
HAL Id: hal-04619208
https://hal.science/hal-04619208v2

Preprint submitted on 2 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programmable Solutions for Low-power Lossy Wireless
Networks: A Study of SDN and Femto Containers

Ahmad Mahmod, Julien Montavont, Thomas Noel

To cite this version:
Ahmad Mahmod, Julien Montavont, Thomas Noel. Programmable Solutions for Low-power Lossy
Wireless Networks: A Study of SDN and Femto Containers. 2024. �hal-04619208v2�

https://hal.science/hal-04619208v2
https://hal.archives-ouvertes.fr

Programmable Solutions for Low-power Lossy
Wireless Networks: A Study of SDN and Femto

Containers
Ahmad Mahmod

ICube, University of Strasbourg
Pole API, 67412 Illkirch, France

mahmod@unistra.fr

Julien Montavont
ICube, University of Strasbourg
Pole API, 67412 Illkirch, France

montavont@unistra.fr

Thomas Noel
ICube, University of Strasbourg
Pole API, 67412 Illkirch, France

noel@unistra.fr

Abstract—Low-power Lossy Wireless Networks (LLWNs) are
characterized by constraints in memory, processing, and power
consumption, coupled with an inherently dynamic wireless en-
vironment. In this context, a programmable communication
protocol suite is essential to efficiently adapt to varying network
conditions, optimize resource utilization, and maintain perfor-
mance within the stringent limitations of LLWN devices. In
this work, we review and compare state-of-the-art network pro-
grammability techniques to assess their suitability for LLWNs.
Based on the findings, we propose a new network architecture
for LLWNs, utilizing software defined networking for control
plane programmability and Femto Containers lightweight virtu-
alization for data plane programmability, ensuring it respects the
constraints of LLWN devices. We conducted a proof-of-concept
validation to demonstrate the feasibility of Femto Containers to
implement the data plane in LLWN on the FIT IoT-LAB testbed.
The results show that our architecture successfully meets the
memory and power consumption constraints of LLWN devices,
although this comes at the cost of a slightly acceptable increased
packet processing delay.

Index Terms—Low-power Lossy Wireless Network, Software
Defined Networking, Programmable Data Plane, Lightweight
Virtualization

I. INTRODUCTION

A Low-power Lossy Wireless Network (LLWN) is a branch
of Internet of Things consisting of a large number of embedded
devices connected using lossy wireless communication links.
LLWN include sensors, actuators, and gateways which are
advantageous where the installation of infrastructure-based
networks (e.g., 5G) is not possible or is prohibitively expen-
sive. The application areas of LLWN include environmental
monitoring, such as the collection of climate temperature and
humidity data over large areas; healthcare, for the collection
and transmission of vital signs (e.g., heart rate); industrial
automation, to monitor machinery status and performance; and
many other areas [1].

LLWN devices are typically constrained by limited battery
power, as well as limited processing and memory capacity

This work was funded by ANR, Grant ANR-23-CE25-0008. For the purpose
of Open Access, a CC-BY public copyright licence has been applied by the
authors to the present document and will be applied to all subsequent versions
up to the Author Accepted Manuscript arising from this submission.

which results in short-range, low data rate and possibly multi-
hop communications [2]. These constraints highlight the need
for network protocols that cope with the limited resources
of LLWN by using available power efficiently and reducing
memory and processing overhead.

The wireless nature of LLWN makes communication inher-
ently dynamic. This dynamicity results from environmental
changes, mutual interference between devices, power deple-
tion, and mobility requirements in some applications, which
cause topology variations and affect communication perfor-
mance, making the communication links unstable and prone to
high packet loss. The dynamic environmental conditions, com-
bined with the diverse application quality of service require-
ments in the network, render the use of a single protocol suite
inefficient. This underscores the need for network programma-
bility: the ability to reconfigure the protocol suite according
to varying conditions to achieve optimal performance. This
reconfiguration may involve adjusting parameters of specific
protocols or replacing the entire protocol suite. For instance,
if a network experiences a sudden increase in traffic from a
high-priority application, the system might switch from a low-
energy, low-throughput protocol to a high-throughput protocol,
sacrificing energy efficiency to improve data transmission rates
and better handle the traffic surge.

Three programmability levels are defined in [3]: Mono-
lithic defines n protocols and switches between them (e.g.,
switch from CoAP to MQTT), Parametric modifies some
protocol parameters (e.g., backoff time of the radio), and
Modular defines functions in modules and interconnects them
to construct the entire protocol logic representing the highest
programmability level. Implementing a monolithic solution by
provisioning the operating system with numerous concurrent
protocols is impractical due to constraints in memory and
processing capacity. Over-The-Air (OTA) firmware updates
resolve this issue by enabling the replacement of the running
firmware with a new version that includes the necessary
protocols. However, installing new firmware generally requires
a reboot, which triggers a new bootstrap of the network stack
due to the loss of all states. The network bootstrap phase
is well known for its instability, as nodes exchange a large

volume of messages to converge to a stable state [4]. This pro-
cess is likely to increase the power consumption of nodes, in
addition to the service disruption and the strain of transmitting
large firmware images over a constrained multi-hop network.
Finally, some operating systems offer a parametric approach
using Application Programming Interfaces (APIs) to modify
specific parameters of the network stack, such as RIOT [5].
However, this solution provides limited configuration options.

The available solutions for enabling programmability in
LLWN are insufficient, as they either consume too much
memory or energy, or offer only limited programmability.
In this article, we propose a new architecture that ensures
high programmability of the protocol suite, including low-
level functions essential for wireless communications, while
also adhering to the constraints of LLWN devices. To the best
of our knowledge, we are the first to leverage virtualization
techniques to implement the data plane in constrained LLWN
environments. The contributions of this article are threefold:
(i) reviewing various network programmability techniques
and studying their feasibility for LLWN; (ii) proposing a
novel architecture for LLWN using Software Defined Network
(SDN) and Femto Container lightweight virtualization; and
(iii) validating our approach with a proof-of-concept imple-
mentation.

II. BACKGROUND AND EXISTING WORKS

Network processes are divided into two main planes: the
control plane and the data plane. The control plane serves the
intelligence of the network, responsible for decision-making
and rule-setting for data forwarding. In contrast, the data plane
applies these rules and handle the actual forwarding of data
packets. Achieving a high level of programmability neces-
sitates reconfigurability in both the decision-making (control
plane) and decision-applying (data plane) components. We de-
tail here background notions on the state-of-the-art of control
plane and data plane programmability.

A. Control Plane Programmability

The Software Defined Networking (SDN) paradigm rede-
fines network architecture by separating the control plane from
the data plane [6]. In SDN, the control plane is centralized
within an entity known as the SDN controller. This controller
maintains a comprehensive, global view of the network and
oversees the data plane functions that remain distributed across
network devices. Centralization allows the control plane to be
programmable, enabling the SDN controller to dynamically
adjust network behavior and optimize performance based on
real-time conditions.

In the LLWN context, the SDN paradigm enables the
offloading of complex control tasks to the central controller.
This approach allows devices to prioritize efficient data trans-
mission and energy conservation. Given that LLWN networks
typically operate in a multi-hop fashion, many proposals focus
on decentralized routing, where path computation is handled
by the central controller. SDN-WISE [7] replaces the packet
processing pipeline of devices with Match-Action flow tables

managed by the controller. Each packet that matches a rule in
these tables triggers a predefined action, such as forwarding
the packet to a specific neighbor. Ouhab et al. have proposed a
hybrid approach where a distributed routing protocol is utilized
at a small scale, while the large-scale management of routing
paths is delegated to an SDN controller [8].

Other solutions have been developed to manage the schedul-
ing of time-slotted networks. SDN-WISE was enhanced in
[9] to schedule flows based on Quality of Service (QoS)
indicators. Additionally, SDN-TSCH [10] introduced a novel
SDN-based scheduling approach that isolates flows, which
helps to meet and guarantee their QoS requirements, and
ensures a reliable control plane through the use of dedicated
slots.

We observe that the majority of SDN-based works in LLWN
focuses on configuring data forwarding rules or managing the
scheduling of time-slotted MAC protocols. In this article, our
objective is to expand on this contribution by advocating for
the comprehensive management of the entire communication
protocol suite.

B. Data Plane Programmability

In this section, we review some state-of-the-art technologies
that can be used to program the data plane and compare their
feasibility for LLWN.

1) P4 Programming Language: Programming Protocol-
independent Packet Processors (P4) is a high-level program-
ming language dedicated to programming the data plane of
network devices such as routers or switches [11]. This archi-
tecture is hardware-agnostic and consists of three main stages:
the Parser, responsible for understanding the packet header; the
Processing stage, which manipulates packets in a key-action
manner; and the Deparser, which reconstructs the processed
packet. For example, P4 has been used to define the data plane
of IEEE802.11 in the Linux network stack, facilitating access
to previously inaccessible management frames [12].

2) eBPF: The extended Berkeley Packet Filter (eBPF)
is a virtual machine for programming the kernel of Linux-
based operating systems, enabling versatile applications in
security, monitoring, and networking [13]. The eBPF virtual
machine is event-based, triggered by specific events using
hooks—checkpoints installed in the operating system to mon-
itor particular events. Networking hooks include eXpress Data
Path (XDP) at the lowest layer of the Linux network stack,
offering fast packet processing with basic and limited actions,
and Traffic Control (TC) in the upper layers, which offers
broader processing capabilities, striking a balance between
performance and flexibility. The virtual machine is lightweight,
featuring 11 registers and a 512-byte stack, and can be updated
and connected without the need to modify the kernel. eBPF
has many applications in networking, such as extending the
TCP stack with new arbitrary options [14].

3) Femto Container: Femto Container (FC) is a new
middleware that enables the deployment of lightweight virtual
machines on resource-constrained devices [15]. This technol-
ogy extends the eBPF virtual machine to Real-Time Operating

TABLE I
COMPARISON BETWEEN TECHNOLOGIES

P4 eBPF Femto-Container
Scope Domain-

specific for
data plane
of network
devices

Programming
Linux Kernel
including
network stack

Event-driven
applications
in constrained
devices

Footprint Large memory
and processing
requirements

Small memory
footprint

Small memory
footprint

Limitations Need high per-
formance hard-
ware, no radio
management

Limited to
Linux Kernel,
no radio
management

Limited to
some RTOSs
until now

Systems (RTOS) used in LLWN devices, offering a minimal
memory footprint and affordable processing overhead. More-
over, FCs are hardware-agnostic and therefore compatible with
various hardware specifications or boards.

FC is lightweight, featuring 11 registers and 512-bytes
stack, and operates on an event-based model similar to eBPF.
However, FCs extend its functionality with user-defined hooks
that can be installed at any point in the operating system, from
the driver to the application layer.

The launching and updating of FCs are transparent to the
operating system, and do not require firmware updates. For
security and isolation, FC performs memory access checks
and uses pre-flight verification to ensure the safety of FC
applications before execution. In [15], FC was used to read
sensor data at the driver level and transmit it using the
Constrained Application Protocol (CoAP) at the application
level.

We can conclude that, compared to eBPF, FC maintains the
same virtual machine architecture but introduces a new engine
for eBPF virtual machines within RIOT. Moreover, unlike
eBPF, which is restricted to predefined hooks, FC allows users
to define hooks at any point within the operating system.

4) Comparison: Table I compares the reviewed technolo-
gies. While P4 and eBPF are robust solutions for programming
the data plane in devices with high performance, they present
challenges for deployment in LLWN devices due to hardware
limitations and no radio management capabilities. P4 requires
more powerful hardware than typically available in LLWN
devices, and lacks P4 targets for such resource-constrained
devices. eBPF, despite its small memory footprint, is originally
designed for Linux OS, which imposes hardware requirements
that exceed those of LLWN devices. Both P4 and eBPF
primarily focus on post-packet reception processing and do
not directly manage radio-related operations. Although eBPF
can perform some driver-level tasks, its capabilities are limited
to basic operations such as packet dropping, redirection, and
forwarding.

By contrast, FC is a promising solution for implementing
isolated network protocols and managing radio-related oper-
ations through specific hooks at different operating system
levels. With its minimal memory footprint, light processing

overhead, and event-triggered architecture, FC is well-suited
for the resource-constrained nature of LLWN. A modular
approach can be adopted, where elementary functions are im-
plemented in independent FCs. By interconnecting these FCs,
we can create complex application logic. These applications
include communication protocols attached to different hooks
across the protocol stack, allowing runtime updates. While FCs
are compatible with various hardware platforms, their current
limitation to certain Real-Time Operating Systems (RTOS)
exists. However, as a novel technology, there is potential for
FCs to expand support to additional operating systems in the
future.

III. PROPOSED ARCHITECTURE

Packet Processing Pipeline

FC

FC

Processor

FC FC

Parser

Deparser

TX Packet

RX Hook

Duty-Cycle Management

FC FC

Timer Hook

Radio ON/OFF
Switch channel
etc.

FC FC

FC

TX HookO
pe

ra
tin

g
Sy

st
em

SDN
Controller

Update
Duty-Cycle

with a new FC

LLWN Device

Update
Processor Module

 FCs

Fig. 1. Proposed Architecture

For programming LLWN, we propose an architecture that
integrates the SDN paradigm, featuring an SDN controller that
serves as the central manager of the network and runs the
control plane, leaving only the data plane on LLWN devices.
The data plane in the devices adopts a micro-service ap-
proach, where fundamental functions are implemented within
lightweight virtual machines. These virtual machines, each
representing a micro-service, offer secure and isolated func-
tionalities that can be easily updated. By interconnecting these
micro-services, a complete protocol suite can be constructed
within the data plane. Based on our previous review, we pro-
pose Femto Containers (FCs) to define these micro-services,
but any other lightweight virtualization technique could play
this role. Fig. 1 illustrates the architecture, which will be
detailed in the following sections.

A. Control Plane

The SDN controller continuously receives updates on en-
vironmental conditions from LLWN devices, including met-
rics such as the packet delivery rate and interference level.
Based on the evaluation of these conditions and performance
targets, the controller defines the appropriate protocols in

the form of FC chains and distributes them to the devices.
The proposed modifications can range from adjusting specific
protocol parameters to updating entire protocol or individual
functions as needed. For example, if the packet delivery rate
drops significantly due to increased interference, the controller
might switch from a standard MAC protocol to a more
robust, interference-tolerant protocol to maintain network per-
formance and reliability.

Implementing a centralized SDN architecture in LLWNs
poses significant challenges, primarily due to unreliable links
and network contentions that can potentially disrupt control
traffic. Ensuring successful updates and fast convergence re-
quire the reliable and timely transmission of modifications
from the SDN controller to LLWN devices. This is crucial
as all devices should promptly apply the modifications to
restore their communication capabilities. One potential solu-
tion, as suggested in [10], involves allocating dedicated time-
frequency blocks for control traffic. This approach aims to
establish a reliable control plane by removing contention and
ensuring that control messages reach devices effectively.

B. Data Plane

The data plane is distributed in all LLWN devices and
consists of a sequence of FCs, each responsible for funda-
mental functions such as medium access control and packet
processing. This is achieved using a wide range of hooks that
can be installed at different layers within the operating system.

For instance, consider the implementation of a simple
forwarding protocol using FCs (Fig. 1). Upon receiving a
message from the radio, the Parser is activated to decompose
the message header. Subsequently, the processing stage deter-
mines the appropriate output before initiating the Deparser to
reconstruct the message for transmission. Additionally, FCs
can manage pre-reception functions related to the radio using
specific timing hooks, such as duty cycling (Fig. 1). These
functionalities are crucial and cannot be achieved using P4 or
eBPF.

C. Architecture Programmability Features

Our architecture is adaptive and features a programmable
control plane and data plane. The SDN paradigm in the
control plane enables the definition of network protocols
tailored to specific requirements and conditions. Additionally,
FC lightweight virtualization in the data plane offers a flexible
solution to accommodate dynamic updates deployed by the
control plane.

In terms of modularity, our architecture has a double-
modular data plane. The first level of modularity operates
between protocols (services), enabling the replacement of
one protocol with another without affecting the others. For
example, updating the Processor does not impact the Parser
or the Deparser (Fig. 1). The second level of modularity
exists within each protocol itself, allowing individual FCs
(micro-services) to be updated independently of the others.
For instance, a specific FC in Duty-Cycle Management can

Physical (IEEE 802.15.4)

Data Link (IEEE 802.15.4)

Network (IPv6)

Transport (UDP)

Application

Physical (IEEE 802.15.4)

Data Link (IEEE 802.15.4)

Network (IPv6)

Application

UDP Recv UDP Send

Checksum

Fig. 2. GNRC and FC Stack Implementations

be updated while the others remain unchanged, as illustrated
in Fig. 1.

IV. EVALUATION

To validate the feasibility of using lightweight virtualization
technique to implement network protocols, we implemented
the UDP protocol using Femto-Containers in RIOT as a proof-
of-concept. We selected UDP because it is one of the simplest
protocols in the network stack, making it an ideal candidate
for initial implementation. Future work will focus on imple-
menting protocol updates and extending the implementation
to include other layers of the protocol stack proposed in our
architecture. This open-source implementation1 was compared
to the default GNRC IP stack in RIOT. Fig. 2 shows the
network stack of both implementations. In the GNRC stack,
each layer has its own thread running permanently in the back-
ground along with the associated thread stack. By contrast,
our implementation is event-based, with two Femto-Containers
being triggered only when a packet is received by (UDP Recv)
or sent from (UDP Send) the UDP layer. Another FC, known
as Checksum, is implemented and can be optionally installed
by the controller on LLWN devices when data integrity is
required. This approach offers a significant advantage over
GNRC, which necessitates the initial installation of this feature
or a complete firmware update when it becomes necessary.

The experiments were conducted on the FIT IoT-LAB
testbed [16] using the IoT-LAB M3 board, which features
an ARM Cortex M3 CPU, 2.4 GHz (IEEE 802.15.4) radio
transceiver, 256KB of ROM, and 64KB of RAM.

We compared the FC and GNRC implementations on three
metrics: memory footprint, power consumption, and execution
time across various scenarios. To support reproducibility, we
provide the raw results and processing scripts in the Git
repository1.

A. Memory

We compared the ROM and RAM footprints of GNRC
and FC implementations, both written in C, using the LLVM
compiler on the FIT IoT-LAB M3 node. Footprints were
analyzed with Cosy2. As shown in Fig. 3, the FC imple-
mentation increases the ROM footprint by 2.49% compared

1https://github.com/ahmahmod/UDP-Protocol-using-Femto-Containers
2https://github.com/haukepetersen/cosy

ROM RAM
0

20

40

60

80

100

M
em

or
y

(K
B)

+ 2.49%

- 5.72%

FC
GNRC

Fig. 3. Memory Comparison

to GNRC. This increase is due to the installation of the FC
engine and new modules for packet processing and interaction
with RIOT. On the other hand, the RAM footprint of the
FC implementation shows a reduction in RAM usage by
almost 5.7% compared to GNRC. While the FC engine slightly
increases the RAM footprint, this is offset by the removal of
the continuously running thread for the UDP layer and its
dedicated stack in RAM. Overall, this adjustment compensates
for the slight increase and results in a reduced overall RAM
footprint.

B. Power Consumption

To measure the power consumption of the FC and GNRC
implementations, we disabled the radio transceiver of one
FIT IoT-LAB M3 node to isolate its power consumption
contribution. Subsequently, we ran the UDP sender and UDP
receiver together on this node to measure the power con-
sumption resulting from both implementations. This setup
involved triggering FCs for handling UDP packets or running
the GNRC UDP thread.

We used the INA226 hardware component provided by
FIT IoT-LAB to measure power consumption, taking periodic
measurements every 588 µs with an averaging count of 512.
The communication scenario involved sending 1000 packets
from the UDP sender to the UDP receiver using the loopback
interface. We varied the transmission intervals between 1-
second, 2-seconds, and 3-seconds to assess power consumption
under different operational conditions.

By observing the results in Fig. 4, we can see that both
implementations have comparable power consumption. This
demonstrates that our proposed architecture, leveraging on
lightweight virtualization, maintains low power consump-
tion—a critical factor for LLWN devices—despite the uti-
lization of virtualization. The comparable power consumption
results from the nature of the FC implementation, which is
event-triggered and calls an FC only when a packet needs to
be sent or received. Our architecture is energy efficient for

FC
GNRC FC

GNRC FC
GNRC

57.50

57.75

58.00

58.25

58.50

58.75

59.00

59.25

Po
we

r (
m

W
)

 1 sec 2 sec 3 sec

Fig. 4. Power Consumption Comparison

packet processing, but it still requires further investigation for
low-level management tasks that manipulate the radio.

C. Execution Time

We measured the execution time needed to send or receive
a packet at the UDP layer to compare the performance of
the FC and GNRC implementations. The execution time for
the FC implementation was obtained from debugging informa-
tion, while a timer was used for the GNRC implementation.
To conduct this measurement, we sent 1000 packets at 1-
second intervals from a UDP sender on one M3 node to a
UDP receiver on another M3 node for both FC and GNRC
implementations. Additionally, to demonstrate interoperability,
we measured the execution time for scenarios where packets
were exchanged between two nodes, with one node running
the FC implementation and the other running the GNRC
implementation.

Fig. 5 and 6 show the execution time for each packet, with
the sequence number indicated on the X-axis. The results
show almost constant execution times for the transmission and
reception of UDP packets over time for both implementations.
The longer execution time for transmission compared to re-
ception in both implementations is due to a while loop in the
code, which increases processing overhead. Fig. 5 indicates
that the FC implementation takes approximately 1.97 times
longer than the GNRC for transmission, while Fig. 6 shows
that FC increases reception time by about 3.3 times compared
to GNRC, due to virtualization overhead. Some execution
time outliers may occur because of high-priority interrupts,
such as radio acknowledgments and retries, which extend
processing time. Despite this, FC’s execution time remains
in the microsecond range, which is acceptable for LLWN net-
works. This is the trade-off for achieving a fully programmable
data plane in LLWN using virtualization. However, using FC
for synchronous protocols requiring precise timings may be
challenging, a topic we will explore further in future research.

Fig. 5. Transmission Execution Time Comparison

Fig. 6. Reception Execution Time Comparison

V. CONCLUSION AND FUTURE WORKS

A programmable protocol suite for LLWNs offers crucial
adaptability to dynamically changing wireless environments,
ensuring optimized performance and resilience against envi-
ronmental fluctuations. In this article, we reviewed and com-
pared several network programming technologies and studied
their feasibility for LLWN. We then proposed a double-
programmable and a double-modular architecture that respects
the constraints of LLWN devices and responds to the dynamic
changes of the environment.

We validated the feasibility of using lightweight virtual-
ization to define the data plane through a proof-of-concept
implementation of the UDP protocol using Femto Containers
(FCs), comparing it with the GNRC implementation in RIOT
operating system across the FIT IoT-LAB testbed. System-
level results showed that our proposal balances a slight in-
crease in ROM with a corresponding reduction in RAM usage.
Moreover, both implementations present similar power con-
sumption profiles. The event-based nature of FCs effectively
manages power consumption associated with virtualization
and RAM footprint by spawning FCs only when required,
thus eliminating the need for continuously running thread
as found in GNRC. Finally, our implementation showed a
slight increase in packet processing delay, but remains in the

microsecond range. This point will be further investigated,
especially when we will consider synchronous protocol.

For future work, we aim to implement the entire network
stack of LLWN devices in FCs, including low-level protocols
such as MAC protocols. Our initial choice of UDP was driven
by its simplicity, serving as a first step to validate the feasibility
of using FCs for implementing network protocols. We will also
develop an easy-update mechanism for the installed FCs and
integrate it with an SDN controller to manage the distribution
of FCs. Finally, we plan to explore the use of machine learning
within the SDN controller to determine the optimal protocol
suite based on the running application’s needs.

REFERENCES

[1] J. J. Ko, A. Terzis, S. Dawson-Haggerty, D. E. Culler, J. W. Hui, and
P. Levis, “Connecting low-power and lossy networks to the internet,”
IEEE Communications Magazine, vol. 49, 2011.

[2] H. Almutairi and N. Zhang, “A Survey on Routing Solutions for Low-
Power and Lossy Networks: Toward A Reliable Path-Finding,” MDPI
Network, 2024.

[3] P. H. Isolani, M. Claeys, C. Donato, L. Z. Granville, and S. Latré,
“A survey on the programmability of wireless mac protocols,” IEEE
Communications Surveys & Tutorials, vol. 21, 2019.

[4] C. Vallati, S. Brienza, G. Anastasi, and S. K. Das, “Improving Net-
work Formation in 6TiSCH Networks,” IEEE Transactions on Mobile
Computing, vol. 18, 2019.

[5] E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann, M. S. Lenders,
H. Petersen, K. Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT:
An Open Source Operating System for Low-End Embedded Devices in
the IoT,” IEEE Internet of Things Journal, vol. 5, 2018.

[6] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A Survey
on Software-Defined Networking,” IEEE Communications Surveys &
Tutorials, vol. 17, 2015.

[7] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution
for WIreless SEnsor networks,” in IEEE Conference on Computer
Communications (INFOCOM), 2015.

[8] A. Ouhab, T. Abreu, H. Slimani, and A. Mellouk, “Energy-efficient clus-
tering and routing algorithm for large-scale SDN-based IoT monitoring,”
in IEEE International Conference on Communications (ICC), 2020.

[9] F. Orozco-Santos, V. Sempere-Payá, T. Albero-Albero, and J. Silvestre-
Blanes, “Enhancing SDN WISE with Slicing Over TSCH,” MDPI
Sensors, vol. 21, 2021.

[10] F. Veisi, J. Montavont, and F. Théoleyre, “Enabling Centralized Schedul-
ing Using Software Defined Networking in Industrial Wireless Sensor
Networks,” IEEE Internet of Things Journal, vol. 10, 2023.

[11] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
P4: Fundamentals, advances, and applied research,” Elsevier Journal of
Network and Computer Applications, vol. 212, 2023.

[12] P. Zanna, P. Radcliffe, and D. Kumar, “WP4: A P4 Programmable IEEE
802.11 Data Plane,” in 30th International Telecommunication Networks
and Applications Conference (ITNAC), 2020.

[13] M. Vieira, M. Castanho, R. Pacı́fico, E. Santos, E. Júnior, and L. Vieira,
“Fast Packet Processing with eBPF and XDP: Concepts, Code, Chal-
lenges, and Applications,” ACM Computing Surveys, vol. 53, 2020.

[14] V.-H. Tran and O. Bonaventure, “Beyond socket options: making the
linux TCP stack truly extensible,” in IFIP Networking Conference, 2019.

[15] K. Zandberg, E. Baccelli, S. Yuan, F. Besson, and J.-P. Talpin, “Femto-
containers: lightweight virtualization and fault isolation for small soft-
ware functions on low-power IoT microcontrollers,” in 23rd ACM/IFIP
International Middleware Conference, 2022.

[16] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, “FIT IoT-LAB: A large scale open experimental IoT
testbed,” in IEEE 2nd World Forum on Internet of Things (WF-IoT),
2015.

