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Abstract—The tracking of multiple particles in lengthy image
sequences is challenged by the stochastic nature of displacements,
particles detection errors, and the combinatorial explosion of
all possible trajectories. As such, extensive work has focused
on the modeling of noisy trajectories to try and predict the
most likely trajectory-to-measurements associations. Recently,
transformers have been shown to significantly accelerate the
evaluation of probabilistic models for the system dynamics and
detection clutter generated from false positives. However, little
work has focused on clutter-free scenarios with multiple particles
moving erratically, where the challenge resides not in the model
complexity, but in the combinatorial burden of considering
all possible trajectory-to-measurements associations. This is a
common occurrence in fluorescence microscopy at low framerate.
This paper offers a proof-of-concept study of the benefit of
the transformer architecture in such scenarios through the
simulation of two-particle-systems undergoing Brownian motion.
Specifically, we designed a transformer for this estimation task
and compared it with the Multiple Hypothesis Tracker (MHT),
the optimal estimator when all trajectory-to-measurement associ-
ations can be computed. We first show increased robustness of the
transformer against erratic displacements over long sequences,
with significantly lower computational complexity than MHT.
Then, we show that while the transformer requires very little
training to significantly outperform MHT on long sequences, it
cannot match the theoretically optimal performances of MHT
on short sequences even with extensive training. Hence, our
work motivates the broader application of transformers in high-
SNR sequences and opens the way to the development of frugal
methods thanks to the combination of both statistical and neural
network frameworks for particle tracking.

Index Terms—Multiple Particle Tracking, Transformers, Mul-
tiple Hypothesis Tracking.

I. INTRODUCTION

The tracking of multiple objects detected in image se-
quences is a fundamental problem that can be encountered
across many imaging modalities. Here, we focus on the
challenging case of dense populations of particles undergoing
random walks and imaged with limited framerate. Fluores-
cence microscopy [1] imaging is a good example of this
scenario. Indeed, these data exhibit many diffusing molecules
imaged as diffraction-limited spots with identical appear-
ance, while phototoxicity limits temporal sampling. Under
reasonable assumptions on object displacements and detector
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noise, an optimal estimator for the set of trajectories in-
volves the temporally iterative estimation of hidden parameters
(true position, speed, etc.) from all possible combinations
of trajectories-to-measurements (or trajectories-to-detections)
associations. Since the number of possible trajectories in-
creases exponentially with the number of objects and frames
[2], associations are typically gated through their likelihood,
leading to suboptimal solutions that impact the interpretation
of physical quantities like the duration of biological processes
[3]. As such, improving the robustness of tracking approaches
has remained an active field.
Recent works have focused on transformer-based neural net-
works for this task, especially in the context of noisy images
with frequent detection errors [4, 5, 6, 7]. These works
have exhibited high computational efficiency and sometimes
even higher accuracy than conventional approaches based
on stochastic filtering [4]. In this study, we seek to test if
this computational efficiency could be beneficial when using
simpler modeling. Here, performance limits stem not from
complex modeling but from the abundance of trajectories-to-
measurements association hypotheses due to erratic displace-
ments, as evidenced in high SNR scenarios where the motion
is considered as perfectly known with linear transition. In
turn, our goal is to test the robustness of transformers against
increasingly noisy dynamics or sequence length.
Section II formulates the problem background and briefly
reviews pertinent literature. Section III then establishes the
different methods used to simulate motions, the estimators
used for the system parameters and evaluation metrics. Section
IV compares the robustness and efficiency of transformers and
conventional filtering methods across varying sequence lengths
and Brownian motion scales. Finally, Section V synthesizes
this work and briefly outlines avenues for future work, espe-
cially in the field of bioimaging and frugal machine learning.

II. BACKGROUND

A. Problem Formulation and Notations

Let us consider the hidden state xt ∈ RD of a particle at
time t, and a set of N particles X = {Xp}p=0:N−1 where
Xp = {xp

t0 , ...,x
p
t0+l} is a sequence of positions describing

an unknown dynamic process, t0 ∈ N denoting its time
of birth and l ∈ N denoting its lifetime. We also denote
Z = {Zt}t=0:T−1 as the union of unlabelled measurements
that come from the particles of interest in X after imaging
and object detection process. Without loss of generality, the



following Bayesian filtering equation provides an iterative
framework to solve this problem:

p(Xt|Z1:t) = p(Zt|Xt)

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dX

(1)
with the assumptions that Xt is Markovian with known
transition probability p(Xt|Xt−1) and a priori p(X0), and that
Zt only depends on Xt. The likelihood function p(Zt|Xt)
quantifies the probability of observing the measurements Zt

given the current state Xt. The trajectory set X is updated
recursively over time as new measurements in Z arrive, and
the posterior distribution p(Xt|Z1:t) is computed. Of note,
estimating p(Xt|Z1:t) requires the evaluation of all possible
combination of association between Z and each trajectory in
X, leading to exponentially increasing costs.

B. Related Work

Within the last decades, efforts have focused either on the
likelihood of trajectory candidates taken independently (using
stochastic filtering or supervised machine learning techniques)
or discrete optimization schemes for the selection of the best
possible set of trajectories [8] with many efforts dedicated
to bioimaging [9]. More recently, advances in deep learning
have demonstrated great potential, especially in scenarios with
low SNR. Indeed, RNNs have been used to learn complex
biodynamic models using simulated data [10, 11]. The role
of RNNs is to estimate the parameters of individual tracks
while the selection of the best possible set of trajectories
at each time step is carried out by a dedicated optimiza-
tion algorithm. These approaches perform particularly well
under low SNR conditions where noise-induced clutter and
transient mis-detections challenge the typical assumptions of
linearity and Gaussian noise made by conventional models
designed for scalability. They have, however, shown little
to no improvement under high SNR conditions, where the
engineering of multiple motion modeling performs best [12].
Consequently, RNNs excel in estimating parameters associated
with particle imaging amidst clutter but offer limited utility in
high SNR scenarios, where the emphasis is on evaluating nu-
merous potential assignments rather than individual trajectory
parameter estimation. More recently, transformers have also
been applied to the same task in moderate noise level [5],
focusing particularly in complex molecular dynamics, such as
the simulation of microtubule polymerization. These works
also exclude the combinatorial aspect from the network design.

In the broader field of sensor tracking, transformers have
been adapted to assess the likelihood of combined, instead of
individual, trajectory parameters and their different combina-
tions, thus eliminating the necessity for the global optimization
step [4, 6]. The scenario under study mimicked submarine
target tracking, where clutter level is typically higher than in
bioimaging with fewer targets, accentuating the importance
of measurement selection. In [4], the network was compared
against stochastic filtering approaches that estimate the param-
eters associated with both targets and clutter. Transformers
exhibited comparable accuracy while boasting a remarkable

speedup of 105 times. Leveraging the attention layer, the
spatial context is used to select the best set of measurements
to be associated with a given trajectory. This work highlights
the potential of transformers to improve tracking performances
beyond the estimation of individual trajectory parameters, it
also raises questions on the performance of transformers in
high-SNR tracking challenges.

III. METHODS

A. Simulated data generation

We simulate two particles undergoing Brownian motion as

yp
t = yp

t−1 + ϵpt + δp, (2)

for yp
t ∈ R2 ∀p ∈ {0 : N − 1}, where ϵpt ∼ N (0, µ2I2)

represents the random component (we call µ the scale of the
process noise) and δp ∈ R2 is the drift. To simulate an increase
in the measurement noise, we incorporate an additive term
ωp ∼ N (0, σ2I2) to the above equation, where we call σ the
scale of this noise.

zpt = yp
t + ωp (3)

This information zpt is referred to as the measurement of the
pth particle at time t. The resulting sequences are stored in two
matrices X and Z for the ground truth and the measurements
respectively, of shape (N,T ) for each Cartesian dimension,
where N = 2 is the number of particles in the system and
T is the lifetime of the particles. We, thus, assume that all
particles have equal lifetime (l = T ). All elements within
Z are shuffled independently for each frame to prevent the
transformer from using the measurement order.

B. Multiple Hypothesis Tracking

Here, we briefly introduce MHT starting from the presenta-
tion of the Kalman filter. Let’s consider a particle to be at state
xt at a time instant t such that xt =

(
xt, yt, dxt, dyt

)T
,

the Kalman filter uses a state transition equation that governs
the changes in the particle hidden state, and an observation
equation that maps true states to observed measurements, as
follows: {

xt+1 = Fxt + η
zt+1 = Hxt+1 + ν

, (4)

where F ∈ R4×4 is the transition matrix, H ∈ R2×4

is the observation matrix and where η ∼ N (0, η′2I2) and
ν ∼ N (0, ν′2I2) are the random components representing
the process and measurement noises used for inference. The
Kalman filter is an iterative approach to predict and update the
particle state every time a new measurement is added to the
trajectory. It is considered to be an optimal estimator of the
particle state in the sense that it minimizes the mean square
error if the conditions of equation 4 are respected [8].
In a multiple particle tracking context, a single measurement
must be selected among many at time t + 1 to update the
state estimated at time t. To do so, MHT uses one Kalman
filter per particle, and considers all possible combinations
of measurements observed within a specified time window,
known as the lookback window, which we denote as KMHT .



Fig. 1. Encoder-decoder-based transformer used for this study. Each encoder
layer contains a self-attention and feed-forward layer; each decoder layer
contains a self-attention, cross-attention and feed-forward layer.

Each hypothesis is assessed using the Mahalanobis distance
that accounts for the probability of predicted state. The most
likely hypothesis, i.e. the hypothesis with the least combined
Mahalanobis distance across all targets, is then selected and
propagated to the next time step. In the case where the
sequence length is inferior to the lookback window, MHT is
the optimal estimator of the set of states.

C. Attention and Transformer

A transformer is composed of an encoder, learning the
latent space of the sequence, and a decoder, predicting the
next state. The encoder input is the set of elements of Z
truncated to KE elements in temporal order (with the temporal
information being passed into the encoder along with each
detection coordinate) and the decoder output is the set of
corresponding elements in X. The decoder input is the set
of elements from the previous KD decoder output elements.
Akin to MHT, we refer to the lookback window size of
the transformer encoder as KE and that of the transformer
decoder as KD. A key difference in transformers compared
to other neural networks is the attention layer. Attention is
used to weigh the importance of different input elements when
computing the hidden representations for each layer. Consider
an input A . The three input matrices Q (query), K (key) and
V (value) are defined as follows:

Q = WQA,K = WKA,V = WV A (5)

where WQ, WK and WV are randomized weight matrices
that are updated as the model learns.

attention(Q,K,V) = softmax(
QKT

√
dk

)V (6)

The attention mechanism is used inside an encoder-decoder-
based transformer architecture [13] as shown in Fig. 1. Note
that A for calculating the 3 input matrices can vary: for self-
attention, Q, K and V are sampled from the encoder input
whereas for cross-attention Q is sampled from the decoder
input, and K and V are sampled from the encoder output
(Fig. 1).

D. Performance evaluation

Matching of estimated and real particle positions is achieved
by minimizing the sum of Euclidean distances for both the
particles at each frame. A true positive (TP) indicates a
correctly predicted link between two positions. A false positive
(FP) represents such a link that is erroneously predicted, where
the model suggests a transition that does not exist. A false
negative (FN) is the case where said model fails to predict
such a link that actually exists. We evaluate performance
in tracking through the Jaccard coefficient (JC) given by
JC = TP

TP+FP+FN .

E. Time Complexity

The expected time complexity of MHT in terms of KMHT

is O(N !KMHT ) [2], where N is the number of particles being
tracked. Considering KE = KD = K, the time complexity
of a transformer is expected to follow O(Kd2 + K2d);
O(K2d) comes from its reliance on self-attention and O(Kd2)
comes from the usage of parallel multi-heads [13], where
d is the hidden layer dimension. In the results section, we
measure time complexity by counting FLOPs (Floating-Point
Operation) using [14] and [15] for the transformer and the
MHT implementations respectively.

IV. RESULTS

We now present a quantitative comparison of our trans-
former architecture and the MHT algorithm using the sim-
ulations described above. In Section IV-A we show that
transformers exhibit heightened robustness to increasing noise
levels when applied over long sequence, maintaining superior
performances when both methods are mis-parameterized. We
also demonstrate in Section IV-B that MHT outperforms trans-
formers over short sequences where MHT is optimal. Albeit
transformer performance improves with an increased number
of experiments, it never matches that of MHT. Furthermore,
we present that transformers demonstrate superior computa-
tional efficiency compared to MHT for extended lookback
windows in Section IV-C. Finally, we examine in Section IV-D
the yield of transformer training across increasing sequence
lengths, indicating that while extensive training is required
to approach MHT performances in the regime of optimality
(short sequence), little training is required for transformer to
show excellent performance over long sequences.

A. Robustness to increasing noise in long sequences

We first sought to test the standard scenario where MHT
performances are limited by the number of trajectory-to-
measurement combinations to consider. To do so, we consider
the task of inferring the state of a 2-particle-system with
motion as described in Section III-A with T = 150 using
an MHT estimator equipped with a history length set to
KMHT = 1. The transformer applied for that same estimation
task is equipped with a decoder of the same lookback window,
KD = 1, and a encoder of length KE = T . We also
set KD = KMHT = 8 to test if increasing the length of
measurement history affects the difference in performance.



Fig. 2. Tracking performances as measured through the Jaccard coefficient applied on frame-to-frame link against varying simulated measurement noise σ
and process noise η′ = 1.5. Bayesian approach (MHT) and transformer are respectively parameterized and trained using (a) known measurement noise ν′,
with KD = KMHT = 1,KE = T = 150 (b) a fixed prior at ν′ = 1 with KD = KMHT = 1,KE = T = 150 (c) Same as (b) but KD = KMHT = 8,
the dashed lines show breakpoints as seen in (b)

Fig. 2(a) illustrates the results when both MHT and transform-
ers are parameterized optimally with exact a priori information
for the MHT parameters and for the training data used with
the transformer. The transformer has been trained using 6
experiments (1 experiment is a single 2-particle-simulation,
1 experiment per batch, and 6 batches). In this experiment,
the transformer shows a significantly higher robustness when
compared against the MHT approach. We then sought to test
if this difference in robustness was still present in case of mis-
parameterization, by fixing the prior on measurement noise for
MHT to ν′ = 1 as well as using the same training dataset for
the transformer, with σ = 1 for all experiments. Thus, in Fig.
2(b), we can see that performance of both the methods drop,
and that the robustness of the transformer remains higher.
Together, this data suggests that transformers provide high
robustness when provided with the same a priori information
than classic Bayesian filtering approaches, even when this a
priori does not exactly match the data. In Fig. 2(c), the setup is
the same except that KMHT = KD = 8. We observe higher
robustness of both approaches while the difference in their
respective performances remains significant.

B. Robustness to increasing noise in short sequences

We then sought to benchmark the transformer against a
scenario where MHT can provide the optimal solution. To
do so, we simulate a 2-particle system with shorter lifetime
(T = 8), filtered with an MHT equipped with a lookback
window of the same length, KMHT = 8. Thus, this MHT
can compute all possible trajectory hypotheses. Similarly, we
designed a transformer that mirrors these characteristic with
KE = 8 and KD = 8. In the remainder of the paper, we
denote transformerT,i a transformer trained in this context,
i.e., with T time steps and i number of experiments per batch
of training. Note that inferences may be carried on sequences
of size ≤ T for transformerT,i.
In Fig. 3, we see that the transformer8,1 performs significantly
worse than MHT. As we increase the number of experiments,
however, we see transformer performance approaches the
optimal estimator of MHT, but does not reach it. Fig. 4 also

Fig. 3. Tracking performances against varying simulated measurement
noise σ and process noise η′ = 1.5 and increasing number of simulation
used for training in conditions where the Bayesian technique is optimal.
”transformerT,i” refers to a transformer trained on a sequence of T time
steps and i experiments per batch. Other parameters: σ = 1.2 (known prior);
KD = KMHT = KE = T = 8.

Fig. 4. Tracking performances against increasing number of simulations used
for training for a sequence of fixed size 8; σ = 7.0.

shows that more experiments do not help the transformer
in approaching the optimal estimator further: as i increases,
the growth in Jaccard coefficient becomes that of decreasing
returns. This behavior of LLM has been previously reported
in [16]. Interestingly, Fig. 3 also shows that the increase in
Jaccard coefficient as we increase i is also non-uniform.



Fig. 5. Computational cost for both MHT and transformer as a function of
increasing lookback windows; σ = 7.0.

C. Measurement of computational times

We measured FLOPs for both the transformer and MHT in
sequence of length 150. As shown in Fig. 5, the computational
cost of MHT is directly linked to the exponential increase
in the number of trajectory-to-measurement combinations as-
sociated to longer lookback windows. Conversely, while the
transformer model initially exhibits higher computational load
than MHT for shorter lookback windows, its computational
growth approximates a linear trajectory, thereby rendering it
more computationally efficient than MHT for longer lookback
windows. This is in line with the projections in Section III-E.
Indeed in our use case KE < d, making the transformer closer
to a time complexity of O(Kd2).

D. Robustness to increasing sequence length

Additionally, we aimed to determine the effect of the train-
ing protocol on experiments with varying particle lifetimes
(8 ≤ T ≤ 150). In Fig. 6, we compare the performances
of transformerT,30, transformer150,30, and transformer150,1
with that of MHT (KMHT = KD = 8,KE = T ).
Transformer150,30 achieves the best performances overall,
while the performance of MHT diminishes as T increases.
Although transformerT,30 and transformer150,1 initially exhibit
lower performance at lower T values, they demonstrate im-
provement as T increases. This shows that, in our scenario,
transformer trained with a small training dataset can exhibit
excellent performances on long sequences while the MHT
algorithm is better suited for short sequence in comparison.

V. CONCLUSION AND FUTURE WORK

Together, our results show that transformers provide a sig-
nificant improvement in robustness against the combinatorial
complexity in tracking multiple particle, rather than the chal-
lenges associated with the modeling of the system dynamics
or to the clutter alone. While previous studies have highlighted
transformers’ advantages in the latter, our findings underscore
the improved robustness and computational efficiency of trans-
formers in prolonged sequences of clutter-free scenes present-
ing multiple particle undergoing Brownian motion. In future
works, we will focus our research on several developments
based on these promising results. We will be working on the
scalability of our design, and test if these properties hold

Fig. 6. Tracking performances against increasing sequence length, comparing
different number and length of simulations used for training; σ = 7.0

when the number of particles is representative of bioimage
data, the main application of our methodological research.
We will also explore strategies for reducing training cost, or
“frugal machine learning”, by combining the robustness of
transformers trained with small datasets for longer sequences
with the properties of optimality of MHT approaches in shorter
and isolated trajectories.
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