
HAL Id: hal-04619401
https://hal.science/hal-04619401v1

Submitted on 21 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Theoretical Analysis of the Incremental Counting
Ability of LSTM in Finite Precision

Volodimir Mitarchuk, Rémi Eyraud

To cite this version:
Volodimir Mitarchuk, Rémi Eyraud. A Theoretical Analysis of the Incremental Counting Ability
of LSTM in Finite Precision. LearnAut workshop 2024, ICALP/LiCS/FSCD 2024, 2024, Tallinn,
Estonia. �hal-04619401�

https://hal.science/hal-04619401v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Proceedings of Machine Learning Research 1–11 LearnAut2024

A Theoretical Analysis of the Incremental Counting Ability
of LSTM in Finite Precision

Volodimir Mitarchuk volodimir.mitarchuk@suniv-st-etienne.fr.com

Rémi Eyraud remi.eyraud@univ-st-etienne.fr

Université Jean Monnet Saint-Etienne, CNRS, Inria, Laboratoire Hubert Curien UMR 5516

Abstract

Since the introduction of the LSTM (Long Short-Term Memory), this type of Recurrent
Neural Networks has been the subject of extensive studies to determine its expressiveness.
This work is an attempt to fill the gap between the observations made during empirical
studies and the theory. We propose in this article to study theoretically the functioning
and the limits of the, empirically observed, LSTMs counting mechanism. Our results show
that, in finite precision, LSTMs have a limited ability to retrieve the counting information
it has deposited in its carry. This reveals an asymmetry in the information storage and
retrieval mechanisms in LSTMs.

Keywords: Recurrent Neural Networks, LSTM, Finite Precision, Counting Ability

1. Introduction

Recurrent Neural Networks (RNNs) are a powerful and expressive class of models designed
to process sequential data. When focusing on RNNs having unbounded precision and com-
putation time, or bounded precision and growing memory, it is possible to show that this
class of models is Turing complete (Siegelmann and Sontag, 1992; Chung and Siegelmann,
2021). On the other hand, the question of precisely characterizing their expressiveness un-
der more realistic assumptions remains open. To this extent, researchers have investigated
connections with classical models of the formal language theory and properties such as long-
distance dependencies and counting (Weiss et al., 2018, 2022; Eyraud and Ayache, 2021;
Li et al., 2022; Merrill, 2019; Merrill et al., 2020; Merrill, 2021; Delétang et al., 2022; Hao
et al., 2022; Mali et al., 2021). In this paper, we are particularly interested in analyzing the
counting ability of Long Short-Term Memory (LSTM) networks (Hochreiter and Schmid-
huber, 1997). Gers and Schmidhuber (2001); Weiss et al. (2018) and Suzgun et al. (2019a)
experimentally show that, unlike GRUs, LSTM networks are capable to use a counting
mechanism relying on the incrementation of a counter. This allows them to recognize some
strictly context-free and context-sensitive languages.

It is therefore natural to wonder if the networks are actually able to use the information
deriving from the counting mechanism to its full potential, or if there is a limit number
of increments that can be tracked. Specifically, it is not clear if a network with bounded
activation function can keep a discrimination capacity on unbounded count.

This work proposes a theoretical analysis of the ability of LSTMs to count elements in a
sequence of symbols while in a finite precision configuration. It is trivial that this config-
uration comes with a maximal value that each parameter of the network can achieve, and

© V. Mitarchuk & R. Eyraud.

Mitarchuk Eyraud

thus on the number of elements that can be enumerated. But this number is astronomical
in classical implementations of LSTM, and thus cannot be considered as a real limitation.
However, the intrinsic computing process of these models implies much tighter limits that
we describe in this article. The core idea is that when the RNN simulates an incremental
mechanism on its carry, the values stored will rapidly saturate the activation function and
thus the information will be no more retrievable from the hidden state. As this latter is the
only element outputted by the recurrent part of the network, no correct decision can then
be made based on the count.

After introducing the main notions and notations in Section 2, we first state the problem
of LSTM counting abilities in Section 3. In Section 4, we analyse the limitation, in finite
precision, of a fixed increment counting mechanism, a behavior that has been observed
experimentally in trained LSTM. In Section 5 we discuss some implications of the theoretical
results obtained in Section 4. Finally after discussing our results in Section 6, we conclude
in Section 7.

2. Preliminaries

2.1. Notations

2.1.1. Numbers, vectors and matrices

Numbers, besides properly defined constants, are noted by a lowercase italic letter, e.g.,
x ∈ R, the vectors of dimension higher than 1 by a bold lowercase letter, e.g., x ∈ Rd for
d > 1, and the matrices by a bold uppercase letter, e.g., M ∈ Rd1×d2 . For x ∈ Rd, x[j]
represents the jth coordinate of the vector x.

⊙ is the Hadamard product between vectors: for x,y ∈ Rd the Hadamard product of x by
y denoted x⊙ y is defined by : for all 1 ≤ j ≤ d, x⊙ y[j] = x[j] · y[j].

2.1.2. Activation functions

The logistic sigmoidal function is σ(x) = 1
1+exp(−x) and the hyperbolic tangent is tanh(x) =

exp(x)−exp(−x)
exp(x)+exp(−x) . Given a derivable function f : R → R, we note f ′(x) = df

dx(x).

2.1.3. Basics of language theory

A finite set of symbol is called an alphabet and is usually denoted Σ. A sequence on Σ is
denoted w = α1α2 . . . αT , with αi ∈ Σ,∀i; T is called the length of the sequence. Given a
sequence w and a symbol a, |w|a denotes the number of a’s in w. The set of all sequences
over the alphabet is denoted Σ∗ and any subset L ⊆ Σ∗ is called a language. For instance,
on the alphabet Σ = {a, b}, the infinite language L = {anbn : n > 0} is composed of
sequences that start with a certain number of a’s followed by the exact same number of b’s,
and nothing else after.

We will trivially extend these formal language elements to sequences of 1-hot vectors {vk}Tk=1

where ∀k,vk ∈ R|Σ| and ∃j, 1 ≤ j ≤ |Σ| such that vk[j] = 1 and vk[i] = 0, for i ̸= j.

2

Analysis of the Incremental Counting ability of LSTM in Finite Precision

2.2. Finite Precision

Definition 1 (Finite precision configuration) A finite precision configuration is de-
fined by a tuple of positive integers (B,M,Ex), B being the basis, M and Ex representing
the number of digits allocated for the ”mantissa” and the ”exponent”, respectively.

In this configuration a float number x is represented as a triplet:

floatx = (sign,mantissa, exponent)

where sign ∈ {−1, 1}, mantissa ∈ {0, 1, . . . , B − 1}M , exponent ∈ {0, 1, . . . , B − 1}Ex are
word of length M and Ex respectively, on the alphabet {0, 1, . . . , B − 1}

In order to go from the representation to the number itself, one needs to:

x = (sign)× (mantissa)×Bshift(exponent)

where: {0, 1, . . . , B − 1}Ex ∋ x 7→ shift(x) = x−
⌊
BE

2

⌋
The function shift allows to represent positive and negative exponents with only positive
integers.

For example in the configuration (B,M,Ex) = (10, 5, 4) the number x := −12.35 is repre-
sented by the triplet (−1, 12350, 4997) and when we switch to the actual number we get

x = −1× 12350× 10shift(4997) = −1× 12350× 10−3

where in this case shift(n) = n− 104

2 = n− 5000.

One can remark that this notation allows multiple representations for the same number,
indeed both representations (−1, 12350, 4997) and (−1, 01235, 4998) will produce the same
float number −12.35 in the finite precision configuration (10, 5, 4). Therefor to avoid all am-
biguities, we say that a non zero float number is in its normal form (sign,mantissa, exponent)
if the mantissa = x1 · · ·xM is such that x1 ̸= 0.

The setting (B,M,Ex) generates the set G(B,M,Ex) composed of all numbers representable
following these restrictions. We will abusively use the notation G instead of G(B,M,Ex) for
the sake of simplicity when there is no ambiguity.

As an example, in the IEEE 754 norm, the simple floats are encoded in base B = 2 on 32
bits, with 1 bit for the sign, M = 23 for the mantissa and Ex = 8 for the exponent.

Arithmetic operations in a finite precision configuration might sometimes be counter intu-
itive. One of the particularities is the rounding error when applying the addition operator.
For instance, suppose one wants to compute the addition of two numbers x and s. Let
x = (signx)×x1 · · ·xM ×Bexponentx and s = (signs)× s1 · · · sM ×Bexponents represented in
their normal form and such that exponents < exponentx. If exponentx − exponents ≥ M
i.e. the difference between the exponents exceeds the size of the mantissa fixed by the finite
precision configuration, then x± s = x. In other words, distant magnitudes do not interact
with each other by the addition operator. This particularity of finite precision arithmetic’s

3

Mitarchuk Eyraud

is central in our study, where we try to establish theoretical limitation for an incremental
counting mechanism.

In the following Lemma we discuss another phenomenon, the saturation of the bounded ac-
tivation function. In theory, functions as the sigmoidal function and the hyperbolic tangent,
never reach their boundaries when evaluated on real numbers. However in finite precision
they do reach the boundaries, and the following lemma characterises the smallest float
number to saturate the sigmoidal function.

Lemma 2 (Saturation integer)

Let (B,M,Ex) the finite precision configuration. We define u := ⌊BEx

2 ⌋ and l := BEx − u.
If M < min{u, l} then there exists Nσ, Ntanh ∈ G(B,M,Ex) two positive float numbers such
that σ(Nσ) = 1, tanh(Ntanh) = 1, σ(−Nσ) = 0, tanh(−Ntanh) = −1 and

σ(−(Nσ − 1)) ̸= 0 and tanh(−(Ntanh − 1)) ̸= −1 .

In this work, we do not exploit the fact that the saturation integer is the smallest to cause
overflow in the activation functions. What interests us here is the existence of a float number
that saturate the activation functions. Therefore, for the rest of this work, we’ll define the
integer N as the maximum of the numbers Nσ and Ntanh. So, whatever the activation
function σ or tanh we are guaranteed to have:

σ(N) = 1 σ(−N) = 0 tanh(N) = 1 tanh(−N) = −1 (1)

In finite precision norm IEEE 754 we have Nσ = 89 and Ntanh ≤ 45. The computations for
these values are in Appendix 8.3. A particular consequences of the existence of N is that
for all x ≥ N we have:

σ(x) = 1 σ(−x) = 0 tanh(x) = 1 tanh(−x) = −1

Remark 3 A finite precision setup induces the existence of a smallest float number ε > 0
that is non zero. A property of this float number is: for all float number α in the finite
precision setup (B,M,Ex) we have ∀ 0 ≤ ϑ < ε : α+ ϑ = α.

In other words all positive real numbers strictly smaller then ε will be rounded to zero. In
finite precision norm IEEE 754 we have ε = 2−128.

2.3. Recurrent Neural Networks (RNNs)

This work focuses on the class of RNNs called Long Short Term Memory (LSTM).

Definition 4 (LSTM (Hochreiter and Schmidhuber, 1997)) Let {xk}Tk=1 a sequence
of real vectors of dimension u ≥ 1, and h0, c0 vectors in Rd. The execution of a LSTM
on the sequence {xk}Tk=1 is the sequence of vectors {(hk, ck)}Tk=1 obtained recursively by the

4

Analysis of the Incremental Counting ability of LSTM in Finite Precision

following rule:

fk = σ (Ufxk +Wfhk−1 + bf)

ik = σ (Uixk +Wihk−1 + bi)

ok = σ (Uoxk +Wohk−1 + bo)

gk = tanh (Ugxk +Wghk−1 + bg)

ck = fk ⊙ ck−1 + ik ⊙ gk

hk = ok ⊙ tanh (ck) .

The LSTM is an architecture based on the so called gate mechanism. In this context the
gates are the vectors fk, ik,ok,gk which regulate the flow of information from one iteration
to the next one, through the vector ck called the carry. Finally the vector hk is called
the hidden state vector, or simply the hidden vector. The hidden vector is in charge of
transmitting the information from the carry to the gates and to the output. When we talk
in general terms about the carry, we omit to mention the index k and denote it by c. The
same will be applied to the hidden vector and the gates.

The interaction between gates is complex and is nearly impossible to predict in the general
setting. Nevertheless, by simplifying the behavior of the gates it is possible to study the
LSTM architecture, and one way of doing that is the one of saturation:

Definition 5 (Saturated LSTM (Merrill, 2019)) Given a LSTM R and a parameter
θ, we defined the LSTM Rθ by multiplying all parameters of R by θ. The saturated version
of R is RSat = lim

θ→∞
Rθ.

The existence of the saturation integer N in finite precision implies that there exist a finite
value for θ such that Rθ = RSat.

By analyzing the carry ck = fk ⊙ ck−1 + ik ⊙ gk, it was observed that when a LSTM is
saturated, the coordinates of ck−1 can be incremented by a quantity γ ∈ {−1, 1} (Merrill
et al., 2020; Weiss et al., 2018; Merrill, 2019). In detail, for some 1 ≤ j ≤ d we have :

fk[j] = 1, gk[j] = 1, ik[j] = γ

and obtain ck[j] = ck−1[j] + γ.

3. LSTM counting ability in finite precision

In this section, we introduce the definition of reliable incremental mechanisms. Leveraging
the finite precision assumption, we derive results on the limits of the interaction that the
output of a LSTM can have with its carry.

3.1. Reliable incremental counting mechanism

From the definition of LSTM networks, the kth output of a LSTM is a function of the hidden
state vector hk, which is defined by: hk = ok ⊙ tanh (ck). If the LSTM has a counting

5

Mitarchuk Eyraud

mechanism based on incrementing a coordinate j of the carry c, it may not be easy to
retrieve from the hidden vector h the exact number of increments that have been added
to c[j]. In fact, we show that there can only be a finite amount of retrievable increments
from the hidden state vector h, and will call this amount Γ. We say that an incremental
mechanism is reliable if it is possible to retrieve from the hidden state vector the exact
amount of increments that was added at every time step k, for 1 ≤ k ≤ T .

In the following section we discus, from a theoretical point of view, the limitation of the
incremental counting mechanism in LSTMs.

4. Incremental counting

It has been observed experimentally (Weiss et al., 2018; Suzgun et al., 2019b) that trained
LSTMs can use the coordinates of their carry c to count. This allows them to correctly
recognize context-free languages such as {anbn : b > 0}, {anbncn : n > 0}, {w : |w|a = |w|b}
and is crucial for the languages of brackets.

The framework analysed here is the one where a LSTM is fed with a sequence {xk}Tk=1

that requires the model to count the number of occurrences of some of the elements in the
sequence. As we study the maximal amount of increments Γ that can be retrieved from the
hidden vector h, without loss of generality, we can suppose that x1 = x2 = · · · = xT and
thus that the goal is to store the number of elements in the sequence. We will denote by
the Greek letter γ the increment added to a coordinate of the carry during the incremental
counting.

4.1. Limits of incremental counting with fixed increments

In this subsection we consider the case where the value of the increment is fixed. The
page limitation does not allow us to develop on the case where the value of the increment
is dynamic. Nevertheless, the fixed increment counting mechanism is the one empirically
observed by Weiss et al. (2018) and Suzgun et al. (2019b) in trained LSTMs. We recall
that ε denotes the smallest float number in finite precision. We say that a coordinate j of
the carry ck simulates a fixed increment mechanism on the sequence {xk}Tk=1 if there exists
γ > 0, such that: ck[j] = c0[j] + k · γ .

If the coordinate 1 ≤ j ≤ d of the carry vector has a fixed incremental mechanism, then
by definition we have hk[j] = ok[j] · tanh (c0[j] + k · γ) . We also assume here that the jth

coordinate of ok is fixed and equal to 1 for all k. We make this hypothesis to simplify the
computations, but also because this assumption corresponds to the best case scenario for
the transmission of information from ck[j] to hk[j]. Our goal here is to consider the distance
between the coordinates of two consecutive hidden state vectors. We consider:∣∣∣hk+1[j]− hk[j]

∣∣∣ = ∣∣∣ok+1[j] · tanh (c0[j] + (k + 1) · γ)− ok[j] · tanh (c0[j] + (k) · γ)
∣∣∣

=
∣∣∣ tanh (c0[j] + (k + 1) · γ)− tanh (c0[j] + (k) · γ)

∣∣∣
= tanh (c0[j] + (k + 1) · γ)− tanh (c0[j] + k · γ) because tanh is increasing

= γ tanh′ (wk) for wk s.t. k · γ < wk − c0[j] < (k + 1) · γ,

6

Analysis of the Incremental Counting ability of LSTM in Finite Precision

where the last equality follows from the mean value theorem. We are sure to loose the

reliability of the counting when the distance
∣∣∣hk+1[j] − hk[j]

∣∣∣ becomes smaller than the

finite precision. Since tanh′ is a decreasing function on [0,+∞[, we have:

γ tanh′ (wk) ≤ γ tanh′ (c0[j] + k · γ)

and thus
∣∣∣hk+1[j] − hk[j]

∣∣∣ ≤ γ tanh′ (c0[j] + k · γ). This last inequality motivates the fol-

lowing lemma.

Lemma 6 (Bound on the incremental counting on one coordinate of the carry)
Let α , γ be positive real numbers so that 0 < γ ≤ 1. Let c0 be a real number. Then we

have

(
K ≥

tanh−1
(√

1−ε/α
)
−c0

γ

)
⇒
(
α tanh′ (c0 +Kγ) < ϵ

)
.

The proof of Lemma 6 is based on basic calculus and is in Appendix 8.1.

From Lemma 6 one can deduce that:(
tanh−1

(√
1−ϵ/γ

)
−c0

γ < K

)
=⇒

(∣∣∣hk+1 − hk

∣∣∣ < ε
)
. (2)

With this Lemma we can compute an upper bound on the number of distinguishable incre-
ments. As an example in IEEE 754 single float numbers, if we consider the experimentally
observed case where γ = 1 and c0 = 0, one can compute an upper bound on the maximal
number of distinguishable increments K ≈ 65 ln(2) ≤ 45.06 (see Appendix 8.2 for detail).

By reducing γ it is possible to increase the number of distinguishable increments. However
in finite precision, the rounding mechanism imposes an absolute upper bound on the number
of distinguishable increments. Indeed in Section 2.2 we discus how in a finite precision setup
(B,M,Ex) it is possible to have x+s = x if exponentx−exponents ≥ M . This particularity
of arithmetic in finite precision yields an upper bound on Γ which is

Γ ≤ 2 ·BM .

The factor 2 comes from the fact that it is, theoretically, possible to initialize c0[j] = −γ ·BM

making it possible to add 2γ ·BM to c0[j] before facing the finite precision boundary.

In conclusion, we can combine the upper bounds we have discussed above and derive the
maximal number of distinguishable increments on the carry coordinate c0[j] is :

Γ ≤ min
{
2 ·BM ,

⌊
tanh−1

(√
1− ε

γ − c0[j]
)⌋

+ 1
}

(3)

In the following section we discuss some possible implications of Bound 3.

5. Theoretical consequences

5.1. Increment on several coordinates

Let us assume that a LSTM can accept the language anbn but the counting of a and b
is independent and done on different coordinates j and j′. By the previous section, we

7

Mitarchuk Eyraud

know that the maximum amount of distinguishable increments cannot exceed Γ. Therefore
for n > Γ the LSTM will no longer be able to distinguish between anbn and anbn+1. This
problem can be addressed by incrementing a single coordinate of the carry when an a is seen
and decrementing it when a b is seen. By doing so there is no more theoretical limitation
since in order to accept a word the count in cT [j] has to be equal to 0. This is exactly how
the LSTMs from Weiss et al. (2018) and Suzgun et al. (2019b) are operating.

5.2. LSTMs have a limited ability to adapt their behavior based on the count

We assume to have a LSTM that simulates a fixed incremental mechanism on the jth

coordinate of the carry vector c with fixed increment γ. We consider the case where a
gate i, f ,g or o has to change its behavior (for example g[l] goes from 1 to −1) based
uniquely on a specific value n of the count c[j]. The existence of Γ demonstrates that this
kind of change is not possible if n is an unbounded variable. Indeed suppose that we have

n > Γ, with Γ = min
{
2 ·BM ,

⌊
tanh

(√
1− ε

γ − c0[j]
)⌋

+ 1
}
. If Γ = 2 · BM then by the

rounding mechanism in finite precision we will have γ · Γ + γ = γ · Γ, hence the carry c[j]

will not be able to count till n. If Γ =
⌊
tanh

(√
1− ε

γ − c0[j]
)⌋

+ 1 than we will have

tanh(c[j] + γ) − tanh(c[j]) < ε, i.e. the distance between two consecutive counts will be
smaller then the finite precision, implying that if a change occurs in g[l] it will occur before
reaching n (or any other gate than g). Thus in any case, the gates i, f ,g and o will not be
able to change their behavior only based on n if the tipping value n exceeds Γ. Leading us
to believe that LSTMs do not have the ability to recognise the language {anbn2

: n ≥ 1}
because the machine that accepts this language adapts its counting behavior according to
n. Page limitation does not allow us to detail further on this result, thus leaving room for
a more developed work on this topic.

6. Discussion

This work is based on the fact that the information contained in the carry is transmitted
to the hidden state vector through the tanh, in other words hk = ok ⊙ tanh (ck). This
is not the case in peephole LSTM (Gers and Schmidhuber, 2001) where the gates receive
the information directly from the carry. Therefore peephole LSTMs have the potential
to be more expressive than LSTMs defined by Hochreiter and Schmidhuber (1997). This
statement is to be proven theoretically and might constitute a future work.

7. Conclusion

In this work we discuss theoretical limitation of LSTM fixed increment counting mechanism
in finite precision. Based on a formal definition of the fixed increment counting mechanism
we derived realistic upper bounds on the maximal number of distinguishable increments
that can be retrieved for the hidden vector. Finally we discussed some of the implication
of this limitation.

8

Analysis of the Incremental Counting ability of LSTM in Finite Precision

References

Stephen Chung and Hava T. Siegelmann. Turing completeness of bounded-precision recur-
rent neural networks. In NeurIPS, 2021.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang,
Elliot Catt, Marcus Hutter, Shane Legg, and Pedro A. Ortega. Neural networks and the
chomsky hierarchy. CoRR, 2022. doi: 10.48550/arXiv.2207.02098.

Rémi Eyraud and Stéphane Ayache. Distillation of weighted automata from recurrent neural
networks using a spectral approach. Machine Learning, 2021.

Felix A Gers and E Schmidhuber. Lstm recurrent networks learn simple context-free and
context-sensitive languages. IEEE transactions on neural networks, 2001.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard atten-
tion transformers: Perspectives from circuit complexity. Transactions of the Association
for Computational Linguistics, 2022. doi: 10.1162/tacl a 00490.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
1997.

Tianyu Li, Doina Precup, and Guillaume Rabusseau. Connecting weighted automata, tensor
networks and recurrent neural networks through spectral learning. Machine Learning,
2022.

Ankur Mali, Alexander Ororbia, Daniel Kifer, and Lee Giles. Recognizing long grammatical
sequences using recurrent networks augmented with an external differentiable stack. In
Jane Chandlee, Rémi Eyraud, Jeff Heinz, Adam Jardine, and Menno van Zaanen, editors,
ICGI 2021. PMLR, 2021.

William Merrill. Sequential neural networks as automata. In Proceedings of the Workshop
on Deep Learning and Formal Languages: Building Bridges, pages 1–13, Florence, August
2019. Association for Computational Linguistics.

William Merrill. Formal language theory meets modern nlp. arXiv preprint
arXiv:2102.10094, 2021.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A Smith, and Eran Yahav.
A formal hierarchy of rnn architectures. arXiv preprint arXiv:2004.08500, 2020.

Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets.
In COLT, 1992.

Mirac Suzgun, Yonatan Belinkov, and Stuart M Shieber. On evaluating the generalization
of lstm models in formal languages. SCiL, 2019a.

Mirac Suzgun, Yonatan Belinkov, Stuart M Shieber, and Sebastian Gehrmann. Lstm net-
works can perform dynamic counting. In Workshop on Deep Learning and Formal Lan-
guages: Building Bridges, 2019b.

9

Mitarchuk Eyraud

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of
finite precision RNNs for language recognition. In TACL. Association for Computational
Linguistics, 2018. doi: 10.18653/v1/P18-2117.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural
networks using queries and counterexamples. Machine Learning, 2022.

8. Appendix

8.1. Proof of Lemma 6

Proof [Bound on the incremental counting] Let α , γ be positive real numbers, with α ≥ 0
and 0 < γ ≤ 1. Let ε > 0. If α = 0 there is nothing to prove and the inequality is true for
K = 1. If α > 0 then:

α tanh′ (c0 +Kγ) < ϵ ⇐⇒ tanh′ (c0 +Kγ) <
ϵ

α

⇐⇒ 1− tanh2 (c0 +Kγ) <
ϵ

α

⇐⇒ 1− ϵ

α
< tanh2 (c0 +Kγ)

⇐⇒
√
1− ϵ

α
< | tanh (c0 +Kγ) |

⇐⇒
√
1− ϵ

α
< tanh (c0 +Kγ) if K ≥ −c0

γ

⇐⇒ tanh−1

(√
1− ϵ

α

)
< c0 +Kγ because tanh−1 is a strictly increasing function

⇐⇒
tanh−1

(√
1− ϵ

α

)
− c0

γ
< K

As
tanh−1(

√
1− ϵ

α)−c0
γ > −c0

γ this concludes the proof.

8.2. A bound on Γ when γ = 1

In Lemma 6 the expression of the bound is obscured by the expression of the function
tanh−1 therefore we exemplify this bound in the particular case where γ = 1 and c0 = 0.
We have:

tanh−1
(√

1− ε
γ

)
− c0

γ
= tanh−1

(√
1− ε

)
.

We start by dealing with
√
1− ε. The Taylor expansion of

√
1− ε to order 2 is:

√
1− ε = 1− ε

2
− ε2

8
+ o(ε2).

10

Analysis of the Incremental Counting ability of LSTM in Finite Precision

In the case of IEEE 754 finite precision single float numbers ε = 2−128, therefor we can
consider the Taylor expansion to order 1 for our computation. We have the exact expression
of tanh−1 with:

tanh−1 (x) =
1

2
ln

(
1 + x

1− x

)
thus in our case we obtain:

tanh−1
(
1− ε

2

)
=

1

2
ln

(
2− ε

2
ε
2

)
=

1

2
ln
(
4 · 2128 − 1

)
.

Consequently we obtain that:

tanh−1
(√

1− ε
)
≈ tanh−1

(
1− ε

2

)
≤ 130

2
ln(2) ≈ 45

8.3. Saturation Integers

In this section we provide the computations that allowed us to determine the values of
saturation integer Nσ and Ntanh. We start with Nσ.

The function σ is defined by:

σ : G ∈ x → 1

1 + e−x
∈ [0, 1].

In IEEE 754, 32 bits float numbers we have (b,M,Ex) = (2, 23, 8). For which value on x
we would have 1+ e−x = 1? It would be true for x so that e−x = 2−M therefor if we choose
x ≥ ln(2) · 23 we will have 1 + e−x = 1 thus σ (x) = 1. Now, for which x we would have

1
1+e−x < 2−128?

1

1 + e−x
< 2−128 ⇐⇒ 1 + e−x > 2128

⇐⇒ e−x > 2128

⇐⇒ −x > ln(2) · 128 ≈ 88.72.

One could remark that 1 + e−x > 2128 ⇐⇒ e−x > 2128 is not true in general, but it is
true in finite precision because in this case the magnitude of e−x is so large that 1 + e−x =
e−x. Therefor by setting 89 = Nσ ≥ max{23 ln(2), 126 ln(2)} we obtain the saturation
integer for the function σ. For the saturation integer Ntanh we consider the identity σ(x) =
1
2

(
tanh

(
x
2

)
+ 1
)
. From this identity one can deduce that σ(89) = 0.5(tanh(44.5) + 1) = 1

hence in finite precision 1 ≥ tanh(45) ≥ tanh(44.5) = 1. Therefor Ntanh ≤ 44.5.

11

	Introduction
	Preliminaries
	Notations
	Numbers, vectors and matrices
	Activation functions
	Basics of language theory

	Finite Precision
	Recurrent Neural Networks (RNNs)

	LSTM counting ability in finite precision
	Reliable incremental counting mechanism

	Incremental counting
	Limits of incremental counting with fixed increments

	Theoretical consequences
	Increment on several coordinates
	LSTMs have a limited ability to adapt their behavior based on the count

	Discussion
	Conclusion
	Appendix
	Proof of Lemma 6
	A bound on TEXT when TEXT
	Saturation Integers

