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Abstract—P-band radiometry has been demonstrated to have
a deeper sensing depth than L-band, making the consideration
of multilayer microwave interactions necessary. In addition, the
scattering and phase interference effects are different at the P-
band, requiring a reconsideration of the need for coherent models.
However, the impact remains to be clarified, and understanding the
validity and limitations of these models at both L- and P-bands is
crucial for their refinement and application. Therefore, two general
categories of microwave emission models, including two stratified
coherent models (Njoku and Wilhite) and four incoherent models
(conventional tau-omega model and three multilayer models being
zero-order, first-order, and incoherent solution), were intercom-
pared for the first time on the same dataset. This evaluation uti-
lized observations of L- and P-bands radiometry under different
land cover conditions from a tower-based experiment in Victoria,
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Australia. Model estimations of brightness temperature (TB) were
consistent with measurements, with the lowest root mean square
error (RMSE) at P-band V-polarization under corn (2 K) and the
highest RMSE at L-band H-polarization under bare soil (13 K).
Coherent models performed slightly better than incoherent models
under bare soil (3 K less RMSE), while the opposite was true under
vegetated soil conditions (1 K less RMSE). Coherent and incoherent
models showed maximum differences (3 K at P-band and 2 K at L-
band), correlating strongly with soil moisture variations at 0–10 cm.
Findings suggest that coherent and incoherent models performed
similarly; thus, incoherent models may be preferable for estimating
TB at L- and P-bands due to reduced computational complexity.

Index Terms—Coherent, incoherent, L-band, passive micro-
wave, P-band, soil moisture profile.

I. INTRODUCTION

SOIL moisture constitutes only a small fraction of the global
freshwater (0.05% out of 2.5%) but is a key factor for

everything linked to life on Earth [1]. Excess soil moisture
can lead to natural disasters such as floods and landslides [2],
while a deficit in soil moisture can result in wildfires and
drought [3], [4], which can have detrimental effects. Adequate
soil moisture is also essential for plant growth, photosynthesis,
and evapotranspiration, which supports food security and the
environmental conditions necessary for human survival. While
in situ measurements of soil moisture can be sufficiently accurate
for specific applications, the high spatial and temporal variability
of soil moisture makes this method impractical for use at larger
scales. Due to the development of remote sensing technologies,
it is now possible to obtain regular soil moisture products at a
global scale, overcoming the limitations of in situ measurements.
Although it has a higher spatial resolution, soil moisture retrieval
utilizing active microwave systems is confounded by the effects
of surface roughness and vegetation [5], [6], making passive
microwave the preferred approach for many applications [7].
Consequently, the Soil Moisture and Ocean Salinity (SMOS;
[8]) and Soil Moisture Active Passive (SMAP; [9]) missions
of the European Space Agency (ESA) and National Aeronau-
tics and Space Agency (NASA), launched in 2009 and 2015,
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respectively, have both utilized passive microwave technology.
These have led to mature near-surface soil moisture products
using L-band (∼21 cm) radiometers.

L-band microwave remote sensing is only able to detect
soil moisture down to around 5 cm below the surface, and
is affected by vegetation and surface roughness, leading to a
shallower sensing depth and degraded retrieval precision when
compared to longer wavelengths [10], [11], [12]. However, a
complete understanding of many environmental applications
requires information on the moisture in deeper layers of the soil.
Furthermore, having information of the actual distribution of soil
moisture within the vadose zone can be important in managing
effective irrigation, because the roots of major crops are located
in this zone [13]. Therefore, it is desirable to retrieve the soil
moisture at different depths rather than simply a single value that
represents the average for the soil profile. To address this need,
remote sensing technologies operating at lower frequencies such
as P-band (∼40-cm wavelength) have been developed [14]. In
addition to providing information about the moisture content
distribution in a deeper layer of soil [15], microwave signals at
P-band may be better suited for soil moisture retrieval under
densely vegetated and topographically complex environments,
due to its reduced sensitivity to vegetation [16] and surface
roughness [11].

Radiative transfer models simulate the microwave interac-
tions and propagations within the soil, vegetation, and atmo-
spheric mediums until they reach the sensor. These models relate
brightness temperature (TB) to the soil moisture, soil tempera-
ture, surface roughness, and/or vegetation water content (VWC)
in one of two ways: by forward modeling or by inverse modeling.
Consequently, the accuracy of the parameters of interest using ei-
ther method depends heavily on the validity of the forward model
[16], [17]. In accordance with the principles of the microwave
remote sensing theory, the proximity of high soil moisture to
the surface exhibits a strong correlation with the observed TB.
This correlation is attributed to the influence of soil dielectric
constant on soil microwave emissivity, consequently impacting
TB. Studies have demonstrated the advantage of assimilating
TB over the derived soil moisture into a land surface model,
with improved predictions of soil moisture and soil temperature
profiles [18], [19]. Accordingly, assimilation can improve both
the retrieval of vertical soil moisture profile information [21]
and horizontal resolution [22].

Forward radio transfer modeling plays a major role in land
data assimilation systems by acting as an observation operator
to provide a link between the forecast model states (i.e., soil
moisture and temperature) and the observational variable (i.e.,
TB). The calculated TB is affected by uncertainties in the model
states and can thus introduce biases. Hence, the performance of
radiative transfer models can largely determine the capability
of assimilation systems in accurately simulating the surface
states. Successfully using satellite TB observations, therefore,
requires an unbiased and accurate [23], calibrated [23], [24]
model of microwave radiative transfer processes, affecting the
innovations (difference between TB observations and radiative
transfer model TB simulations) used to update the soil moisture
analysis states. Therefore, as the uncertainties in the assimilated

observations decrease, the precision of the analysis improves
[26]. Consequently, the validity of radiative transfer models,
whether used to retrieve soil moisture directly from TB obser-
vations or within a data assimilation framework, is essential.

There are two main types of radiative transfer models used to
simulate brightness temperature, called coherent and incoherent
models. Coherent models calculate the emission by tracking the
phase of the electric field and coupling the emissivity of the
surface layers to deeper layers. In contrast, incoherent models
calculate the intensity of radiation directly at the air–soil in-
terface by assuming a homogeneous medium [27]. The main
difference between the predictions of the two models lies in
the effects of wave interference, the frequency employed, and
the steepness of the soil moisture gradient near the surface.
Accordingly, the derived coherent and incoherent emissivities
have the same general trend, but the coherent emissivity also
exhibits phase-interference oscillations [18]. Incoherent models
are computationally and mathematically simpler than coherent
models, but their accuracy is expected to be lower, particularly at
longer wavelengths [27]. Moreover, the accuracy of incoherent
models compared to coherent models at the P-band is unknown
as this comparison has never been made. In addition, with
the emergence of P-band technology, it has been demonstrated
that a deeper sensing depth can be achieved [10], making the
consideration of multilayer microwave interactions necessary.

Multilayer models have not been extensively utilized to date,
because L-band and higher frequencies have shallow sensing
depths. However, with the different scattering/interference ef-
fects at the P-band, a reconsideration of the coherent model
use is required. Therefore, this study aimed to fill this gap by
conducting a detailed comparison of coherent and incoherent
emission models at both L- and P-bands on the same dataset,
providing clarity for the remote sensing community on the
usefulness of coherent models over incoherent models, along
with a comparison of multilayer and conventional incoherent
models. Beyond a mere comparative analysis, the objective was
to contribute to the future improvement of forward modeling
and soil moisture inversion for satellite-based observations. By
leveraging observations from an extensive tower-based experi-
ment (see Fig. 1), not only could the strengths and limitations
of existing models be identified, but also enhancements and
refinements could be proposed. Moreover, this study aligned
with a broader objective of advancing soil moisture modeling
from satellite observations, offering insights that can inform
the design and implementation of future radiometric missions
operating at the P-band.

II. DATA

An experiment with tower-based radiometers was conducted
at Cora Lynn, VIC, Australia, comprising a comprehensive setup
as shown in Fig. 1. The tower was situated at the center of a
paddock measuring 150 m×150 m in size and divided into four
quadrants. Each quadrant was managed with different land con-
ditions, including vegetation (bare, grass, wheat, and corn) and
surface roughness (smooth, random, and furrow). The tower car-
ried two radiometers, being the polarimetric P-band multibeam
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Fig. 1. (a) Location map of (b) experimental site having (c) tower at the center of a paddock at Cora Lynn, VIC, Australia. The colored ovals represent the 3
and 10 dB footprints of the microwave radiometers at incidence angles of 30° and 60°. The green dots on (b) represent the stations installed at the borders of the
quadrants Q1– Q4. The ancillary data of (d) VWC, (e) surface roughness, and near-surface soil moisture for 0–5 cm using (f) HDAS, were collected weekly.

radiometer (PPMR) and the polarimetric L-band multibeam
radiometer (PLMR), which were rotated and tilted to capture the
four quadrants at different incidence angles. In this study, L- and
P-bands observations at an incidence angle of approximately 40°
were used. Four soil moisture and temperature stations were set
up, with one on the border of each quadrant, to simultaneously
measure soil moisture and temperature profiles from the surface
to a depth of 60 cm in increments of 5 cm. The average soil
texture of the site is 18.3% clay (18%, 17%, and 17% at depths
of 5, 20, and 50 cm, respectively), 13.7% sand (12%, 11%, and
20% at depths of 5, 20, and 50 cm, respectively), and 68% silt
(71%, 69%, and 62% at depths of 5, 20, and 50 cm, respectively),
indicating a silty loam soil. This research examined six periods
of data, which included three periods of bare soil (April 2019,
March 2020, and December 2020), a period of grass (March
2018), a period of wheat (December 2018), and a period of corn
(December 2020 to February 2021), as depicted in Figs. 3 and 4.

This study employed an extensive collection of data measured
from quadrant 2 and station 126 at 6 AM/PM, consisting of 141
days with simultaneous TB observations at an incidence angle of

40°, using both L- and P-bands frequencies, along with the sup-
plementary data. These ancillary data included measurements
of VWC, encompassing the water content of the entire plant, in-
cluding stems, leaves, and fruit, ranging from 0 kg/m2 under bare
soil to 22 kg/m2 under corn, root mean square height (RMSH)
ranging from 0.5 cm to 3.15 cm, correlation length (CL) ranging
from 4 to 15 cm, soil moisture ranging from very dry (0.05
m3/m3) to very wet (0.5 m3/m3), and soil temperature ranging
from 10 °C to 28 °C at station 126, as shown in Fig. 4. Fortnightly
calibration of the PPMR and PLMR were carried out using cold
(sky) and warm (blackbody) targets. Warm point calibrations
were conducted weekly by positioning the PPMR/PLMR above
a blackbody chamber equipped with microwave absorber and
16 temperature sensors. Cold point calibrations were carried
out at midnight as per the tower schedule, with the PPMR
and PLMR directed toward the sky. The calibration accuracy
of both PPMR and PLMR was found to be less than 1.5 K.
Weekly measurements of near-surface soil moisture (top 5 cm)
were taken by a Hydra-probe Data Acquisition System (HDAS;
[28]) throughout the quadrants to confirm the representativeness
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of the station. For a detailed description of the experiment
and comprehensive information about the dataset, readers are
referred to the publications authored by Shen [11], [15] and
the PRISM (P-band Radiometer Inferred Soil Moisture) project
website (www.prism.monash.edu).

III. METHODOLOGY

Any object with a temperature higher than absolute zero
(−273 °C) emits thermal radiation, the intensity of which is
directly proportional to its physical temperature. Radiometers
measure the intensity of this thermal radiation from the soil in the
form of TB, while models seek to simulate this radiation given
the necessary input parameters. Under bare, smooth, homoge-
neous soils with uniform subsurface moisture and temperature
profiles, the TB can be calculated using the well-known radiative
transfer approximation (also known as the reciprocity approach
or emissivity model; [29]) such that

TBP = eP Ts (1)

where Ts is the physical surface temperature (K), eP is the
emissivity of the body, and subscript P denotes either H or
V polarization. Through the Kirchhoff’s reciprocity theory, the
ground layer microwave emissivity of the target may be related
(due to the reciprocal nature of the boundary conditions) to the
fraction of the incident radiation reflected by a specular surface
(r∗P ) according to

r∗P = 1− eP . (2)

Reflectivity for specular surfaces is determined by the Fresnel
equations for H and V polarizations, respectively. These equa-
tions describe the behavior of electromagnetic waves at a smooth
dielectric boundary according to [30]

r∗H =

∣∣∣∣∣ cos (θ)−√εr − sin2(θ)

cos (θ) +
√
εr − sin2 (θ)

∣∣∣∣∣
2

(3)

r∗V =

∣∣∣∣∣εr · cos (θ)−√εr − sin2 (θ)

εr · cos (θ) +
√
εr − sin2 (θ)

∣∣∣∣∣
2

(4)

where εr = ε′r + iε′′r is the relative soil dielectric constant,
which includes real (′) and imaginary (′′) parts, and θ is the
incidence angle.

The emissivity model is a conventional passive microwave
remote sensing model assuming a uniform soil moisture and
temperature profile. However, when the temperature and mois-
ture profile are not uniform and there is a variation near the
surface, this model is not able to accurately capture the impact
of the soil moisture and temperature variations [31], particularly
for lower frequencies that have a response from deeper layers
of the soil. Due to factors such as gravity, solar radiation,
precipitation, and infiltration, soil moisture and soil temperature
vary naturally with depth. When the subsurface moisture profile
changes slowly in relation to the wavelength in the medium, the
incoherent zero-order radiative transfer approximation [32] can

be used to estimate the TB according to

TBP = eP

{∫ 0

−∞
T (z)

(
2π

λ0
· ε′′r (z)
2
√
ε′r (z)

)

× exp

[
−
∫ 0

z

α (z′) dz′
]
dz

}
(5)

where the expression in the round brackets represents the at-
tenuation through the coefficient α(z), the integral expression
in curly brackets represents the effective temperature Teff (K)
of the soil medium, λ0 is the free-space wavelength (m), and
subscript z represent the depth (m).

From the incoherent model (5), Burke and Paris [33] and
Liu [34] developed multilayer incoherent models based on
first-order and incoherent solution approximations, respectively.
In the incoherent solution model, the reflections at the layer
interfaces and the propagation of radiance through each layer
are considered. In the first-order or zero-order approximations,
either single reflections at interfaces are considered or reflec-
tions are ignored, respectively. Therefore, (5) is similar to (1),
except that it more accurately represents the TBP in terms of
an “effective temperature” by considering the reflections at the
different layers. This effective temperature, Teff, is a weighted
average of temperature at different depths, which may differ
from the surface temperature, Ts. When data from regions with
rapid changes in subsurface moisture and temperature (either
dry-down periods or regions with subsurface water tables) are
analyzed, the incoherent model (5) is also expected to become
inaccurate, as it does not account for the coherent reflections
anticipated from radiative transfer theory [35]. Therefore, the
coherent models of Njoku and Kong [35] and Wilheit [36] were
formulated in terms of continuous and discrete varying dielectric
constant within the soil, such that

TBP =

∫ ∞

0

T (z)WP (z) dz (6)

TBP =

∫ ∞

0

T (z)FP (z) dz (7)

where T (z) is the soil temperature at depth z, WP (z) represents
the relative contribution of each soil layer to the total radiation
through a thermal weighting function, and FP (z) represents
the fraction of absorption. The calculation is strictly derived
by solving Maxwell’s field equations and is solely dependent on
the frequency, polarization, incidence angle, and the dielectric
constant profile of the soil. The theory behind these approaches
utilizes electromagnetic fluctuations and electromagnetic wave
propagation, as formulated by Stogryn [37]. Although both the
Njoku and Wilheit models assume coherent radiation, the ways
in which they calculate the observed intensities are entirely
different, with the Wilheit model being conceptually and com-
putationally simpler than the Njoku model. The formulation for
deriving TB based on (6) and (7) for a large number of horizontal
layers, referred to as a stratified medium, was presented for the
Njoku model in [35] and for the Wilheit model in [36], for
smooth and bare soil.

www.prism.monash.edu
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The five models—zero-order, first-order, incoherent solution,
Njoku, and Wilheit—use the soil moisture and temperature
profile as inputs to estimate the TB under bare smooth soil
conditions. These are all stratified (i.e., multilayer) models, and
the profile depth and layer thickness values used herein were set
to 1 and 0.01 m (100 layers), respectively.

To consider roughness, the well-known hqnmodel developed
by Wigneron [38] was utilized such that

rP =
[
(1− qP ) r

∗
P + qP r

∗
Q

]
exp (−hP cosnP (θ)) (8)

where rP is the rough surface reflectivity (with P = H and
Q = V or P = V and Q = H), hP is the surface roughness
parameter, qP is the polarization mixing factor, and nP is the
angular dependence of the surface roughness. The hP parameter
is calculated using [38]

hP = 1.3972 ∗
(

RMSH
CL

)0.5879

(9)

where RMSH and CL are the root mean square surface roughness
height and CL parameters measured in the field. The parameter
nP was calibrated (based on qP equal to zero for both L- and P-
bands) from another period of the data and set to –0.50 (1.80)
and –0.333 (0.415) at H (V) polarizations for L- and P-bands,
respectively.

It is important to note that in this study, not all of the models
employed account for multiple scattering within the vegetation
layer. This assumption is considered reasonable, given the low
frequency range utilized for soil moisture sensing. The effect of
vegetation on the overall TB was considered using the tau-omega
model developed by Mo [39] such that

TBTOV,P=Teff (1− rP ) ΓP

+ Tc (1− ωP ) (1− ΓP ) (1 + rPΓP ) + TBAS,P rPΓ
2
P

(10)

where Tc is the physical temperature of the vegetation canopy
and assumed to be equal to surface temperature (Ts) at 6 AM

[42], [43]. In all five of the models (three stratified incoherent
and two stratified coherent) described previously, an effective
temperature Teff is finally calculated, which can then be used in
(10) to calculate the overall TB in response to rough vegetated
surfaces. In the conventional tau-omega model of (10), a simple
parametrization was developed by Wigneron [42] based on only
Ts and the deep-soil temperature (Tdeep) such that

Teff = Tdeep + (Ts − Tdeep) ∗ (sm / ω0)
b0 (11)

where ω0 and b0 are parameters that depend on specific soil
characteristics (e.g., texture, structure, and density), which were
set to 0.35 and 0.58 [43], respectively. Here, sm is the average soil
moisture over the retrieval depths of L- and P-bands, considered
to be 5 and 7 cm, respectively [10].

In (10), TBAS,P is the downward atmospheric contribution
calculated to be to 5.3 K and 13.9 K at L- and P-bands, re-
spectively [44], while ΓP is the vegetation transmissivity or
vegetation attenuation factor, derived from the optical depth of

the standing vegetation (τveg,P ) such that

ΓP = exp
(
−τveg,P

cos θ

)
. (12)

In the SMAP single channel algorithm (SCA), VWC is used
as a proxy to compute τveg,P according to [45]

τveg,P = b · VWC (13)

where the b parameter is a proportionality value dependent on
the vegetation type, structure, and observation frequency, and
is typically taken as a constant over time for simplicity [45].
The b parameter was calibrated here under grass (0.11, 0.11),
wheat (0.11, 0.099), and corn (0.094, 0.053) conditions for L-
and P-bands, respectively. The scattering albedo (ωp), defined as
the ratio of the scattering to extinction coefficient ratios, was also
calibrated here for grass (0.05, 0.05), wheat (0.05, 0.134), and
corn (0.070, 0.086) conditions for L- and P-bands, respectively.

The aforementioned passive microwave models require the
selection of an appropriate soil dielectric model to relate soil
moisture to the dielectric constant. The multirelaxation gener-
alized refractive mixing dielectric model (MRGRMDM; [46])
was utilized for this purpose, as it accounts for the interfacial
(Maxwell–Wagner) relaxation of water in the soil, which is im-
portant at P-band [47]. Table I summarizes the key information,
assumptions, advantages, and disadvantages of the two stratified
coherent models of Njoku (hereafter NM) and Wilheit (WM),
and four incoherent models including a conventional single
layer tau-omega model (TO), and the three multilayer models of
zero-order (IZ), first-order (IF), and incoherent solution (IS). A
schematic of these models is shown in Fig. 2. In the following
section, the results of these models are evaluated and compared
for estimating TB.

IV. RESULTS

A comprehensive assessment was conducted to evaluate the
differences between estimated TB obtained from a range of
coherent and incoherent models. The analysis used time-series
data of TB at L- and P-bands, profile soil moisture and soil
temperature, VWC, and RMSH from a tower-based experiment,
including data from three bare periods (see Fig. 3) and periods
with different vegetation types including grass, wheat, and corn
(see Fig. 4). To compare the six models quantitatively, values
of TB at L- and P-bands were calculated for each of the models
using the in situ measurements of soil moisture, soil temperature,
VWC, RMSH, and CL shown in Figs. 3 and 4.

A. Model Intercomparison

The comparisons of the models at L- and P-bands frequencies
can be seen in Fig. 3 for bare soil and in Fig. 4 for vegetated
soil. Overall, the agreement among the six models was found
to be good at both frequencies, closely following the observed
TB. Based on the time series of estimated and observed TB in
Figs. 3 and 4, the maximum differences between the models
occurred during bare, grass, and wheat periods when the VWC
was low, and there was a high gradient of soil moisture near
the surface, particularly during rainfall or irrigation events [one
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TABLE I
OVERVIEW OF MICROWAVE EMISSION MODELS FOR SOIL MOISTURE ESTIMATION

 Abb         Type               Number of layers           SRM             DM               SC               LoC             Ref.

SM         ST           VE

Tau-omega

Zero-order

First-order

Incoherent

Solution

Njoku

Wilheit

Model

Fig. 2. Schematic of passive microwave emission models. The calculated brightness temperature (TB) for each model includes the sum of TBS , TBV , TBV S ,
and TBAS . TBS and TBV represent emissions directly from soil and vegetation, respectively. TBV S is the emission from the vegetation, reflected by the soil,
while TBAS is the downward emission from the sky reflected by the soil. Please note that the multilayer incoherent zero-order model and multilayer coherent
Njoku and Wilheit models have similar schemes here; however, the former is different from the latter two models in terms of the physics law behind them. In
addition, the Njoku and Wilheit models are entirely different in terms of formulation.

example is shown by the red circle in Fig. 4(a1) and (a2)]. The
maximum differences were observed during the grass period
[red circle in Fig. 4(a1) and (a2)] between the coherent model
(NM) and the incoherent zero-order model (IZ). The differences
reached 16 K (18 K) at the L-band and 26 K (42 K) at P-band
H-polarization (V-polarization). This is consistent with previous
research by Schmugge and Choudhury [27], who found that the
maximum difference between these models was 21 K at the
L-band. The absolute differences between the models were cal-
culated and plotted in Fig. 5. Generally, the agreement between
the model estimations is good for the L-band, as can be seen
from Fig. 5 (positively skewed distributions of the differences in
the boxplot), with the maximum differences observed between
the incoherent and coherent models, particularly between the

TO and NM. These differences were approximately 2 K at
the L-band and 3 K at the P-band, being slightly lower for V
polarization compared with H polarization. At the P-band, the
minimum difference (the lowest average and median values)
between coherent and incoherent models was observed for IZ
and IS with NM. At the L-band, this minimum difference was
found between the IZ with NM and the TO with WM, as depicted
in Fig. 5. When comparing the incoherent models, the minimum
difference was found to be less than 0.5 K at both bands,
occurring between the IZ model with the IF and IS models.
The maximum value was found to be ∼1 K between the TO
and IS models. In addition, the average difference between the
coherent Njoku and Wilheit models at L- and P-bands was less
than 1 K (see Fig. 5).
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Fig. 3. Observed and estimated brightness temperature using passive microwave models during three bare soil periods: (a) April 2019, (b) March 2020, and
(c) November–December 2020, together with associated soil moisture and temperature observations at different soil depths. The blue stars in the soil moisture
profile plots represents VWC (in kg/m2) and the black stars in the soil temperature profile plots represents the RMSH (in cm). The indices 1, 2, 3, and 4 in each
figure represent the L-band observation, P-band observation, soil moisture profile, and soil temperature profile, respectively. Note that TO, IZ, IF, IS, NM, and WM
refer to the tau-omega, zero-order incoherent, first-order incoherent, incoherent solution, Njoku model, and Wilheit model, respectively.

B. Comparison of Models With Field Measurements

To determine which model is more accurate, the estimated
TB using each model was compared with the observed TB from
the PLMR and PPMR radiometers at L- and P-bands, as shown
in Fig. 6 and Table II. The detailed error metrics including the
root mean square error (RMSE), mean bias (Bias), unbiased
RMSE (ubRMSE), and correlation coefficient (R) concerning
the TB estimated by the models at L- and P-bands under different
conditions (bare, grass, wheat, and corn) are listed in Table II.

The models performed well at both bands, with strong pos-
itive correlations that were consistently high at both H and V
polarization, ranging from 0.88 to 0.97. Generally, the RMSE
at the L-band was higher than at the P-band as evident from
Fig. 6 and Table II. The results showed that the RMSE and
ubRMSE were higher at L-band H-polarization (absolute RMSE
around 10 K) compared to L-band V-polarization or P-band
H or V-polarization, which had an RMSE of around 5 K (see
Table II). As shown in Table II, the coherent models were able
to estimate TB at L-band H-polarization slightly more accurately
compared to the incoherent models (RMSE 9.4 K compared to
10.6 K). At the P-band, both coherent and incoherent models
performed similarly, with an average RMSE around 5.5 K
at H- and V-polarization. The Bias values, representing the
systematic error in the models, were positive at the L-band
(H-polarization, ∼2 K), L-band (V-polarization, ∼1 K), and

P-band (H-polarization, ∼0.3 K), while negative for the P-band
(V-polarization, ∼−1 K).

At the L-band, the differences between the model estimation
and observations increased as the TB decreased. At the extremes,
especially when the TB was very low (indicating high soil mois-
ture), there was an overestimation of the brightness temperature
for all models, particularly at the L-band, where it is more
noticeable. When TB was high, there was an overestimation of
TB by the models under bare and grass periods at V-polarization,
particularly at the P-band, as can be seen in Fig. 6.

The performance of the models was compared under different
soil conditions, as illustrated in Fig. 7. The difference between
the two models approaches was more pronounced under bare
soil at L-band H-polarization (with the coherent models being
3 K more accurate) compared to under vegetated soil (where
the incoherent models were 1 K more accurate). Moreover, as
vegetation increased, the differences between the two models
decreased (as shown in Fig. 7). Furthermore, the RMSE de-
creased in the following order: corn < wheat < grass < bare
soil. In fact, the higher the VWC, the lower the RMSE. This is
especially obvious in L-band H-polarization (see Fig. 7).

V. DISCUSSION

Intercomparison of the models showed that the maximum
difference between the model estimation of TB occurred during
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Fig. 4. As for Fig. 3 but under three periods of vegetated soil: (a) grass (March 2018), (b) wheat (December 2018), and (c) corn (December 2020 to March 2021).
The blue stars in the soil moisture profile plots represents VWC (in kg/m2) and the black stars in the soil temperature profile plots represents the RMSH (in cm).
The indices 1, 2, 3, and 4 in each figure represent the L-band observation, P-band observation, soil moisture profile, and soil temperature profile, respectively.
Note that TO, IZ, IF, IS, NM, and WM refer to the tau-omega, zero-order incoherent, first-order incoherent, incoherent solution, Njoku model, and Wilheit model,
respectively. The gray area in the corn period is a 17-day gap where the tower was lowered due to unscheduled maintenance.

TABLE II
COMPARISON OF THE COHERENT AND INCOHERENT MODELS TB ESTIMATIONS WITH TOWER-BASED MEASUREMENTS

rapid drying out and wetting up (in particular) periods following
heavy rainfall or irrigation. The reason could be due to the fact
that heavy precipitation can lead to short-term surface wetting
of vegetation and/or ponding of water on the ground’s surface,

which is not accounted for in the radiative transfer models
and affects the radiometer’s response and sensing depth due
to changes in the dielectric constant of the scene. To avoid
overestimation of soil moisture in the SMAP Level 2 passive soil
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Fig. 5. Absolute difference between pairs of coherent models, incoherent models, and coherent and incoherent models, in terms of their estimation of brightness
temperature using (a) L-band (H-polarization), (b) L-band (V-polarization), (c) P-band (H-polarization), and (d) P-band (V-polarization). Please note that TO, IZ,
IF, IS, NM, and WM refer to the tau-omega, zero-order incoherent, first-order incoherent, incoherent solution, Njoku model, and Wilheit model, respectively. The
white dot in each box represents the average value. The outlier was not shown in the plot due to its high values, suppressing the visualization of boxes.

moisture (L2SMP) product from such affects, a precipitation flag
was included based on supplementary information about recent
precipitation at the given location [48]. In addition, maximum
differences were observed between the coherent and incoherent
model estimations at the P-band. This can be attributed to the
fact that this frequency has a longer wavelength and so responds
to the moisture and temperature from a deeper layer of the soil,
resulting in a greater sampling depth. The differences between
the coherent and incoherent models were influenced by both
the frequency being used and the steepness of the soil moisture
gradient near the surface. The former was already shown in
Fig. 5. The latter is shown in Fig. 8, in which the absolute differ-
ence between pairs of coherent and incoherent models showed a
strong correlation with the gradient of soil moisture at 0–5 cm to
5–10 cm. It was also shown that, except for differences between
NM and WM, and IZ and IF models, the difference between the
other pairs of incoherent models had a strong correlation with
the gradient of soil temperature at 0–5 cm to 5–10 cm. The cor-
relation between the absolute difference of the pairs of models
with soil moisture and temperature at depth of 0–5 cm, VWC,
RMSH, and CL was also calculated. The result had only a weak
correlation between them, as shown in Fig. 8. It was also shown

TABLE III
OVERVIEW OF AVERAGE SOIL MOISTURE AT 5 CM (SM, M3/M3), GRADIENT OF

SOIL MOISTURE AT 0–5 TO 5–10 CM (ΔSM, M3/M3), AND VWC (VWC,
KG/M2) UNDER DIFFERENT LAND COVER CONDITIONS

in Table III that VWC can decrease the correlation between the
absolute difference of the model’s estimation with the absolute
change of soil moisture at 0–5 cm and 5–10 cm. Table III clearly
shows a strong correlation between the absolute difference of
TO and NM estimation of TB at both L- and P-bands with
absolute changes in soil moisture at 5 cm during bare, grass, and
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Fig. 6. Scatter plot of the observed and estimated brightness temperature at L-band and P-band using the following models: (a) and (g) incoherent tau-omega
(TO), (b) and (h) incoherent zero-order (IZ), (c) and (i) incoherent first-order (IF), (d) and (j) incoherent solution (IS), (e) and (k) Njoku model (NM), and (f) and
(l) Wilheit model (WM). The solid line is line 1:1 and the dash lines denote ± 5 K offset.
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Fig. 7. RMSE between the observed and the estimated brightness temperature at (a) L-band (H-polarization), (b) L-band (V-polarization), (c) P-band (H-
polarization), and (d) P-band (V-polarization) for the six different models tested on the four different surface conditions. The abbreviation of the models is
interpreted as in Fig. 5.

wheat periods. However, during the corn period, this correlation
was weak at the P-band (maximum 0.44 at H-polarization) and
nonexistent (∼ 0) at the L-band. For the corn period, both VWC
and soil moisture at the near-surface were higher compared to
the other periods, as seen in Table III. Accordingly, most of the
L- and P-bands signals reaching the radiometers came from the
vegetation and surface soil moisture in this situation. Therefore,
even the simple incoherent single-layer model TO performed
similarly to the very complex coherent multilayer of NM, as
seen in Fig. 7.

The estimation from all models was compared with the ob-
served TB collected from the tower-based experiment. It was
found that the RMSE between the estimated and observed TB
at L-band H-polarization was higher than that at V-polarization
or P-band (H-polarization or V-polarization). The higher RMSE
at the L-band may be attributed to the greater sensitivity of the
H-polarization to surface roughness or soil moisture [48], [49],
or by misrepresentation of soil moisture at shallow depths. The
microwave emission depth depends on both the soil moisture
condition and the sensor configuration (e.g., frequency and
incidence angle) although the effective sensing depth of soil
moisture at L- and P-bands is generally considered as 2–5 cm
and 7 cm, respectively [51], [52], [53], [54], [55], [56]. While
the surface is drying, the upper layer is drier than the subsurface,
resulting in higher TB at L-band H-polarization. However, all the

models use the average soil moisture below the surface, which is
typically wetter compared to the surface due to drying processes,
and therefore results in a lower modeled TB.

Lower sensitivity of V-polarization compared to H-
polarization is also evident from Fig. 6, as the dynamic range
of TB at H-polarization is higher than at V-polarization. The
lower sensitivity of V-polarization to soil moisture and surface
roughness has been confirmed in many studies [47]. Therefore,
a lower RMSE at V-polarization can provide a very promising
way to estimate soil temperature, as it is weakly dependent on
surface roughness and soil moisture.

The model’s estimation of TB was also analyzed under differ-
ent land cover conditions. The lowest RMSE was found under the
corn canopy. The lower RMSE of the models under higher VWC
may be due to two reasons. First, vegetation can attenuate emis-
sions from the soil. Therefore, by having accurate information of
VWC, a lower RMSE is achieved. Second, converse to vegetated
soil, under bare soil, the process of drying and wetting happens
more rapidly, leading to a steeper gradient of soil moisture in
the shallow layers. This steep gradient of soil moisture makes it
challenging to obtain accurate measurements of soil moisture,
leading to higher RMSE values.

Both coherent and incoherent models have a certain level of
complexity. However, incoherent models are generally simpler,
and therefore, can be calculated faster, but their accuracy was



BRAKHASI et al.: COMPARISON OF PASSIVE MICROWAVE EMISSION MODELS 2581

Fig. 8. Correlation coefficients (R) between the absolute difference between pairs of the models with soil moisture at depth of 0–5 cm (SM5cm), soil temperature
at depth of 0–5 cm (ST5cm), differences between soil moisture and temperature at depth of 0–5 cm and 5–10 cm (ΔSM and ΔST respectively), VWC, RMSH,
and CL at (a) L-band (H-polarization), (b) L-band (V-polarization), (c) P-band (H-polarization), and (d) L-band (V-polarization). The abbreviation of the models
is interpreted as Fig. 5.

slightly lower compared to coherent models. Some models are
simpler than others, regardless of whether they are coherent or
incoherent. For instance, the Wilheit coherent model is simpler
than the Njoku model, and the conventional incoherent tau-
omega model is simpler than the multilayer zero-order model.

The conventional tau-omega model only requires average soil
moisture and effective temperature as input, but the incoherent
multilayer model requires input of both the soil moisture and
soil temperature profiles. If the intention is to obtain information
about the distribution of moisture or temperature within the soil,
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using a conventional tau-omega model may not be the most
suitable choice. Therefore, it is necessary to trade the importance
of accuracy against model simplicity when making a model
selection. Accordingly, a more sophisticated radiative transfer
model may provide more precise results, but it may also be too
resource-intensive for practical application, or require inputs that
are not readily available. This article provides valuable insights
into the performance of passive microwave emission models,
emphasizing the need for further refinement and exploration in
this field.

VI. CONCLUSION

Several forms of coherent and incoherent models were com-
pared for estimating TB, including two models that were strat-
ified and coherent, three stratified models that were incoherent
and based on approximations of scattering, including zero-
order, first-order, and incoherent solutions, and the conventional
single-layer tau-omega model. The study used simultaneous soil
moisture and temperature profile measurements under different
land cover conditions, including three periods with bare soil, one
with grass, one with wheat, and one with corn, along with mea-
surements of TB at L- and P-bands frequencies, as well as weekly
measurements of VWC and surface roughness from a tower-
based experiment conducted at Cora Lynn, VIC, Australia.

A comparison between the coherent and incoherent models
revealed that, overall, the agreement among the six models was
good at both L- and P-bands frequencies, with close alignment
to observed TB. The maximum differences were between pairs
of coherent and incoherent models with the average difference
being 3 K at the P-band and 2 K at the L-band. The differences
between the coherent and incoherent models were a function
of frequency and steepness of soil moisture at shallow layers.
Maximum differences between model estimates occurred during
rapid drying and wetting periods, particularly following heavy
rainfall or irrigation, emphasizing the impact of short-term
surface wetting on radiometer response and the fact that this
scenario is not accounted for in the radiative transfer models.

Model predictions of TB were compared with observations
from radiometers at L- and P-bands, revealing correlations as
high as from 0.88 to 0.97. The calculated RMSE between the
observed and estimated TB from the models indicated that the
coherent models could estimate TB 3 K more accurately under
bare soil, while the incoherent models could estimate TB 1 K
more accurately under vegetated soil. Moreover, differences be-
tween model approaches decreased with increasing vegetation,
and RMSE decreased with higher VWC.

In general, the coherent models tended to perform slightly
better than the incoherent models, however based on these
results, the additional complexity of a coherent model does not
seem to be justified by its potential improvement in performance.
This research contributes valuable insights into the performance
of passive microwave emission models, shedding light on their
strengths and limitations under different environmental condi-
tions. The findings provide a foundation for future research
aimed at refining and optimizing these models for practical
application in soil moisture estimation.
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