but are distributed
across multiple atoms or regions within a molecule. This phenomenon arises
from the concept of electron delocalization, in which electrons are given the
freedom to move throughout a larger part of the molecule, this implies unique
bonding properties and behaviors. In this case graph representation is not
the more appropriate model.
A molecular hypergraph, also chemical hypergraph is a hypergraph H =
(V,E) where V correspond to the individuals atoms of the molecule and
hyperedges e ∈ E with degrees greater than two correspond to delocalized
bonds and hyperedges e ∈ E such that |e| = 2 correspond to simple covalent
bonds (localized bonds) [31].
There are other definitions of molecular hypergraphs, for example see [30].
Properties of molecules are strongly linked to the geometric structures of
the chemical compounds studied and which are modeled by graphs or hyper-
graphs. Consequently, the physical properties will depend on the topology
of the (hyper)graphs. These are studied through topological indices which
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are invariants of (hyper)graphs [11]. Most of these indices are based on com-
binatorial parameters of (hyper)graphs: lengths of chains or paths; degrees,
connectivities, . . . But also on the algebraic properties of (hyper)graphs: in-
cidence matrix, adjacency matrix, Laplacian, eigenvalues and eigenvectors,
. . ..
So it is easy to see that Zeta function and Density function are both in-
variants of (hyper)graphs and can be easily used in the context of molecular
(hyper)graphs as topological indices. In order to show the relevance of these
functions and matrices defined above it is necessary to be able to situate
them in relation to classic topological indices which are intensely studied.
Below, we introduce some classical topological indices and situate them in
relation to the Zeta fuction and the density function.

Remark 7. In the following, without losing generality, we will assume that
the (hyper)graphs are connected because the molecular compounds are made
in one piece.

8.1.1. Estrada index

The closure of Z•(s), denoted by Z•(s), is defined by:

Z•(s) = Z•(s) + I•(s)

where I•(s) is a diagonal matrix defined by:

I+(s) = Diag
((

2d•e1
)s

;
(
2d•e2

)s
; . . . ,

(
2d•em

)s)
I×(s) = Diag

((
d•e1
)2s

;
(
d•e2
)2s

; . . . ,
(
d•em
)2s
)

Let A and B be two m × n-matrices, the Hadamard product of the two
matrices is defined by the element-wise product:

A ◦B = (a ◦ b)i,j = (a)i,j (b)i,j

We have:

Proposition 10. [37] Let A,B ∈ Rn×n be two matrices such that A is pos-
itive semi-definite and B is positive definite. If all diagonal elements of A
are positive then A ◦B is positive definite.
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The Estrada index [19] of a m×m-matrix A is

EE(A) =
m∑
i=1

eλi

where λi are the eigenvalues of A.
Let us introduce an additional notation, useful in the sequel to reason on

intersecting hyperedges: Ae = {e′ ∈ E | e′ 6= e and e ∩ e′ 6= ∅}.

Theorem 5. Let H = (V,E) be a connected hypergraph 1 with |E| = m and
m ≥ 3 let s ∈ R, s ≥ 1. The matrices Z•(s) are positive definite.
Moreover, if λ+

i (s), λ×i (s), i = 1...m denote the eigenvalues of Z+(s) and
Z×(s), respectively, with 0 < λ+

1 (s) ≤ λ+
2 (s) ≤ λ+

3 (s) . . . ≤ λ+
m(s) and 0 <

λ×1 (s) ≤ λ×2 (s) ≤ λ×3 (s) . . . ≤ λ×m(s), then we have the following inequalities:

2sζ•H(−s) < EE(Z+(s)) ≤ em+2sζ•H(−s), (18)

and
ζ•H(−2s) < EE(Z×(s)) ≤ em+ζ•H(−2s). (19)

Proof:
Define

1ei,ej =

{
1 if ei ∩ ej 6= ∅;
0 otherwise.

Define the matrix:

I =
(
1ei,ej

)
i,j
−Diag(1, 1, 1, . . . , 1)

Let
P = Diag

((
2d•e1

)2s
,
(
2d•e2

)2s
, . . . ,

(
2d•em

)2s
)

+ I

and define

Q =

((
1

d•ei + d•ej

)s)
i,j

For s = 1, Q is a Cauchy matrix which is known as positive semi-definite [3].

1Note that this implies ∀e ∈ E, d•e ≥ 1.
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For s > 1, let pi be a row of P , we have on this row
(
2d•ei

)2s
at position

i, 1 for each position corresponding to the elements of Aei , and 0 elsewhere.
Note that we have d•ei ≥ |Aei |, since every time a hyperedge e′ intersects ei
it counts at least for 1 in d+

ei
, and for at least 2 in d×ei . Consequently, since

s > 1,
(
2d•ei

)2s
> |Aei | which shows that P is positive definite. Note that for

d× we even have
(
2d×ei

)2s
> 2|Ai|.

It is easy to see that Z+(s) = Q ◦ P and from Proposition 10 this matrix
is positive definite.

Define now

Q =

((
1

d•ei .d
•
ej

)s)
i,j

and P = Diag
((
d•e1
)4s

;
(
d•e2
)4s

; . . . ,
(
d•em
)4s
)

+ I

It is known [33] that if x1, x2, x3, . . . , xm is a family of real positive number
then the matrix (xi.xj)i,j is positive semi-definite. Hence Q is positive semi-
definite. As above we can show than P is positive definite. Consequently,
since we have Z×(s) = Q◦P , we can conclude that Z×(s) is positive definite.

Let λi, i = 1...m bem real positive values, and let us show that
∑m
i=1 e

λi

e
∑m
i=1

(1+λi)
≤

1. Indeed we have: ∑m
i=1 e

λi

e
∑m
i=1(1+λi)

=

∑m
i=1 e

λi

eme
∑m
i=1 λi

(20)

=
1

em

m∑
i=1

(
eλi∏m
j=1 e

λj

)
(21)

=
1

em

m∑
i=1

1

e
∑m
i=1,i 6=j λj

(22)

Let us assume that λ1 ≤ λj,∀j. Then

m∑
i=1,i 6=j

λj ≥ (m− 1)λ1

and
1

e
∑m
i=1,i6=j λj

≤ 1

e(m−1)λ1

So we get: ∑m
i=1 e

λi

e
∑m
i=1(1+λi)

≤ 1

em
m

e(m−1)λ1
≤ 1.
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From this, we have:
m∑
i=1

eλi ≤ e
∑m
i=1(1+λi)

and

log
m∑
i=1

eλi ≤ log e
∑m
i=1(1+λi) = m+

m∑
i=1

λi

Let us now apply this result for λi = λ•i (s). We have

m∑
i=1

λ+
i (s) = Tr(Z+(s)) = 2sζ•H(−s)

and
m∑
i=1

λ×i (s) = Tr(Z×(s)) = ζ•H(−2s)

Consequently
EE(Z+(s)) ≤ em+2sζ•H(−s).

Moreover, we have eλi ≥ λi for positive values of λi. Therefore

EE(Z+(s)) ≥ Tr(Z+(s)) = 2sζ•H(−s).

In the same way we have:

ζ•H(−2s) ≤ EE(Z×) ≤ em+ζ•H(−2s).

These bounds allow us to compare the Estrada index, which is a classical
index on graphs, in particular molecular graphs, with invariants proposed in
this article. Therefore our indices could play an important role in mathe-
matical chemistry.

8.1.2. Sombor index

Quite recently a new vertex-degree-based topological invariant for graphs
was introduced [24], this one was named Sombor index. This can be easily
generalized to hypergraphs:

Sombor index for the hypergraph H = (V,E), [40] is given by

SO(H) =
∑
e∈E

(∑
x∈e

(d(x))2

) 1
2
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Proposition 11. Let H = (V,E) be a hypergraph such that for all x ∈ V ,
d(x) ≥ 2, then we have

ζ+
H(−1

2
) ≤ SO(H) ≤ ζ×H(−1) (23)

Proof:

SO(H) =
∑
e∈E

(∑
x∈e

(d(x))2

) 1
2

≥
∑
e∈E

(∑
x∈e

(d(x)− 1)

) 1
2

=
∑
e∈E

(
d+
e

) 1
2 = ζ+

H(−1

2
)

SO(H) =
∑
e∈E

(∑
x∈e

(d(x))2

) 1
2

≤
∑
e∈E

(∏
x∈e

(d(x))2

) 1
2

=
∑
e∈E

d×e = ζ×H(−1)

since, from Lemma 1: ∑
x∈e

(d(x))2 ≤
∏
x∈e

(d(x))2.

Sombor index is a new invariant introduced around 2020, however a lot
of work has been carried out on this invariant because it conveys a lot of
information on molecular (hyper)graphs. Above proposition shows that it is
in close relation with our Zeta function.

8.1.3. General Randić index

General Randić index is also a important topological index. It is defined
for graphs as: let Γ = (V,E) be a graph

R(Γ)α =
∑
{x,y}∈E

(d(x)d(y))α, α ∈ R.

This definition has been generalized by [41] to k-uniform hypergraph as: let
H = (V,E) be a k-uniform hypergraph

R(H)α =
∑
e∈E

(d(x1)d(x2 . . . d(xk))
α, e = {x1, x2, x3 . . . xk}

In fact, this is our Zeta function ζ×H(s), s ∈ R, in the case where the hyper-
graph is uniform. Curiously, the authors of [41] did not extend the definition
to non-uniform hypergraphs
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8.1.4. Topological Indices and Their Reciprocals

When we have a topological invariant, starting from it we can define a
new index called reciprocal index [25]. Below we give some examples and
show the relevance of our indicators in this context.
Let H = (V,E) be a molecular (hyper)graph, let

TI(H) =
∑
α

F (α)

be a topological index of the graph H, the reciprocal index of TI is given by:

RTI(H) =
∑
α

1

F (α)

For instance sum-connectivity index and nirmala index is

SC(H) =
∑
e∈E

(
1∑

x∈E d(x)

) 1
2

and its reciprocal:

RSC(H) =
∑
e∈E

(∑
x∈E

d(x)

) 1
2

clearly

SC(H) = ζ+
H(

1

2
) and RC(H) = ζ+

H(−1

2
)

Randić index and reciprocal Randić index are

ζ×H(−s) and ζ×H(s), s ≥ 1

Our functions allow us to encompass both concepts at the same time. There
are many other topological indices, most of them are related to the zeta
function or the density function. This allows us to say that our invariants
are in some way a ”generalization” of part of the topological invariants of
molecular (hyper)graphs.
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8.2. Hypergraph associated to an image

Functions and matrices introduced in this article can also be used in the
context of image analysis. Indeed we know that we can associate a hyper-
graph with an image [5]. This construction is defined below.

A grid X ⊆ Zn, n ≥ 2 is a graph Γ = (V,E) defines by a distance
d : X × X −→ N such that Γ is connected, regular without both loop and
multi edge; for instance if n = 2 and the distance is given by

dChebyshev(x,y) = max (|x2 − x1| , |y2 − y1|)

we obtain the 8-connected grid.
A digital image I on a grid is a n-dimensionnal functionn that has been
digitalized both on a grid and in magnitude feature value; hence, it is given
by:

I : X ⊆ Zn −→ C ⊆ Zm; n ≥ 2 and m ≥ 1. (24)

where C is the feature intensity level and X identifies a set of points called
image points. The couple (x, I(x)) is called pixel.
Let δ be a distance on C; we define the relation on a image by

Γα,β(x) = {y ∈ X, y 6= x : δ(I(x), I(y)) ≤ α ∧ d((x, y) ≤ β} (25)

The neighborhood of x at level at most β will be denoted by Γβ(x) From this
we can define a hypergraph associated to a image (denoted by INH) by

Hα,β = (X, ({x} ∪ Γα,β(x))x∈X) (26)

The attribute α can be compute in an adaptative way depending on local
properties of the image. For instance, for all x ∈ X, αx would be the stan-
dard deviation of I(y) for all elements y of {x} ∪ Γβ(x); in this case e will
denote αx = σx.

8.2.1. Using INH to image analysis

An image being represented by its associated hypergraph, to process this
image, it is now sufficient to use the properties of the hypergraphs in order
to extract information.
Hypergraph classification, using algebraic tools, has been effectively devel-
oped in image analysis, for example [38]. This gives an image segmentation
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algorithm which is of very good quality.
The idea of this algorithm is to construct the Laplacian associated with a
hypergraph, to calculate the eigenvalues and starting from these, to develop
the classification because certain eigenvalues play the role of threshold.
The Laplacian is constructed starting from the adjacency matrix of the hy-
pergraph H which is the product of the incidence matrix by its transpose.
The main problem with this matrix is that the information conveyed by it is
not really relevant because it only takes into account the number of hyper-
edges containing a pair of vertices. If for example the hypergraph is linear
(the cardinality of the intersection of the hyperedges is at most 1), then this
matrix is the matrix of the line-graph of H, thus we fall back on a graph and
we lose relevance hypergraphs.
The matrices defined in section 7 seem much more appropriate to us, be-
cause the information transmitted by them is much more important. Indeed
it takes into account the topology and the geometry of the hypergraph and
if it comes from an image, as for example defined above, then we take into
account the geometry of the image but also, given the construction of INH
the luminance and chrominance of this image. Naturally the Laplacian de-
fined in this article can also be very useful for edge detection, for sharpness
of the image and many other processes.

Inpainting problem is a restoration process in which damaged or missing
parts of an image are reconstructed to obtain a complete image. This process
is similar to image restoration, it is also used in removing parts of the image
while maintaining a ”harmonious” appearance. More precisely, let I be an
image and a region R of it, the inpainting problem consists of modifying the
values of the pixels image of R so that this region does not stand out in
relation to its environment.
If the image is seen as a two-dimensional signal the inpainting problem can
be seen as the extension of a function under certain conditions [1]. So it
is quite natural to try to adapt the Dirichlet problem in such a process.
This type of process has already been applied to hypergraphs [43] and gives
interesting results, however it uses the classic Laplacian of hypergraphs and
we run into the same problems as above. One way of research would consist
of constructing a partial hypergraph of INH as above except on the region
R and trying to extend it using the Dirichlet problem defined in subsection
7.4.
Naturally, hypergraph associated with an image defined as above can be used
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for other types of processing, therefore the concepts introduced throughout
this article can be used for these various treatments, for example the entropy
presented Subsection 3.3. All this will be the subject of another work.

9. Conclusion

In this article we have introduced new invariants associated with hyper-
graphs. These are based on analytic functions on R or C. These functions
come naturally from different parameters of the hypergraphs. This allowed
us to link them to classical notions such as entropy . Moreover, this allowed
us to redefine notions such as gradient and Laplacian on hypergraphs.

To illustrate the possible uses of these concepts defined in the preceding
sections, Section 8 introduces applications to molecular (hyper)graphs by
situating the Zeta functions and the density in relation to known molecular
topological indices, but also by using the new matrices defined in this work.
Another illustration of the relevance of these invariants and these matrices
has also been introduced in image analysis. We introduce a hypergraph
associated with an image (INH), which allows us to use all the tools developed
in this article in image analysis.

Naturally other classical notions can be approached such as the notion of
Ricci flow, functional analysis, differential calculus, Fourier transform...

Another perspective is to consider hypergraphs varying over time. For
instance hypernetworks can be seen as discrete dynamic systems depending
on a temporal parameter. We could then introduce time as a variable of our
functions.

Instead of considering one value of s, we could consider a set of values,
and extend our functions ζH and kH accordingly, as sets (or vectors) of val-
ues, in an approach similar as the one developed for entropy in [7].
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