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Abstract—Low-power Lossy Wireless Networks (LLWNs) are
characterized by constraints in memory, processing, and power
consumption, coupled with an inherently dynamic wireless en-
vironment. In this context, a programmable communication
protocol suite is essential to efficiently adapt to varying network
conditions, optimize resource utilization, and maintain perfor-
mance within the stringent limitations of LLWN devices. In
this work, we review and compare state-of-the-art network pro-
grammability techniques to assess their suitability for LLWNs.
Based on the findings, we propose a new network architecture
for LLWNs, utilizing software defined networking for control
plane programmability and Femto Containers lightweight virtu-
alization for data plane programmability, ensuring it respects
the constraints of LLWN devices. We conducted a proof-of-
concept validation to demonstrate the feasibility of our proposed
architecture on the FIT IoT-LAB testbed. The results show
that our architecture successfully meets the memory and power
consumption constraints of LLWN devices, although this comes
at the cost of a slightly increased packet processing delay.

Index Terms—Low-power Lossy Wireless Network, Software
Defined Networking, Programmable Data Plane, Lightweight
Virtualization, Femto Container

I. INTRODUCTION

The Internet of Things (IoT) aims to connect physical
objects in the real world to the Internet [1]. A Low-power
Lossy Wireless Network (LLWN) is a branch of IoT consisting
of a large number of embedded devices connected using
lossy wireless communication links. LLWN include sensors,
actuators, and gateways which are advantageous where the
installation of infrastructure-based networks (e.g., 5G) is not
possible or is prohibitively expensive. The application areas
of LLWN include environmental monitoring, such as the
collection of climate temperature and humidity data over
large areas; healthcare, for the collection and transmission of
vital signs (e.g., heart rate); industrial automation, to monitor
machinery status and performance; and many other areas [2].

LLWN devices are typically constrained by limited battery
power, as well as limited processing and memory capacity
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which results in short-range, low data rate and possibly multi-
hops communications [3]. These constraints highlight the need
for network protocols that cope with the limited resources
of LLWN by using available power efficiently and reducing
memory and processing overhead.

The wireless nature of LLWN makes communication inher-
ently dynamic. This dynamicity results from environmental
changes, mutual interference between devices, power deple-
tion, and mobility requirements in some applications, which
cause topology variations and affect communication perfor-
mance, making the communication links unstable and prone
to high packet loss.

The dynamic environmental conditions, combined with the
diverse application Quality-of-Service (QoS) requirements in
the network, render the use of a single protocol suite inef-
ficient. This underscores the need for network programma-
bility: the ability to reconfigure the protocol suite according
to varying conditions to achieve optimal performance. This
reconfiguration may involve adjusting parameters of specific
protocols or replacing the entire protocol suite. Three main
programmability levels are defined in [4]:

o Monolithic Level defines n protocols and switches be-
tween them (e.g., switch from CoAP to MQTT).

o Parametric Level modifies some protocol parameters
(e.g., backoff time of the radio, the TTL in IP, etc.).

o Modular Level defines functions in modules and in-
terconnects them to construct the entire protocol logic
representing the highest programmability level.

Currently, some solutions for network programmability in-
volve hardcoding network protocols into the operating system.
Implementing a monolithic solution by provisioning the oper-
ating system with numerous concurrent protocols is imprac-
tical due to constraints in memory and processing capacity.
Over-the-Air (OTA) updates enable the replacement of running
firmware with a new version that includes updated protocols.
However, this solution disrupts service due to the required
reboot and place additional strain on the network with the new
firmware image. Moreover, it significantly increases power
consumption due to the transmission of the new firmware



image, the reboot process, and the need to reestablish commu-
nication (resulting in the loss of all states due to the reboot).
Nevertheless, this monolithic solution eliminates the need
to provision the operating system with multiple concurrent
protocols. Some operating systems offer a parametric approach
using Application Programming Interfaces (APIs) to modify
specific parameters of the network stack, such as RIOT [5].
However, this solution provides limited configuration options.

We can observe that the available solutions are insufficient
for LLWN-constrained devices, as they do not respect the
constraints of LLWN or provide only a limited level of
programmability. For this reason, there is a pressing need
for a new architecture that provides high programmability of
the protocol suite, including low-level functions crucial for
wireless communications, while also respecting the constraints
of LLWN devices.

In this article, we propose an architecture that respects the
constraints of LLWN devices and provides a high level of pro-
grammability for both the control plane and data plane. To the
best of our knowledge, we are the first to exploit virtualization
techniques to implement the data plane in constrained LLWN
environments. The contributions of this article are threefold:

1) Reviewing various network programmability techniques
and studying their feasibility for LLWN.

2) Proposing a novel architecture for LLWN using Soft-
ware Defined Network (SDN) and Femto Container
lightweight virtualization.

3) Validating and evaluating the proposed architecture by
providing a proof-of-concept implementation.

II. BACKGROUND AND EXISTING WORKS

Network processes are divided into two main planes: the
control plane and the data plane. The control plane serves the
intelligence of the network, responsible for decision-making
and rule-setting for data forwarding. In contrast, the data plane
applies these rules and handle the actual forwarding of data
packets. Achieving a high level of programmability neces-
sitates reconfigurability in both the decision-making (control
plane) and decision-applying (data plane) components. We de-
tail here background notions on the state-of-the-art of control
plane and data plane programmability.

A. Control Plane Programmability

The Software Defined Networking (SDN) paradigm rede-
fines network architecture by separating the control plane from
the data plane [6]. In SDN, the control plane is centralized
within an entity known as the SDN controller. This controller
maintains a comprehensive, global view of the network and
oversees the data plane functions that remain distributed across
network devices. Centralization allows the control plane to be
programmable, enabling the SDN controller to dynamically
adjust network behavior and optimize performance based on
real-time conditions.

In the IoT context, the SDN paradigm enables the offloading
of complex control tasks to the central controller. This ap-
proach allows devices to prioritize efficient data transmission

and energy conservation. Given that IoT networks typically
operate in a multi-hop fashion, many proposals focus on
decentralized routing, where path computation is handled by
the central controller. SDN-WISE [7] replaces the packet
processing pipeline of devices with Match-Action flow tables
managed by the controller. Each packet that matches a rule in
these tables triggers a predefined action, such as forwarding the
packet to a specific neighbor. What sets SDN-WISE from other
solutions is that the flow tables include node state information,
enabling nodes to make forwarding decisions based on the
state of other nodes. Ouhab et al. have proposed a hybrid
approach where a distributed routing protocol is utilized at a
small scale, while the large-scale management of routing paths
is delegated to an SDN controller [8].

Other solutions have been developed to manage the schedul-
ing of time-slotted networks. SDN-WISE has been enhanced
in [9] by scheduling the flows according to QoS indicators.
SDN-TSCH [10] proposed a novel SDN-based scheduling
that isolates flows and provides a reliable control plane using
dedicated slots.

We observe that the majority of SDN-based works in IoT
focuses on configuring data forwarding rules or managing the
scheduling of time-slotted MAC protocols. In this article, our
objective is to expand on this contribution by advocating for
the comprehensive management of the entire communication
protocol suite.

B. Data Plane Programmability

In this section, we review some state-of-the-art technologies
that can be used to program the data plane and compare their
feasibility for LLWN.

1) P4 Programming Language: Programming Protocol-
independent Packet Processors (P4) is a high-level program-
ming language dedicated to programming the data plane of
network devices such as routers or switches [11]. This archi-
tecture is hardware-agnostic and consists of three main stages:
the Parser, responsible for understanding the packet header; the
Processing stage, which manipulates packets in a key-action
manner; and the Deparser, which reconstructs the processed
packet. For example, P4 has been used to define the data plane
of IEEE802.11 in the Linux network stack, facilitating access
to previously inaccessible management frames [12].

2) eBPF: The extended Berkeley Packet Filter (eBPF)
is a virtual machine for programming the kernel of Linux-
based operating systems, enabling versatile applications in
security, monitoring, and networking [13]. The eBPF virtual
machine is event-based, triggered by specific events using
hooks—checkpoints installed in the operating system to mon-
itor particular events. Networking hooks include eXpress Data
Path (XDP) at the lowest layer of the Linux network stack,
offering fast packet processing with basic and limited actions,
and Traffic Control (TC) in the upper layers, which offers
broader processing capabilities, striking a balance between
performance and flexibility. The virtual machine is lightweight,
featuring 11 registers and a 512-byte stack, and can be updated
and connected without the need to modify the kernel. eBPF



TABLE I
COMPARISON BETWEEN TECHNOLOGIES
P4 eBPF Femto-Container
Scope Domain- Programming Event-driven
specific for | Linux Kernel | applications in
data plane | including IoT devices
of network | network stack
devices
Footprint Large memory | Small memory | Small memory
and processing | footprint footprint
requirements
Limitations | Need high per- | Limited to | Limited to
formance hard- | Linux Kernel, some RTOSs
ware, no radio | no radio | until now
management management

has many applications in networking, such as extending the
TCP stack with new arbitrary options [14].

3) Femto Container: Femto Container (FC) is a new
middleware that enables the deployment of lightweight vir-
tual machines on resource-constrained IoT devices [15]. This
technology extends the eBPF virtual machine to Real-Time
Operating Systems (RTOS) used in IoT devices, offering a
minimal memory footprint and affordable processing over-
head. Moreover, FCs are hardware-agnostic and therefore
compatible with various hardware specifications or boards.

FC is lightweight, featuring 11 registers and 512-bytes
stack, and operates on an event-based model similar to eBPF.
However, FCs extend its functionality with user-defined hooks
that can be installed at any point in the operating system, from
the driver to the application layer. The launching and updating
of FCs are transparent to the operating system, and do not
require firmware updates. For security and isolation, FC per-
forms memory access checks and uses pre-flight verification to
ensure the safety of FC applications before execution. In [15],
FC was used to read sensor data at the driver level and transmit
it using the Constrained Application Protocol (CoAP) at the
application level.

4) Comparison: LLWN devices face significant constraints
in power, communication, memory, and processing, in addition
to a dynamic wireless environment. These factors necessitate
a dynamic configuration of the protocol suite to respond to
changing conditions. This configuration should encompass
both high-level processing protocols and crucial low-level
functions such as frequency switching and duty cycling, which
are essential for optimizing efficiency in LLWNs.

Table I compares the reviewed technologies. While P4 and
eBPF are robust solutions for programming the data plane in
devices with high performance, they present challenges for
deployment in LLWN devices due to hardware limitations and
no radio management capabilities. P4 requires more powerful
hardware than typically available in LLWN devices, and lacks
P4 targets for such resource-constrained devices. eBPF, despite
its small memory footprint, is originally designed for Linux
OS, which imposes hardware requirements that exceed those
of LLWN devices. Both P4 and eBPF primarily focus on post-
packet reception processing and do not directly manage radio-

related operations. Although eBPF can perform some driver-
level tasks, its capabilities are limited to basic operations such
as packet dropping, redirection, and forwarding.

By contrast, FC is a promising solution for implementing
isolated network protocols and managing radio-related oper-
ations through specific hooks at different operating system
levels. With its minimal memory footprint, light processing
overhead, and event-triggered architecture, FC is well-suited
for the resource-constrained nature of LLWN. A modular
approach can be adopted, where elementary functions are im-
plemented in independent FCs. By interconnecting these FCs,
we can create complex application logic. These applications
include communication protocols attached to different hooks
across the protocol stack, allowing runtime updates. While FCs
are compatible with various hardware platforms, their current
limitation to certain Real-Time Operating Systems (RTOS)
exists. However, as a novel technology, there is potential for
FCs to expand support to additional operating systems in the
future.

III. PROPOSED ARCHITECTURE

LLWN Device
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@(—--»-[FC < FC i€
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Fig. 1. Proposed Architecture

For programming LLWN, we propose an architecture that
integrates the SDN paradigm, featuring an SDN controller that
serves as the central manager of the network and runs the
control plane, leaving only the data plane on LLWN devices.
The data plane in the devices adopts a micro-service ap-
proach, where fundamental functions are implemented within
lightweight virtual machines. These virtual machines, each
representing a micro-service, offer secure and isolated func-
tionalities that can be easily updated. By interconnecting these
micro-services, a complete protocol suite can be constructed
within the data plane. Based on our previous review, we pro-
pose Femto Containers (FCs) to define these micro-services,
but any other lightweight virtualization technique could play
this role. Fig. 1 illustrates the architecture, which will be
detailed in the following sections.



A. Control Plane

The SDN controller continuously receives updates on envi-
ronmental conditions from LLWN devices, including metrics
such as Packet Delivery Rate (PDR) and interference level.
Based on the evaluation of these conditions and performance
targets, the controller defines the appropriate protocols in
the form of FC chains and distributes them to the devices.
The proposed modifications can range from adjusting specific
protocol parameters to updating entire protocol or individual
functions as needed.

Implementing a centralized SDN architecture in LLWNs
poses significant challenges, primarily due to unreliable links
and network contentions that can potentially disrupt control
traffic. Ensuring successful updates and fast convergence re-
quire the reliable and timely transmission of modifications
from the SDN controller to LLWN devices. This is crucial
as all devices should promptly apply the modifications to
restore their communication capabilities. One potential solu-
tion, as suggested in [10], involves allocating dedicated time-
frequency blocks for control traffic. This approach aims to
establish a reliable control plane by removing contention and
ensuring that control messages reach devices effectively.

B. Data Plane

The data plane is distributed in all LLWN devices and
consists of a sequence of FCs, each responsible for funda-
mental functions such as medium access control and packet
processing. This is achieved using a wide range of hooks that
can be installed at different layers within the operating system.

For instance, consider the implementation of a simple
forwarding protocol using FCs (Fig. 1). Upon receiving a
message from the radio, the Parser is activated to decompose
the message header. Subsequently, the processing stage deter-
mines the appropriate output before initiating the Deparser to
reconstruct the message for transmission. Additionally, FCs
can manage pre-reception functions related to the radio using
specific timing hooks, such as duty cycling (Fig. 1). These
functionalities are crucial and cannot be achieved using P4 or
eBPF.

C. Architecture Features

Our architecture is adaptive and features a programmable
control plane and data plane. The SDN paradigm in the
control plane enables the definition of network protocols
tailored to specific requirements and conditions. Additionally,
FC lightweight virtualization in the data plane offers a flexible
solution to accommodate dynamic updates deployed by the
control plane.

In terms of modularity, our architecture has a double-
modular data plane. The first level of modularity operates
between protocols (services), enabling the replacement of
one protocol with another without affecting the others. For
example, updating the Deparser does not impact the Processor
or the Parser. The second level of modularity exists within each
protocol itself, allowing individual FCs (micro-services) to be
updated independently of the others. For instance, specific FCs

Application Application

Transport (UDP) UDP Send UDP Recv

Network (IPv6) Network (IPv6)

Data Link (IEEE 802.15.4) Data Link (IEEE 802.15.4)

Physical (IEEE 802.15.4) Physical (IEEE 802.15.4)

GNRC Stack FC Stack

Fig. 2. GNRC and FC Stack Implementations

within the Processor can be updated while the others remain
unchanged, as illustrated in Fig. 1.

1V. EVALUATION

To validate our proposed architecture, we implemented the
UDP protocol using Femto-Containers in RIOT as a proof-of-
concept. This open-source implementation! was compared to
the default GNRC IP stack in RIOT. Fig. 2 shows the network
stack of both implementations. In the GNRC stack, each layer
has its own thread running permanently in the background
along with the associated thread stack. By contrast, our im-
plementation is event-based, with two Femto-Containers being
triggered only when a packet is received by (UDP Recv) or
sent from (UDP Send) the UDP layer.

The experiments were conducted on the FIT IoT-LAB
testbed [16] using the IoT-LAB M3 board, which features
an ARM Cortex M3 CPU, 2.4 GHz (IEEE 802.15.4) radio
transceiver, 256KB of ROM, and 64KB of RAM.

We compared the FC and GNRC implementations on three
metrics: memory footprint, power consumption, and execution
time across various scenarios. The raw results and processing
scripts are available in the Git repository’.

A. Memory

We compared the ROM and RAM footprints of GNRC
and FC implementations, both written in C, using the LLVM
compiler on the FIT IoT-LAB M3 node. Footprints were
analyzed with the cosy tool [17]. As shown in Fig. 3, the
FC implementation increases the ROM footprint by 2.49%
compared to GNRC. This increase is due to the installation
of the FC engine and new modules for packet processing and
interaction with RIOT.

On the other hand, the RAM footprint of the FC im-
plementation shows a reduction in RAM usage by almost
5.7% compared to GNRC. While the FC engine slightly
increases the RAM footprint, this is offset by the removal
of the continuously running thread for the UDP layer and its
dedicated stack in RAM. Overall, this adjustment compensates
for the slight increase and results in a reduced overall RAM
footprint.

Thttps://github.com/ahmahmod/UDP-Protocol-using- Femto-Containers
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B. Power Consumption

To measure the power consumption of the FC and GNRC
implementations, we disabled the radio transceiver of one
FIT IoT-LAB M3 node to isolate its power consumption
contribution. Subsequently, we ran both the UDP sender and
UDP receiver on this node to measure the power consumption
resulting from both implementations. This setup involved trig-
gering FCs for handling UDP packets or running the GNRC
UDP thread.

We used the INA226 hardware component provided by
FIT IoT-LAB to measure power consumption, taking periodic
measurements every 588 ps with an averaging count of 512.
The communication scenario involved sending 1000 packets
from the UDP sender to the UDP receiver, both located on
the same node (using the loop-back interface). We varied the
transmission intervals between 1-second, 2-seconds, and 3-
seconds to assess power consumption under different oper-
ational conditions.

By observing the results in Fig. 4, we can see that both
implementations have comparable power consumption. This
demonstrates that our proposed architecture, leveraging on
lightweight virtualization, maintains low power consump-
tion—a critical factor for LLWN devices—despite the uti-
lization of virtualization. The comparable power consumption
results from the nature of the FC implementation, which is
event-triggered and calls an FC only when a packet needs to
be sent or received. Our architecture is energy efficient for
packet processing, but it still requires further investigation for
low-level management tasks that manipulate the radio.

C. Execution Time

We measured the execution time needed to send or receive
a packet at the UDP layer to compare the performance of
the FC and GNRC implementations. The execution time for
the FC implementation was obtained from debugging informa-
tion, while a timer was used for the GNRC implementation.
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To conduct this measurement, we sent 1000 packets at 1-
second intervals from a UDP sender on one M3 node to a
UDP receiver on another M3 node for both FC and GNRC
implementations. Additionally, to demonstrate interoperability,
we measured the execution time for scenarios where packets
were exchanged between two nodes, with one node running
the FC implementation and the other running the GNRC
implementation. Fig. 5 illustrates the different scenarios.

Fig. 6 and 7 show the execution time for each packet, with
the sequence number indicated on the X-axis. The results
show almost constant execution times for the transmission and
reception of UDP packets over time for both implementations.
The longer execution time for transmission compared to re-
ception in both implementations is due to a while loop in the
code, which increases processing overhead. Fig. 6 indicates
that the FC implementation takes approximately 1.97 times
longer than the GNRC for transmission, while Fig. 7 shows
that FC increases reception time by about 3.3 times compared
to GNRC, due to virtualization overhead. Some execution time
outliers may occur because of high-priority interrupts, such as
radio acknowledgments and retries, which extend processing
time.

Despite this, FC’s execution time remains in the microsec-
ond range, which is acceptable for LLWN networks. This
is the trade-off for achieving a fully programmable data
plane in LLWN using virtualization. However, using FC
for synchronous protocols requiring precise timings may be
challenging, a topic we will explore further in future research.
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V. CONCLUSION AND FUTURE WORKS

A programmable protocol suite for LLWNs offers crucial
adaptability to dynamically changing wireless environments,
ensuring optimized performance and resilience against envi-
ronmental fluctuations. In this article, we reviewed and com-
pared several network programming technologies and studied
their feasibility for LLWN. We then proposed a double-
programmable and a double-modular architecture that respects
the constraints of LLWN devices and responds to the dynamic
changes of the environment.

We validated our architecture through a proof-of-concept
implementation of the UDP protocol using Femto Containers
(FCs), comparing it with the GNRC implementation in RIOT
operating system across the FIT IoT-LAB testbed. System-
level results showed that our proposal balances a slight in-
crease in ROM with a corresponding reduction in RAM usage.
Moreover, both implementations present similar power con-
sumption profiles. The event-based nature of FCs effectively
manages power consumption associated with virtualization
and RAM footprint by spawning FCs only when required,
thus eliminating the need for continuously running thread
as found in GNRC. Finally, our implementation showed a
slight increase in packet processing delay, but remains in the
microsecond range. This point will be further investigated,

especially when we will consider synchronous protocol.

For future work, we aim to implement the entire network
stack of LLWN devices in FCs, including the low-level proto-
cols, such as MAC protocols. We will also develop an easy-
update mechanism for the installed FCs and integrate it with
an SDN controller to manage the distribution of FCs. Finally,
machine learning may be employed in the SDN controller
to determine the best protocol suite based on the running
application’s needs.
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