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ABSTRACT

Human Activity Recognition (HAR) is one of the central prob-
lems in fields such as healthcare, elderly care, and security at
home. However, traditional HAR approaches face challenges
including data scarcity, difficulties in model generalization,
and the complexity of recognizing activities in multi-person
scenarios. This paper proposes a system framework called LA-
HAR, based on large language models. Utilizing prompt engi-
neering techniques, LAHAR addresses HAR in multi-person
scenarios by enabling subject separation and action-level de-
scriptions of events occurring in the environment. We val-
idated our approach on the ARAS dataset, and the results
demonstrate that LAHAR achieves comparable accuracy to the
state-of-the-art method at higher resolutions and maintains ro-
bustness in multi-person scenarios.

Keywords: Human Activity Recognition · Large Language
Model · Smart Home · IoT.

1 Introduction
Over the past two decades, Human Activity Recognition
(HAR) using sensor technology has garnered increasing at-
tention due to its potential applications in healthcare, se-
curity surveillance, and smart home environments. While
many existing HAR systems employ camera-based technolo-
gies [3, 17], these methods often raise substantial privacy con-
cerns, particularly in private settings. As a response, some
researchers have explored wearable technologies [21], such as
smartwatches and smartphones. However, the requirement for
individuals to continuously carry these devices may compro-
mise comfort and convenience. Consequently, ambient sen-
sors have gained back prominence as a key solution in HAR,
prized for their non-invasive while avoiding privacy concerns
of cameras and microphones.

Ambient sensors can be strategically placed within environ-
ments to detect and log changes in the physical state, with
each change defined as an event. Common types of ambient
sensors include door, presence, temperature, energy consump-
tion sensors, and so on. Given their limited sensing range,
multiple sensors are typically installed throughout a space to
achieve thorough sensing coverage. The interactions between

Figure 1: Illustration of LLM-based multi-person AHAR

humans and their surroundings, recorded by these sensors, can
be furthermore analyzed to infer individual actions and activ-
ities. This technology is known as Ambient Sensor-Based
Human Activity Recognition (AHAR).

However, AHAR faces the following challenges:

• Data Collection: Due to the high cost of setting up exper-
imental environments and the sensitivity of personal daily
living data, collecting ambient sensor datasets is often chal-
lenging.

• Model Generalization: Due to varying sensor setups and
activity routines, models trained on specific datasets often
struggle to transfer their capabilities to different environ-
ments or configurations.

• Context Integration: Contextual information like sensor
locations, functions, time, environment, and user habits is
crucial due to the simplicity of ambient sensor data. How-
ever, traditional deep learning methods often fail to effi-
ciently encode this information, making HAR less precise
and flexible.

• Multi-Person Recognition: In environments where multi-
ple individuals are present, events triggered by different sub-
jects will blend into a single event sequence, complicating
the task of activity recognition.

• Explainability: Explainable HAR helps increase user trust,
enhance user experience, and improve system personaliza-
tion. However, the inference process of traditional deep
learning models is not intuitively understandable and lacks
explainability.

https://research.vaufreydaz.org/
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Figure 2: Workflow for our proposed LLM-based AHAR framework: LAHAR.

In recent years, significant advancements have been made in
Large Language Models (LLMs), with models such as Chat-
GPT [1] and Llama [15] exhibiting impressive contextual un-
derstanding and reasoning capabilities. This endows LLMs
with the potential to address the aforementioned five chal-
lenges in AHAR: 1) LLMs’ in-context learning capability [6]
reduces the need for training datasets; 2) by adapting relevant
prompts, LLMs can swiftly adapt to novel environments or
adjust to new sensor configurations; 3) leveraging the expres-
siveness of natural language, LLMs can integrate the differ-
ent types of contextual information; 4) LLMs can connect re-
lated events using attention mechanisms, integrating common
sense and reasoning to identify meaningful sensor event com-
binations. Furthermore, LLMs’ generation capabilities allow
them to generate regrouped coherent sequences. Therefore,
the LLMs have the potential to separate mixed event sequences
in multi-person scenarios; 5) LLMs possess the ability to ex-
plain their reasoning process, thereby enhancing the explain-
ability of the inference.

As illustrated in Figure 1, this study aims to design a multi-
person AHAR system that leverages the advanced capabili-
ties of LLMs to distinguish between different subjects’ sensor
events, describe their atomic actions, and ultimately predict
their activities. To achieve this, we propose a two-stage frame-
work, LAHAR (LLM-powered AHAR), designed to process
multi-person sensor data from fine to coarse granularity, en-
abling few-shot learned recognition of activities. In the first
stage, LAHAR is fed textualized sensor events at the level
of seconds, assigns and describes each subject’s actions at a
fine granularity using natural language. Based on each sub-
ject’s action descriptions collected from the first stage, LA-
HAR then performs reasoning in the second stage to predict a
coarse timeline of activities spanning up to tens of hours.

The contributions of this study are listed as follows:

1. We propose an LLM-based AHAR approach which
can be applied in multi-person scenarios. To the best
of our knowledge, this is the first approach employing

LLMs for recognizing multi-person activities from
ambient sensor data.

2. We present a fine-to-coarse two-stage prompt engi-
neering method that enables our system to continu-
ously provide precise natural language descriptions
of sensor data spanning over hours, and to further in-
tegrate these descriptions to infer daily living activi-
ties.

2 Related Work
Recently, increasing attention has been given to modeling am-
bient sensor sequences using natural language models. Bouch-
abou et al. [4, 5] first introduced the concept of language mod-
els into human activity recognition, treating each sensor event
as a word (token), and used the word embedding method to
learn the correlations between sensor events. Zhao et al. [22]
further encoded the sensor environmental location into the
embedding vectors, demonstrating the capability of language
models to integrate context information. Das et al. [9] elabo-
rated on the importance of explainability in activity recogni-
tion and implemented a system capable of explaining activity
recognition classifications using natural language. Takeda et
al. [14] first used the large language model GPT2 [12] for gen-
erative prediction of sensor event sequences, predicting future
sensor events based on the labels of the ongoing activity and
the sensor events that have already occurred. This work fur-
ther strengthened the association of human activity recognition
with language models and brought the large GPT model [11]
into the scope of HAR.

With large language models demonstrating powerful in-
context learning [6] and reasoning [20] abilities, Gao et al. [10]
first used a large language model to perform unsupervised
annotation on single-person activity samples in the ARAS
dataset [2], demonstrating the potential of large language mod-
els for unsupervised human activity recognition. In this work,
Gao et al. used sensor reading data within a 5-minute sliding
window as input data. They employed a Chain-of-Thought ap-
proach [20] to instruct the LLM to analyze the functions of the
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Figure 3: Example of outputs generated by LAHAR at each stage

activated sensors. By integrating context information on room
layout, time, and the duration of sensor activation, LLM was
finally instructed to choose an activity as the recognition re-
sults from nine activities selected by the authors. Although the
experimental results show comparable accuracy to supervised
trained models, this work is limited to nine easily distinguish-
able activity categories in single-person scenarios, overlook-
ing the recognition of other more challenging categories and
failing to provide prompts for reproducibility. Furthermore,
using sensor readings in fixed time windows rather than sen-
sor events as input data limits the model’s ability to perceive
the subject’s behavior at a finer granularity.

Although language models are widely used in applications
such as sensor representation, event sequence prediction, and
activity explanation in single-user scenarios, these methods are
often difficult to apply directly in multi-user scenarios. This is
because only modeling the correlations of sensor events is in-
sufficient to separate the activity information of different sub-
jects in multi-person scenarios. To separate sensor events from
different subjects, Wang and Cook [18, 19] first applied a skip-
gram word embedding model to learn sensor correlations and
then used a Gaussian Mixture Probability Hypothesis Den-
sity (GM-PHD) filter to cluster events into different tracks.
Instead of using a probabilistic model, Chen et al. [7] em-
ployed a Sequence-to-Sequence model [13], using a machine-
translation-like method, further applying language models to
multi-person human activity recognition. This method first
encoded the mixed event sequence of two subjects and then
generatively decoded it into two single-person sequences sep-
arated by delimiters, thus achieving the final separation of
multi-person event sequences. This research demonstrated the
potential of generative language models for separating con-
founded information.

In this work, we leverage the powerful encoding capabilities
of large language models, along with the separation abilities
of generative methods, applying a generative LLM to multi-
person activity recognition.

3 Methodology
Figure 2 illustrates the workflow of our proposed framework
LAHAR. Given a time period T , the collection of all sensor
readings within it is referred to as a sensor reading segment.
LAHAR includes three main steps of information processing:
1) Process the sensor reading segment into a textual form of
sensor event pairs (Section 3.2); 2) Integrate the context infor-
mation (Section 3.3) into the sensor event pair sequence, sepa-
rate subjects and generate individual action-level descriptions
by an LLM (Section 3.4); 3) Based on the action-level descrip-
tions and the context information, an LLM is used to perform
activity-level reasoning to predict the timeline of activities for
each subject (Section 3.5).

3.1 Problem Formalization

Given an environment E = {si}1≤i≤n, where si is a sen-
sor installed in the environment characterized by its specific
setting, we define a sensor event as et =< t, s, c >, where
t represents the time of the event, s represents the sensor,
and c represents the change in sensor status. The sequence
of events that occur within a time period T = [ts, te] is
ST = (et1 , et2 , ..., etk) where ∀i ∈ [1, k], ti ∈ [ts, te]. Given
an activity category set of K activities LA = {ak}1≤k≤K , the
activities occurred during T are defined as AT = {aTj

k }j∈J ,
where J = {j ∈ N|Tj ⊆ T}. The objective of this research
is to propose a model M such that AT = M(ST |E,LA).

3.2 Data-to-Text Alignment

As LLMs accept text as input, LAHAR first involves data-to-
text alignment. This process includes two steps: data prepro-
cessing, and information structuring.

3.2.1 Data Preprocessing

Unlike Gao et al. [10], who extract overall features from all
sensor readings within a fixed time window, our method first
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preprocesses the sensor readings into sensor events. Specif-
ically, when there is a change in the reading of any sensor,
we denote the time of occurrence t, the changed sensor iden-
tifier s, and the change of sensor reading c as a sensor event
e =< t, s, c >. Since a sensor event often corresponds to
an action by a subject, analyzing events allows our model to
achieve fine-grained, action-level detail. Meanwhile, to reduce
redundant information, when a sensor continuously changes at
a high frequency between two states without any other sensor
events occurring, we retain only the first and the last events.

3.2.2 Information Structuring

To further enhance the information density and quality of
the text input to the LLM, we perform information struc-
turing on the sequence of sensor events. For adjacent ac-
tivation eON =< ts, s,ON > and deactivation events
eOFF =< te, s,OFF > of a sensor, we pair them into
an event pair p, incorporating the sensor’s location informa-
tion. We then structure them into a JSON format as follows:
p = {“start” :< ts >, “end” :< te >, “event” :< s >
ON and OFF, “location” :< l >}. In the end, all event pairs
are provided to the LLM sorted in ascending order by start
time. This structure of event pairs is designed to help the LLM
identify residents’ occupancy in multi-person scenarios. An
example of final structured event pairs is illustrated in the first
block of Figure 3.

3.3 Context Integration

Traditional machine learning methods struggle with ambient
sensor data due to limited information from sensor readings.
However, contextual information like sensor location, type,
function, user habits, and environment layout often provide
more insight than the sensor data itself. Integrating this con-
textual information is crucial for understanding the correla-
tions between sensors and for activity recognition.

Given that ambient sensors are usually installed in a relatively
stable environment, this contextual information tends to re-
main constant. Therefore, our method proposes to provide
contextual information to LLMs through language prompts,
so that LLMs can harness their encoding capabilities to embed
this information and align it with relevant sensor events. The
contextual information used in this work is listed as follows:

• Background: This introduces the role of the LLM, the num-
ber of residents, and the fact that ambient sensors are in-
stalled to identify activities.

• House Layout: This provides the list of rooms contained in
the environment, the furniture in each room, and the associ-
ated sensors.

• Sensor Description: This explains the identifier, type, and
location of each sensor in the environment.

• Activity List: This offers a list of possible activities within
the environment, along with certain behavior patterns or user
habits related to these activities.

• User Schedule: This emphasizes the intervals during which
subjects perform certain activities, such as eating breakfast.

3.4 Action-Level Resident Separation and Description
Generation

This section details the design of an LLM-powered module
that assigns the sequential event pairs from the Data-to-Text
module (Section 3.2) to different subjects, and then provides
natural language descriptions with action-level granularity, as
illustrated in the second block of Figure 3.

To assign events to the corresponding subjects, LAHAR em-
ploys a two-step process. First, it merges related sequential
event pairs. For instance, if sensors in a water closet and a
bathroom tap are triggered in quick succession, LAHAR treats
these events as a single, cohesive event. Second, LAHAR
determines the most likely subject responsible for these sen-
sor events by evaluating the subjects’ states from the previous
time step. For example, a subject who has recently left a chair
is more likely to trigger bathroom sensors than a subject who
was previously determined to be asleep in bed. This process
is based on two primary assumptions: 1) related sensor events
are more likely to be triggered by the same person, and 2) a
person cannot trigger sensors unrelated to their current state.

To enable reasoning based on these two assumptions, LAHAR
employs prompt engineering techniques to endow the LLM
with two abilities. The first ability, inter-sensor relevance
estimation, enables the LLM to merge related sensor events
of the same subject. The second ability, sensor-subject rel-
evance estimation, allows the LLM to allocate sensor events
to the most relevant subject. Both abilities hinge on relevance
estimation, which is fundamentally supported by the attention
mechanism [16] of the LLM. This mechanism ensures that re-
lated sensor events and the states of subjects are encoded with
similar semantic representations within the given context. Al-
though the LLM is pre-trained to encode natural language, ad-
ditional In-Context Learning [6] is necessary to better align
sensor events and subject states with the specific context of
the task. Therefore, we incorporate the context described in
Section 3.3 into the prompt. Additionally, the estimation of
sensor-subject relevance requires the LLM to infer and deduce
the previous state of each subject, which necessitates the use
of Chain-of-Thought (CoT) reasoning [20]. This approach al-
lows the LLM to logically sequence its deductions, thereby
enhancing its ability to accurately match sensor events with
the appropriate subjects.

Therefore, the prompt contains 4 basic components: 1) Con-
text; 2) Instructions; 3) Examples; 4) Input, where Context
and Examples follows the idea of In-Context Learning, and
Instructions describes the Chain of Thought.

3.4.1 Input

Although the Input section appears last in the prompt, we in-
troduce it first for clarity. Given a period T , the sequence of
events ST is formatted into a sequence of event pairs PT fol-
lowing Data-to-Text alignment. Since PT can be too long to
ensure high-quality generation, we divide PT into chunks Ci,
each containing N event pairs, except for the last chunk, which
contains the remaining pairs. We process each chunk sequen-
tially in a loop, concatenating all responses at the end. To en-
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able the LLM to infer the users’ previous state at the beginning
of each new step, we include the final description of each sub-
ject from the previous chunk into the input of the subsequent
step.

3.4.2 Context

In this part of the prompt, Background, House Lay-
out, and Sensor Description introduced in Sec-
tion 3.3 are provided to the LLM as the con-
text information. Formally, we have Context =
([Background], [HouseLayout], [SensorDescription]).

3.4.3 Instructions

We instruct the LLM to sequentially perform the following
steps:

1. Merge related sequential event pairs, and determine
the overall start and end times;

2. Summarize the previous action state of each user and
determine whether their previous action has ended;

3. Recall the location of the current event pairs;

4. Considering the previous states of users, designate a
related user as the subject for the current event pair
being processed;

5. Describe the current event pair with natural language.

Ultimately, the prompt ask the LLM to respond in a prede-
fined JSON format, which implicitly formalizes the Chain of
Thought while making the generated results easier to post-
process and increasing the information density. The keys de-
fined in the JSON format are: {“start”, “end”, “last state of
User 1”, ..., “last state of User i”, “location”, “subject”, and
“description”}.

3.4.4 Examples

To further activate the LLM’s ability to use context and follow
the chain of thought for reasoning, the prompt provides several
examples to the LLMs.

3.5 Activity-Level Reasoning

The objective of this second module is to align descriptions
of fine granular action of each subject to each subject’s activ-
ity timeline AT , as shown in the last two blocks of Figure 3.
For activities that are directly associated with sensors, LLMs
can make use of common sense reasoning, such as associating
sleeping with the pressure sensor of a bed. On the other hand,
recognizing activities that are environment-specific and user-
specific relies heavily on in-context learning. Consequently,
the design of context and examples is crucial for this module.
Similar to the Description Generation module, the prompt con-
tains 4 basic components: 1) Context; 2) Instructions; 3) Ex-
amples; 4) Input.

3.5.1 Input

From the output of last module, we separate and reorganize the
descriptions for each subject, retaining only 4 key-value pairs:
“start”, “end”, “location”, and the “description”. After imple-
menting the separation, we input each subject’s descriptions
independently. Similarly to the previous module, we divide
each subject’s descriptions into chunks, with each containing
M descriptions.

3.5.2 Context

In this part of the prompt, Sensor Description, Ac-
tivity List, and User Schedule introduced in Sec-
tion 3.3 are provided to the LLM as the con-
text information. Formally, we have Context =
([SensorDescription], [ActivityList], [UserSchedule]).

3.5.3 Instructions

We instruct the LLM to sequentially perform the following
steps:

1. Analyse and summarise the descriptions that belong
to the same activity, and determine the overall start
and end times;

2. Calculate the duration of the acitivty;

3. Recall the last activity predicted;

4. Considering the previous activities of the subject and
the duration of current actions, reason the subject’s
current activity;

5. Choose an activity with ID from the activity list.

Ultimately, we instruct the LLM to respond in a predefined
JSON format, in which the keys defined are: {“start”, “end”,
“Duration”, “Last Activity”, “Reasoning”, and “Activity”}.

3.5.4 Examples

For activities that cannot be directly detected by sensors, they
are often described by multiple groups of sensor events and
typically exhibit certain patterns. We filter out the correspond-
ing descriptions for these activities, then provide correct rea-
soning results to explain why these descriptions correspond to
the given activity.

4 Experiments
4.1 Dataset

To evaluate LAHAR, we require an ambient-based multi-
person HAR dataset that provides sufficient contextual infor-
mation for all sensors, enabling them to be described with lan-
guage. To the best of our knowledge, the ARAS dataset [2]
best meets this requirement. It is a publicly available dataset
that includes two real houses (named House A and B), each
equipped with 20 ambient sensors. Within each house, a max-
imum of two subjects can concurrently be observed engaging
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Table 1: Activity ID and labels of ARAS Datasets after re-
grouping.

ID Activity ID Activity ID Activity ID Activity

0 Other 1 Preparing Breakfast 2 Having Breakfast 3 Preparing Lunch
4 Having Lunch 5 Preparing Dinner 6 Having Dinner 7 Washing Dishes
8 Having Snack 9 Sleeping 10 Entertainment 11 Having Shower

12 Toileting 13 Working 14 Shaving 15 Brushing Teeth
16 Talking on the Phone 17 Changing Clothes

in any of 27 different daily activities. Each house dataset con-
tains 30 files, representing 30 days. Each daily file contains
sensor reading data and multi-person activity annotations, both
at the level of seconds, thus including 86400 annotated data in-
stances.

4.2 Experiment Settings

4.2.1 Data Segmentation

Although our method can reason coherently without prior
data segmentation, we performed necessary segmentation. We
noted that House A’s data is daily independent, while House
B’s data spans 30 consecutive days. Thus, we concatenated
House B’s 30 days of data but treated each day in House A
as an independent segment. For evaluation, we further divided
the data into single-person and multi-person scenarios based
on the ”Leaving House” activity. Consequently, House A had
59 single-person and 61 multi-person segments, while House
B had 10 single-person and 24 multi-person segments.

4.2.2 Error Preprocessing

We assessed sensor error levels in the houses by examining
the number of events that occurred when both residents were
leaving the house. According to our observation, House A ex-
hibited significant noise, especially from the hall motion sen-
sor, kitchen motion sensor, and kitchen temperature sensor. To
address this, we removed the hall motion sensor events and de-
activated the kitchen motion and temperature sensors, except
during kitchen activities.

4.2.3 Class Selection and Regrouping

Due to similar activities in the ARAS dataset that sensors don’t
distinguish, we merged certain activities: Napping and Sleep-
ing into Sleeping, and Watching TV, Reading books, and Lis-
tening to music into Entertainment. In House A, Using Inter-
net and Studying were merged into Working; in House B, Us-
ing Internet was merged into Entertainment, and Studying was
renamed to Working. We removed infrequent activities like
Laundry, Cleaning, Having conversations, and Having guests,
as recognizing these activities is beyond the capability of our
method. This resulted in the list of activities shown in Table 1.

4.2.4 Parameters

Queries to the large language model are based on API calls
to the gpt-4-32k-0613 model provided by the Azure OpenAI
Service, with the Temperature parameter set to 0 to reduce the

randomness of the model’s output, while keeping other param-
eters at their default settings. For the two hyperparameters
in LAHAR—the chunk size N for the Action-Level Resident
Separation and Description Generation module, and the chunk
size M for the Activity-Level Reasoning module—we used
N = 20 and M = 15, respectively. This setup was deter-
mined based on preliminary experiments, taking into account
two factors: on one hand, we need each chunk to contain as
much context as possible, and on the other hand, chunks that
are too long can impair the LLM’s ability to follow instructions
within the prompt.

4.3 Evaluation Metric

For a data segment whose time period is T , the activities oc-
curred is denoted as AT = {aTj

k }j∈J , where ak is k-th ac-
tivity class in K classes and J = {j ∈ N|Tj ⊆ T}. We
perform one-hot encoding for all the activities {ak} present at
each second of T and apply the union operation. For instance,
if the i-th and j-th activities are ongoing at the second t, the
encoding is a length-K vector with ones at positions i and j
and zeros elsewhere. By stacking these vectors for all seconds
in T , we obtain a two-dimensional matrix MT×K . To com-
pare our prediction M̂T×K with the ground truth MT×K , we
define the following:

ST×K = M̂T×K ·MT×K ,

where · denotes element-wise multiplication. Using this, we
calculate:

TP =

[∑
t∈T

St,k

]
1×K

,

FP =

[∑
t∈T

(M̂t,k − St,k)

]
1×K

,

FN =

[∑
t∈T

(Mt,k − St,k)

]
1×K

.

Based on TP , FP , and FN given above, we can then calcu-
late the precision, recall, and F1-score of each class in our pre-
diction. To evaluate models’ performance globally, we com-
pute both the macro-average, which is the simple average of
the metrics across all classes, and the weighted average, which
accounts for the time occupied by each class.

4.4 Single-Subject Activity Recognition

4.4.1 Comparison with the State-of-the-art

To validate the activity recognition capability of LAHAR,
a comparison is performed against the research of Gao et
al. [10]. The experimental setup for this comparison is con-
sistent with the research of Gao el al., focusing solely on
the recognition of selected nine activity categories in single-
person scenarios. We extract the longest data segments from
the original data where Resident 2 was leaving home and Res-
ident 1’s activities are in these nine activities. These segments
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(a) LAHAR: at the level of sec-
onds

(b) Gao et al. [10]: at the level of
5 minutes

Figure 4: Comparison of confusion matrices between our
method and the Gao et al. method [10]. The categories are:
X) Unknown, A) Preparing Breakfast, B) Having Breakfast,
C) Preparing Lunch, D) Having Lunch, E) Preparing Dinner,
F) Having Dinner, G) Sleeping, H) Having Shower, I) Toilet-
ing.

Table 2: Comparison of performance between our method and
the state of the art

Method Resolution Precision Recall F1-score
Gao et al. [10] 5 minutes 96.00 95.56 95.60
LAHAR Second 88.54 92.31 90.39

vary in length and can contain more than one activity. With-
out additional segmentation, our method can generate action-
level descriptions and achieve activity sequence prediction at
the resolution of a second. In contrast, the method of Gao et
al, which did not use events as the smallest divisible units but
instead used a fixed 5-minute time window, has thus a resolu-
tion of 5 minutes. Despite our higher resolution, our results
are comparable to the results of Gao et al. in terms of the con-
fusion matrix in Figure 4 and of precision, recall, and F1 score
as shown in Table 2.

4.4.2 Extended Validation

We further validated our method in more realistic and complex
scenarios. As described in the experiment settings, our single-
person scenario data include 17 activities across both houses,
without class-based segmenting. Consequently, each segment
is longer and contains more actions, making it more complex
compared to the setting of Gao et al. [10].

Figure 5 presents the confusion matrices of both houses. Fur-
thermore, Table 3 gives the precision, recall, and F1 scores
of each class. From the confusion matrix of House A, it can
be observed that compared to extracting data segments for 9
activities individually in Gao’s setting, having more categories
and longer data segments results in a lag in predicting activities
related to breakfast and lunch. The primary reason is that the
users in House A have their meals 2-3 hours later than typical
meal times. Despite explicitly highlighting this discrepancy
in the prompt, the LLMs still tend to classify meals based on
conventional timing norms. Another reason is the issue of ac-
tivity alternation. For example, if a subject briefly watches TV

(a) House A (b) House B

Figure 5: Confusion matrices of single-user activity recogni-
tion.

while preparing breakfast and then resumes breakfast prepara-
tion, the LLM might interpret this as the subject having already
prepared breakfast earlier and now preparing lunch. In House
B, the activity of brushing teeth is difficult to accurately recog-
nize because the subjects usually use the toilet after brushing
their teeth. This leads the LLM to merge and predict brushing
teeth and using the toilet as a single activity of toileting.

4.5 Multi-Subject Activity Recogntion

Since the ARAS dataset does not label events with the IDs
of their subjects, we cannot perform a one-to-one compari-
son of event assignments. To validate our method’s activity
recognition capability in multi-person scenarios, we qualita-
tively present an example of our results and indirectly demon-
strate our method’s ability to separate residents by comparing
its performance with that in single-person scenarios.

4.5.1 Qualitative Results

Figure 3 provides an example to better illustrate our results.
We excerpted the experimental output of about 21 minutes of
sensor data from 22:15:24 to 22:36:41 of the 5th day in House
B in the multi-person scenario. It can be seen that these sen-
sor events were integrated into 9 descriptions by the LLM, in
which each description is assigned to a subject. By separat-
ing these descriptions by subjects, timestamped activities are
finally predicted respectively for each resident.

4.5.2 Quantitative Results

In Table 3, we present the recognition results for each activity
class in multi-person scenarios. These results demonstrate that
even when extended to multiple people, our method’s perfor-
mance in activity recognition remains comparable to its perfor-
mance in single-person scenarios. Despite differences in time
and activity distributions between single-person and multi-
person scenarios, this comparison highlights the scalability
of LAHAR in multi-person contexts. Furthermore, we ob-
served that performance in the multi-person scenario in House
A is higher than in the single-person scenario. This difference
is primarily because mealtimes in multi-person scenarios in
House A are closer to conventional meal times compared to

7



AUTHOR VERSION

Table 3: Results of activity recognition of each class in different scenarios

Metric Precision (%) Recall (%) F1-score (%)
Scenario Single A Multi A Single B Multi B Single A Multi A Single B Multi B Single A Multi A Single B Multi B

Class

Preparing Breakfast 59.95 66.54 67.41 80.07 50.45 62.17 98.12 84.38 54.79 64.28 79.92 82.16
Having Breakfast 65.05 97.70 97.29 96.20 39.21 74.18 53.93 82.05 48.92 84.33 69.40 88.56
Preparing Lunch 25.08 27.37 67.31 73.46 30.02 17.84 100. 68.74 27.33 21.60 80.46 71.02
Having Lunch 5.19 47.87 100. 47.78 9.00 33.33 62.22 66.23 6.58 39.30 76.71 55.51

Preparing Dinner 21.53 64.90 66.22 54.56 73.84 84.78 67.59 76.56 33.33 73.52 66.90 63.71
Having Dinner 7.59 58.92 11.67 31.39 82.47 65.67 70.04 29.91 13.89 62.11 20.01 30.63
Washing Dishes 46.22 41.06 3.85 10.37 33.02 12.57 57.55 7.97 38.52 19.25 7.21 9.00
Having Snack 40.53 48.07 0.58 12.84 22.04 26.27 1.54 44.42 28.56 33.97 0.85 19.92

Sleeping 87.84 95.53 93.80 97.84 93.99 88.20 100 97.82 90.81 91.72 96.80 97.83
Entertainment 70.44 69.31 98.58 89.45 88.65 90.66 90.85 90.28 78.50 78.56 94.55 89.86

Having Shower 72.95 59.39 100 60.27 91.82 81.05 84.99 86.57 81.30 68.55 91.89 71.06
Toileting 82.67 53.74 82.40 91.37 76.86 81.43 96.76 84.27 79.66 64.75 89.00 87.68
Working 76.60 81.50 99.51 98.39 61.08 60.49 98.81 85.63 67.96 69.44 99.16 91.57
Shaving / 84.16 / 0. / 53.17 / 0. / 65.17 / 0.

Brushing Teeth 75.24 46.63 1.09 84.32 43.86 34.30 0.40 51.15 55.42 39.53 0.58 63.68
Talking on the Phone 98.67 42.83 / 0. 29.56 33.96 / 0. 45.49 37.88 / 0.

Changing Clothes 49.93 64.54 83.07 95.19 52.56 59.45 92.06 82.95 51.22 61.89 87.34 88.65
Macro-Average 55.34 61.77 64.85 60.20 54.90 56.44 71.66 61.11 50.14 57.40 64.05 59.46

Weighted-Average 66.00 77.67 92.37 93.60 67.56 76.23 93.79 90.28 76.95 86.49 93.08 91.91

Figure 6: A comparison of the impact of different LLM models
on LAHAR

single-person scenarios, making the prediction of meal activi-
ties more accurate.

4.5.3 Impact of LLM model

To investigate the impact of the capabilities of large language
models (LLMs) on the results of LAHAR, we compared the
macro and weighted F1 scores obtained in House A and House
B by applying our method to four different LLM models, as
shown in Figure 6. The models under comparison, listed in as-
cending order of their capabilities [8], are: gpt-35-turbo 1106,
gpt-4-32k 0613, gpt-4 1106-preview, and gpt-4o-2024-05-13.
The weakest model, gpt-35-turbo 1106, exhibits a significant
decline in performance compared to the other three models in
the GPT-4 series. Our observations suggest that this decline is
primarily due to its inability to perform fine-grained reasoning,
often excessively merging and omitting events, which results
in a loss of critical details for activity recognition. We spec-
ulate that the underlying cause is GPT-3.5’s insufficient capa-
bility to retrieve information from long contexts. Furthermore,

performances of the GPT-4 series models have not shown im-
provement with increased model capacity, indicating that our
methods may not yet fully exploit the potential of LLMs.

5 Conclusion

In this paper, we propose LAHAR, a framework using LLMs
for multi-person HAR with ambient sensors. Our prompts en-
able LLMs to assign sensor events to individuals based on
their states, generating detailed descriptions and reasoning
about their activities. This method extends LLM application to
multi-person HAR, achieving time resolutions matching sen-
sor timestamps. LAHAR’s explicit descriptions and activity
reasoning offer promising perspectives to address explainabil-
ity challenges. Experimental validation shows performance
comparable to the state-of-the-art in single-person and multi-
person scenarios. Future plans include validation with differ-
ent LLMs, model fine-tuning, and further evaluation of con-
versational explainability.
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