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The extracellular-matrix (ECM) is a complex interconnected
three-dimensional network that provides structural support for
the cells and tissues and defines organ architecture as key for
their healthy functioning. However, the intimate mechanisms
by which ECM acquire their three-dimensional architecture are
still largely unknown. In this paper, we study this question by
means of a simple three-dimensional individual based model
of interacting fibres able to spontaneously crosslink or unlink
to each other and align at the crosslinks. We show that such
systems are able to spontaneously generate different types of
architectures. We provide a thorough analysis of the emerging
structures by an exhaustive parametric analysis and the use of
appropriate visualization tools and quantifiers in three
dimensions. The most striking result is that the emergence of
ordered structures can be fully explained by a single emerging
variable: the number of links per fibre in the network. If
validated on real tissues, this simple variable could become
an important putative target to control and predict the
structuring of biological tissues, to suggest possible new
therapeutic strategies to restore tissue functions after
disruption, and to help in the development of collagen-based
scaffolds for tissue engineering. Moreover, the model reveals
that the emergence of architecture is a spatially homogeneous
process following a unique evolutionary path, and highlights
the essential role of dynamical crosslinking in tissue structuring.
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1. Introduction
The adequate architecture of any organ is mandatory for their efficient physiological function and
any changes are associated with function impairment and putative developing dysfunctions and diseases
[1–3]. All biological tissues contain scaffolds of non-cellular components called extracellular matrices
(ECMs) [4]. Despite the great variability of proteins that make up the ECM (macromolecules such as
collagen, glycoproteins etc.), it can be seen as a dynamic physical network of fibres interconnected by
molecular bonds, i.e. crosslinks, generating a connected and elastic environment for the surrounding cells [2].

The network structure is in a state of constant remodelling, which is crucial to maintain tissue
integrity and function. Crosslinks, however, can unbind spontaneously or under tension, which leads
to viscoplastic material responses, such as softening and tension relaxation [5]. Fibrosis and ageing are
also characterized by an increase of enzymatic and non-enzymatic crosslinks [6,7] and this increase in
crosslinking prevents ECM degradation by matrix metalloproteinases, both events leading to a
decrease of ECM remodelling [8]. Altogether, these events induce greater stiffness and the
arrangement of the collagen fibres becomes less organized and more loose and fragmented, hence
weakening tissue integrity and strength [9,10]. An understanding of the basic organizing principles of
ECM structure in three dimensions also helps in apprehending the complex dynamics of pathological
tissues from degenerative diseases or tumour [8].

Because the global architecture of fibre networks seems to be fundamental for controlling tissue
functions, modelling the process of ECM structure emergence will greatly improve our understanding
of tissue biology and plasticity in physiological or pathological conditions. Numerous models of fibre
networks can be found in the literature. Due to their simplicity and flexibility, the most widely used
models are individual based models (IBM), which describe the behaviour of each agent (e.g. a fibre
element) and its interactions with the surrounding agents over time [11,12]. However, IBMs have a
high computational cost which can become intractable when studying systems composed of too many
agents, or systems at large scales, either spatial or temporal. In such cases, continuous or mean-field
kinetic models may be preferred [13–17] since they are less costly, but at the expense of a loss of
information at the individual level. Since it is well acknowledged that microstructure configurations
modulate the macroscopic properties of crosslinked fibre networks [18], preserving the microscopic
level description is of great importance to model tissue emergence.

Most of the computational models developed thus far for mimicking ECM networks are two-
dimensional [14,16,19–27]. Few studies have been conducted on three-dimensional models [28–35],
although these are expected to yield different, more realistic results than two-dimensional ones since
they better mimic biological structures themselves immersed in three-dimensional environments. One
of the reasons for fewer three-dimensional models is the great increase in the number of agents
needed to achieve a given spatial density and thus in the associated computational cost. Another
reason is the lack of high quality data on ECM organization in three dimensions. However, the latter
is becoming less and less of an issue with recent improvements in high resolution three-dimensional
imaging and its availability. Among existing three-dimensional models, few of them feature
dynamical crosslinking of ECM components. In [30,32,36], various models of three-dimensional
fibrous networks composed of permanent or transient crosslinks (remodelling) are proposed.
However, most of these models feature ECM remodelling in reaction to external factors (applied load
[30,37], migrating cells [32], contractile cells [36]), and the literature so far provides few cues on the
mechanisms underlying fibre self-organization.

In the present paper, we test the hypothesis that fibre macrostructures could spontaneously emerge
without appealing to contact guidance or external mechanical challenges, as a result of simple
mechanical interactions between the fibre elements composing the ECM network. We assess this
hypothesis by means of a simple three-dimensional model where ECM fibres are discretized into unit
fibre elements, consisting of non-stretching and nonflexible spherocylinders with the ability to
spontaneously link to and unlink from their close neighbours. This dynamical crosslinking mechanism
allows us to model both the overall temporal plasticity of the network and the complex physical
properties of biological fibres such as elongation, bending, branching and growth, thus compensating
our minimalistic description of the fibre units. We stress that in this paper, rather than developing a
very complex model to reproduce the whole complexity of real tissues (at the cost of losing
explicability), a large part of which corresponds to the redundancy of mechanisms to ensure the
robustness of structures and regulations, we aim to keep a mathematical framework as simple as
possible in order to break the complexity and shed light on some main and basic components at play
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in the emergence of fibrous structures. The relevance of such an approach was previously validated in the
frame of adipose tissue morphogenesis and regeneration in two dimensions [27,38].

Through computational simulations and exhaustive parametric analysis, we demonstrate that
organized macrostructures can spontaneously emerge without external guidance. Overall, this study
provides a comprehensive view on the role of ECM connectivity on tissue architecture emergence:

— The model reveals that tissue architecture at equilibrium is simply controlled by the number of
crosslinks per fibre in the network, an emerging variable not directly linked to the model
parameters. If further validated on real tissues, this simple emerging variable could become an
important putative target to control and predict the development of the architecture of biological
tissues. Because of its simplicity, this variable is amenable to experimental measurements and
could represent a major target for the development of therapeutic drugs to induce tissue recovery
after injury, prevent tissue degradation during ageing, or help in the design of engineering
collagen scaffolds for tissue regeneration.

— A deep exploration of the model parameters reveals that this emerging variable, and therefore the
global organization abilities of tissues, depend on a complex interplay between the model
parameters related to the crosslinks, i.e their remodelling speed and their linked fibre fraction.
These results rationalize how even subtle changes in fibre networks dynamical crosslinking can
drive tissue reorganization and suggest that the development of biological crosslinkers to control
ECM connectivity as a target for tissue reconstruction must carefully account for different
parameters such as tissue remodelling activities.

— Finally, a temporal analysis of the model simulations reveals that the different tissue architectures
follow a simple and unique evolutionary path on timescales controlled by their remodelling
characteristics, providing new insights into the temporal evolution of tissue structures as a
function of the ECM remodelling properties.

2. Models and methods
2.1. Description of the model
The three-dimensional ECM is discretized into unit fibre elements consisting of line segments of fixed
and uniform length, represented by their centres and directional unit vectors. We consider the
following biological and mechanical features: (i) Fibre resistance to pressure: We suppose that fibre
elements repel each other at short distances, which models size-exclusion effects. This is achieved via
a repulsive force between close fibres based on Hertzian theory [39]. This amounts to model fibres as
spherocylinders of a given radius and length, that can interpenetrate each other. The intensity of the
repulsion force αrep controls the amount of overlapping between fibres. (ii) Fibre elongation and
breakage: In addition to carrying a unit of ECM fibre strength, fibre elements also carry a unit of fibre
length. However, we provide a way to create longer fibres by allowing two nearby fibres to form a
link. A crosslink is modelled as a linear spring with a given spring stiffness, connecting the two
closest points of the fibre pair at the time of its creation. There is no prescription for the location of
the crosslinks along the body of the fibres they connect. Several consecutively cross-linked fibre
elements would model a long and flexible fibre having the ability to adopt complex geometries.
Therefore, the cross-linking process models fibre elongation [40]. The stiffness constant of the springs
αrest controls the possible extension of the long fibres. Symmetrically, pairs of cross-linked fibres can
spontaneously unlink, allowing for fibre breakage describing ECM remodelling processes [41]. Linking
and unlinking processes follow Poisson processes with frequencies νlink and νunlink, respectively. As a
result, the linked fibre ratio xlink ¼ nlink=ðnlink þ nunlinkÞ represents the equilibrium fraction of linked
fibres among the pairs of neighbouring fibres. (iii) Crosslink fibre alignment: To model the ability of
long fibres (those made of several cross-linked fibre units) to offer a certain resistance to bending,
linked fibres are subjected to a potential torque at their junction. This torque vanishes when the fibres
are aligned, and consequently acts as a linked-fibre alignment mechanism. This torque is characterized
by a stiffness parameter αalign playing the role of a flexural modulus. (iv) Large friction regime: As the
Reynolds number in most biological tissues is very small [42], we suppose that inertial forces can be
neglected and we consider an over-damped regime for fibre motion and rotation.

Each of the mechanical interactions due to fibre-fibre repulsion (i), fibre-fibre attachment due to
crosslinks (ii) and crosslinked fibre-fibre alignment (iii) generate elementary forces and torques
between fibre pairs. The total force (resp. torque) acting on a fibre is then computed as the sum of all
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the elementary forces (resp. torques) generated by the elements interacting with this fibre. The motion
and rotation of the fibre is then deduced from Newton’s equation of motion in an over-damped
regime. More specifically, the Nfib fibre elements are represented by straight lines of fixed length Lfib
represented by their centres XkðtÞ [ V , R3 and their non-oriented directional unit vectors
vkðtÞ [ S

þ
2 . Moreover, from the fibre-fibre repulsion interaction, fibres may be seen as soft

spherocylinders of radius Rfib. We denote by ( pk,m(t))k,m the fibre connectivity matrix, that is pk,m(t) is
equal to 1 if fibres k and m are linked at time t and to 0 otherwise.

The motion and rotation of fibre k are then given by

mfibLfib
dXk
dt ðtÞ ¼

XNfib

m¼1

�
Frepk,mðtÞ þ pk,mðtÞFrestk,mðtÞ

�
mfibL

3
fib

dvk
dt ðtÞ ¼

XNfib

m¼1

 
Trep
k,mðtÞ þ pk,mðtÞ

�
Trest
k,mðtÞ þ Talign

k,m ðtÞ�� ^ vkðtÞ
8k [ ½½1, Nfib��,

9>>>>=>>>>; ð2:1Þ

where Frepk,mðtÞ and Trep
k,mðtÞ are the force and torque associated with the repulsion between fibres k and m,

Frestk,mðtÞ and Trest
k,mðtÞ are the force and torque due to the presence of a spring (crosslink) connecting fibres k

and m, and Talign
k,m ðtÞ is the alignment torque generated by this crosslink. We refer to appendix A.1 for the

detailed computations of these forces and torques.

2.2. Description of the simulation set-up and biological relevance of the model parameters
The spatial domain V is a cuboid of side lengths Lx, Ly and Lz, respectively, in the x, y and z-dimension,
centred on the origin

V ¼ �Lx
2
,
Lx
2

� �
� � Ly

2
,
Ly
2

� �
� � Lz

2
,
Lz
2

� �
:

For the sake of simplicity, we assume periodic boundary conditions: an agent exiting the domain by
one side re-enters immediately from the opposite side, and interactions between agents are computed
using the periodicized Euclidean distance. Fibres are initially randomly inseminated inside the
domain according to a uniform law for both position and orientation. The differential system (2.1) is
then numerically solved using a discrete upwind Euler scheme with adaptive time step, which has a
very low computational cost. Details of the numerical implementation are given in appendix A.2.

The physical scaling of all the parameters of the model, as well as the values used in the simulations, are
described in table 1. A few points may be noted: (a) the perception distance for link creation dmax

link and the link
unloaded length deqlink are both equal to the diameter of a fibre 2 Rfib. This means that the fibre units
(spherocylinders) connect with the fibres they are in contact with or closer, and that the link tries to keep
the bodies of the spherocylinders touching. In this regime, the presence of the links therefore participate in
a non-overlapping configuration of the fibres. (b) The size of the domain is approximately four times the
size of a fibre along its main axis (numerical checks were made by-hand to select a size of domain which
optimizes between computation time and boundary effects) and (c) the fibre aspect-ratio Lfib/2 Rfib = 6 is
quite small compared to the values used in other models of the ECM, which usually varies between 250
and 104 [15,33,34]. This compensates for the fact that these models directly account for fibre bending and/
or fibre elongation, while our long fibres correspond to a sequence of crosslinked fibre units. On the same
note, we stress the fact that our fibre units do not aim at modelling the individual collagen fibrils making
up collagen fibres in ECM, but rather correspond to an intermediate scale where one fibre unit of our
model is already a set of twined collagen fibrils that run in parallel to form a larger bundle [43].

We denote by ϕfib the fibre density of the network, that is the ratio between the total volume of fibres
(without overlapping) and the volume of the spatial domain:

ffib ¼ NfibVfib

jVj ¼ Nfib
pR2

fibLfib þ ð4=3ÞpR3
fib

LxLyLz
: ð2:2Þ

The quantity ϕfib can be compared to the packing density, that is the maximal fraction of the domain
that can be occupied by densely packed fibres. In the case of an ordered packing, the packing density of
spherocylinders is ϕorder = 0.89, while for random or amorphous packing of spherocylinders with an
aspect ratio of 6, the maximal random packing density ϕrandom ≈ 0.4 [20]. Thus, we may say that a
system is ‘sparse’ if its fibre density is below ϕrandom, ‘dense’ if it is between ϕrandom and ϕorder, and
‘hyperdense’ if it is above ϕorder. In the following, we will study two types of systems: dense systems



Table 1. Model parameters.

name value units description

agents

Nfib [1500, 3000] n.a. number of fibres

Lfib 6 L fibre length

Rfib 0.5 L fibre radius

mechanical interactions

αrep 12.5 M · L−1 · T−2 magnitude of the repulsion force

αrest 5.0 M · T−2 magnitude of the elastic restoring force

αalign 2.0 M · L2 · T−2 magnitude of the alignment torque

dmaxlink 1.0 L perception distance for link creation

deqlink 1.0 L link equilibrium length

biological phenomena

νlink [0, 10] T−1 network remodelling speed

χlink [0.1, 0.9] n.a. equilibrium linked fibre fraction

numerical parameters

Lx = Ly = Lz 30 L side length of the cubic domain

Tfinal 5.104 T total time of simulation
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containing Nfib = 3000 fibres (ϕfib = 0.58) and sparse systems with Nfib = 1500 fibres (ϕfib = 0.29,
corresponding to measurements of extracellular volume fraction in muscle or myocardial fibrosis, see
e.g. [44,45]).

For each of the three types of mechanical forces in the system, we define the ‘characteristic interaction
time’ as the time needed for two isolated fibres interacting only via this force and initially positioned in
the most unfavourable configuration to reach 99% of the equilibrium state. For repulsion, Trep is the time
needed for two fully overlapped fibres (X1 =X2 and ω1 = ω2) to move apart by 99% of their equilibrium
distance 2 Rfib (i.e. ‖X1−X2‖ = 0.99 × 2 Rfib). Similarly, for the elastic spring Trest is the time needed for
two fibres that are initially fully overlapping and crosslinked at their centre to move apart by 99% of
their equilibrium distance deqlink. On the other hand, for nematic alignment Talign is the time needed for
two perpendicularly intersecting fibres (X1 = X2 and ω1⊥ω2) crosslinked at their centre to reach a
relative angle arccosðv1 � v2Þ ¼ 0:9�.

Explicit computation leads to the following formula (numerical values are given for the parameters
presented in table 1)

Trep ¼ 27mfibLfib
4
ffiffi
2

p
Rfib arep

¼ 4:32Ut,

Trest ¼ lnð10Þ mfibLfib
arest

¼ 2:76Ut

and Talign ¼ 4:27 mfibL3fib
aalign

¼ 462Ut:

9>>>=>>>; ð2:3Þ

It may be noted that the alignment interaction is much slower than the repulsive and elastic restoring
forces. In this regime, fibre elements are quite rigid and connected by strong springs (crosslinks),
enabling us to prevent local accumulation of fibres and overstretching of long fibres (those made of
several crosslinked fibre units).
3. Results
3.1. Matrix crosslinking drives the local alignment of three-dimensional dynamical fibre

networks
In figure 1a–c, we show various structures that can be obtained with our model by playing on the
parameters in the ranges indicated in table 1. The fibres are represented by double arrows and
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Figure 1. (a–c) Illustration of the various structures that can be observed at equilibrium. Fibres are represented by double-headed
arrows and coloured according to their local alignment with their neighbours (from blue: Alk = 0 to red: Alk = 1). The structures
range from systems with uniformly high local alignment indicator (a) through systems with heterogeneous, intermediate local
alignment indicator (b) to disordered systems with uniformly low local alignment indicator (c). (d ) Value of Almean according to
Nmeanlinkperfib at equilibrium, with colour depending on the remodelling speed νlink and horizontal and vertical error-bars indicating
the standard deviation NSTDlinkperfib and AlSTD, respectively. The grey dashed-line indicates the critical value of Nmeanlinkperfib and the
black dashed lines the three logarithmic fits obtained for Nmeanlinkperfib , Ncritic.
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coloured as a function of their local alignment with their neighbours. We refer the readers to appendix
B.1 for more details on the computation of this quantifier, and just mention that the local alignment of
fibre k, denoted Alk, is equal to 1 (fibre coloured in red) if all the neighbouring fibres display the exact
same direction as fibre k, and to 0 (fibre coloured in blue) if the neighbouring fibres display uniformly
distributed directional vectors. Moreover, we show in appendix B.1 that this quantifier is able to
discriminate between fibres located in randomly oriented environments (corresponding to Alk < 0.5),
fibres located in nearly planar environments (leading to Alk around 0.7), and fibres located in nearly
uni-directional environments (leading to Alk above 0.8).

As one can observe, the fibre structures obtained at equilibrium range from highly aligned systems
(mainly composed of red fibres, see figure 1a) to disordered systems with a low local alignment
(mainly composed of fibres coloured in blue, see figure 1c). The model can also produce intermediate
states composed of fibres with a median local alignment (figure 1b).

In order to assess the alignment states of our different fibre networks, we computed the mean of the
local alignment indicator Alk over all the fibres of the system, denoted by Alsim. To account for stochastic
variability (due to the random initial condition and the stochastic linking and unlinking processes), we
computed the mean and standard deviation of Alsim over 10 simulations conducted with the same set of
parameters, denoted by Almean and AlSTD. Similarly, we denote by Nlinkperfib =Nlinks/Nfib the number of
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links per fibres in a network and by Nmean
linkperfib and NSTD

linkperfib its average and standard deviation over 10
simulations. We stress the fact that Nlinkperfib = 0.5 if all the fibres are connected to a neighbouring fibre.

By plotting the alignment quantifier Almean as a function of the number of links per fibre Nmean
linkperfib

(both computed on the systems at equilibrium), we discovered a striking and major correlation
between these two quantities. This correlation is shown in figure 1b, with horizontal and vertical
error-bars indicating the inter-simulation standard deviations NSTD

linkperfib and AlSTD, respectively. The
different markers indicate different fibre densities (dots for dense systems and triangles for sparse
ones), the different colours refer to different networks dynamics νlink, and inside each colour series
χlink is increasing with Nmean

linkperfib.
Figure 1d reveals that the values of Almean and Nmean

linkperfib at equilibrium are highly correlated. When
Nmean

linkperfib is inferior to a critical threshold Ncritic≈ 0.7 (indicated with a grey dashed line on figure 1d ),
there is a logarithmic correlation between the number of links per fibre in the network and its mean
alignment indicator (black dashed lines in figure 1d )

Almean � a logðNmean
linkperfibÞ þ b, ð3:1Þ

with

— α = 0.037, β = 1.006 and coefficient of determination r2 = 0.87 for dynamical systems (non-blue
markers);

— α = 0.129, β = 0.651 and coefficient of determination r2 = 0.96 for sparse non-dynamical networks
(blue triangles);

— α = 0.042, β = 0.433 and coefficient of determination r2 = 0.985 for dense non-dynamical networks
(blue dots).

Then, when Nmean
linkperfib . Ncritic we observe an abrupt drop of the equilibrium value of Almean.

Surprisingly and very interestingly, for dynamical systems (νlink > 0) there is no difference in alignment
induced by the fibre density or the link characteristics νlink and χlink: the correlation observed is the
same for all sets of points.

The second major observation from figure 1d is the difference between non-dynamical and dynamical
networks at equilibrium. Indeed non-dynamical networks, composed of a fixed number of links, are
systematically less aligned than dynamical ones (compare the values of Almean between the blue
markers and the other colours). Moreover, although we do recover the same type of correlation
between the fibre local alignment and the number of links per fibre in the network, for non-
dynamical networks this correlation significantly depends on the fibre density. However, the critical
number of links Ncritic allowing for larger alignment is the same for non-dynamical networks, either
dense or sparse, and for dynamical networks. Therefore, Ncritic seems to be a general critical network
connectivity value controlling the local alignment abilities of various networks.

Altogether, these results show that the emergence of organized networks (i) requires some
remodelling abilities of the ECM matrix and (ii) is mainly controlled by the number of links per fibre.
3.2. ECM architecture emergence is driven by a complex interplay between remodelling speed
and linked fibre fraction

The previous section took a particular focus on the local arrangement of the fibre units composing our
three-dimensional fibre network, with little information on the global structures at the population scale.
In this section, we aimed to characterize quantitatively the macrostructures that emerge in our networks.
To this end, we used the stereographic projection of the fibre directional vectors. Disregarding the spatial
position of a fibre, we represented its directional vector as a point on the surface of the unit half-sphere in
three dimensions and then projected it onto the unit disk in two dimensions (see appendix B.2 for a
detailed explanation).

As shown in figure 2, this representation enabled us to characterize the different global organizations
of our fibre networks. Indeed, we observed three different types of stereographic projections in our
simulations: fibres’ directional vectors very concentrated around the centre of the disc, corresponding
to a global alignment of the system (figure 1a, with stereographic projection shown as inset in figure
2a), fibres’ directional vectors homogeneously distributed on the disc corresponding to a global
disorder (figures 1c and 2e), and fibres’ directional vectors distributed along a preferential axis, with
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Figure 2. (a) Alignment indicator Alsim versus semi-major axis length of the covariance ellipse of the stereographic projection Amax,
for each simulation of dense systems (Nfib = 3000). Red crosses correspond to systems in an aligned state, orange diamonds to
curved states and blue dots to unorganized states. The simulations previously displayed in figure 1 are indicated with a black
star and their stereographic projection given as inset. Panel (b–e) displays the equilibrium state of a few other simulations,
whose positions on the diagram are also indicated with a black star. ( f ) Heatmap of the percentage of simulations ending in
an aligned state (versus a curved state), for dynamical dense networks as function of the values of the network remodelling
speed νlink (in ordinate) and the equilibrium linked fibre fraction χlink (in abscissa). (g) Heatmap of the number of links per
fibre Nmeanlinkperfib for dynamical dense networks as function of the values of the network remodelling speed νlink (in ordinate) and
the equilibrium linked fibre fraction χlink (in abscissa). Zones where Nmeanlinkperfib � Ncritic have been highlighted in green.
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complete depletion in the direction perpendicular to this axis, corresponding to global curved/plane
structures (figure 2b–d ).

Together with the local alignment quantifier Alsim, we were now able to quantitatively characterize
the different local and global fibre organizations inside our networks. We considered a system to be
locally aligned if Alsim was above 0.7 (see appendix B.1 for justification of this value). At the same
time, we considered that a system was globally aligned if its stereographic projection covariance
ellipse had a semi-major axis smaller than 0.45 (implying that the point cloud covers less than 20% of
the whole projection disk).

We therefore classified the simulations outcomes into three different states (unorganized, curved and
aligned) using table 2. We ran a total of 1080 numerical simulations, exploring various values of the
parameters νlink, χlink and Nfib in the broad ranges indicated in table 1, and counted among their
outcomes:

— 180 unorganized states (all occurring in non-dynamical systems, i.e. νlink = 0),
— 661 curved states,
— 239 aligned states (among which only 12 occurred in sparse systems).

Figure 2a shows the equilibrium values of quantifiers Alsim and Amax for dense systems (see electronic
supplementary material, appendix C.2 for the equivalent figure on sparse systems). The points are
coloured according to the states defined previously (blue dots correspond to unorganized states,
orange diamonds to curved states and red crosses to aligned states). The simulations already



Table 2. Classification of the simulations outcomes into different states based on the local quantifier Alsim and the global
quantifier Amax. The case fAlsim , 0:7 & Amax 	 0:45g never occurs in our simulations and is thus unnamed.

Amax

≤0.45 >0.45

Alsim ≥0.7 aligned state: alignment both local and

global

curved state: alignment local but not global

<0.7 (alignment global but not local) unorganized state: no alignment, either local

or global
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displayed in figure 1 are indicated with a black star and their stereographic projection shown as inset.
Four other simulation outcomes are singled out with black stars on the phase diagram and illustrated
with a three-dimensional view and stereographic projection in the b to e.

From figure 2a, we first observe that the unorganized states (blue dots) form a small, compact group
of points with large semi-major axis length, while the aligned states (red crosses) make a long thin group
with very high alignment indicator. On the other hand, the curved states (orange diamonds) form a
scattered cloud of points with a broad range of values for both the semi-major axis length and the
alignment indicator. Moreover, we observe that the transition between unorganized and curved states
is very sharp (note the gap between the blue dots and orange diamonds in a). Indeed, no simulation
displays an average alignment indicator at equilibrium between 0.65 and 0.77 (including sparse
systems, see electronic supplementary material, appendix C.2), and there is a marked difference
between the least organized of the curved states (illustrated in figure 1a) and the most organized of
the unorganized states (illustrated in figure 2e). This confirms our choice of 0.7 for the threshold value
between unorganized and curved states.

On the contrary, the transition from curved to aligned states is not a clear switch but a continuum of
structures that can be illustrated by the two borderline cases in figure 2b,c. Thus, one must be aware that
the partition between curved and aligned states is partly arbitrary and depends on the choice of the
threshold. However, this classification into three states allowed us to distinguish between unorganized
networks, globally aligned networks and networks locally aligned with twisting capacities at the
population level, enabling us to go deeper into the model parameters controlling tissue architecture
emergence at different scales.

We first found that the sharp transition between unorganized and curved states was fully controlled
by the remodelling speed of the network νlink. Indeed, unorganized states were only and systematically
observed for non-dynamical networks (νlink = 0), while dynamical networks (νlink > 0) never equilibrated
in unorganized states but self-organized into either curved or aligned states, and this independently on
the fibre density of the network (see electronic supplementary material, appendix C.2). By contrast, the
transition between curved and aligned states is not controlled by a unique model parameter but is the
interplay between several parameters.

Indeed, figure 2f shows a heatmap of the percentage of simulations ending in an aligned state (versus
a curved state), for dynamical dense networks (see electronic supplementary material, appendix C.2 for
results on sparse networks), depending on the values of the network remodelling speed νlink (in ordinate)
and the equilibrium linked fibre fraction χlink (in abscissa). As one can observe in figure 2f, there is a
nonlinear relationship between the global alignment capacities of the networks and the parameters
νlink and χlink. Indeed, analysis of the heatmap reveals that (i) reduced linked fibre fraction χlink can
increase global alignment outputs because, for low-remodelling networks, the formation of crowded
interconnected fibre structures inhibiting fibre motion is relieved by reduced link density. Moreover,
(ii) the global alignment of networks with intermediate remodelling rates may undergo little change
with reduced linked fibre-fraction and (iii) the global alignment ability of fast-remodelling networks
will likely be impaired by reduced linked fibre-fraction. These results show that the different types of
tissue architectures (aligned, curved or unorganized) depend on an interplay between parameters νlink
and χlink. While ECM local alignment can be explained by the simple emerging variable that is the
number of links per fibre in the network (as shown in §3.1), its direct relation with model parameters
Nfib, νlink and χlink is more complex. Indeed, figure 2g shows a heatmap of the number of links per
fibre in the network Nmean

linkperfib as a function of νlink and χlink for dense dynamical networks (same
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simulations as f ). It demonstrates that Nmean
linkperfib is indeed an emerging variable, in the sense that it is not

directly linked to the parameters νlink and χlink but rather is the result of a complex interplay between the
two. Indeed, the number of links per fibre in the network increases along the diagonal, as νlink decreases
and χlink increases (from top left to bottom right corner of the heatmap), crossing the critical threshold
Ncritic doing so (the cells where Nmean

linkperfib � Ncritic are framed in green in g). These results explain why
the proportion of aligned structures are maximal along the diagonal from the bottom left to the top
right (i.e broadly perpendicular to the gradient of the emergent parameter). These results extend to
the case of sparse networks (see electronic supplementary material, fig. 8 in appendix C.2), confirming
the strong correlation between ECM alignment abilities and the number of links per fibre they contain.

These results show that our networks can be seen as corresponding to different phases of physical
materials depending on their remodelling abilities. If non-dynamical networks can be seen as solid
structures unable to spontaneously reorganize, dynamical networks have properties reminiscent of
fluid materials, the global architecture of which being controlled by an interplay between their
remodelling speed and their linked fibre fraction. In the next section, we study the evolution in time
of the structures, enabling us to give more insights into the role of these parameters in tissue
structuring in time.
pen
Sci.11:231456
3.3. ECM architecture emergence follows a unique evolutionary path on timescales controlled
by their remodelling characteristics

In this section, we study the temporal evolution of the spatial structures. Our very first observation is
that, for all sets of parameters, the evolution in time of the quantifier Almean follows a logarithmic
growth (see electronic supplementary material, appendix C.4 for more details). We will use as a time
reference the time-constant of this growth, denoted τAl, which corresponds to the time needed for the
quantifier to reach 63% of its asymptotic value (Almean≈ 0.7 in our case).

Movies displaying the full temporal evolution of a few simulations are available in supplementary data
(see appendix C.1). In figure 3a–a”’ and b–b”’, we show the stereographic projection of a few well-chosen
time frames (namely 0.5τAl, τAl, 3τAl and Tfinal) for two of these simulations (respectively fromMovie3.mp4
and Movie4.mp4). They correspond to dense systems with χlink = 0.8 and two different crosslink
dynamics: fast remodelling network νlink = 0.1 (a–a”’, Movie3.mp4) and slow remodelling network νlink =
0.001 (b–b”’, Movie4.mp4). These screenshots enable us to answer the important question of how the
network global structure emerges. It is not by accretion around a few structured areas that gradually
merge together, but by an overall homogeneous structuring. Indeed, one can observe that the
directional vectors gradually concentrate around a main direction without creating clustered points that
merge together. This behaviour can be observed both for very aligned networks (A–A”’) or curved
states (B–B”’), and in fact in all our simulations, independently on the network density. Therefore, our
model suggests that the emergence of tissue architecture occurs on a global scale.

We now turn towards the analysis of the time trajectories of the quantifiers of the structures. We show
in figure 3c, the trajectory in the phase plane Amax versus Alsim of simulations for low-dynamical dense
networks νlink = 0.001 with various linked fibre fractions χlink (different colours, see electronic
supplementary material, appendix C.4 for more dynamical networks). We observe that all the
trajectories follow a common pattern. It begins with a sharp increase of the alignment indicator (from
0.15 to between 0.4 and 0.5) while maintaining a quasi-constant semi-major axis length: this
corresponds to the partial depletion of one direction (denoted d1) in the family of the fibres’
directional vector, thus shifting from the initial uniform distribution to a mainly two-directional
distribution (see appendix B.2 for more details on this interpretation). Non-dynamical networks do
not go past that first stage (data not shown).

The trajectories then diversify: the alignment indicator keeps increasing while the semi-major axis
length either decreases, stays constant or slightly increases. The first case is the most common and
indicates that, while direction d1 keeps depleting until near extinction, one of the two remaining
directions starts to deplete as well. This diversification happens on the scale of the time-constant τAl of
the alignment indicator (marked on the trajectories of figure 3c with a black circle).

Lastly, simulations ending in an aligned state and part of those ending in a curved state display a
stage of condensation of the fibres directional vectors around a main direction. This is marked by a
shrinking of the covariance ellipse and a slow increase of the alignment indicator, which has already
nearly reached its steady state (compare with the stabilization of Almean in figure 10). This last point
comes from the local quality of the quantifier Alsim (and by extension Almean): a system can be very
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Figure 3. Temporal evolution of dense systems (Nfib = 3000) with various linking dynamics. Panels a-a”’: Stereographic projection of the
system at times 0.5τAl (a), τAl (a’), 3τAl (a”) and Tfinal (a”’), for one simulation with νlink = 0.1 and χlink = 0.8. Panels b–b”’:
Stereographic projection of the system at times 0.5τAl (b), τAl (B’), 3τAl (b”) and Tfinal (b”’), for one simulation with νlink = 0.001
and χlink = 0.8. (c) Trajectory in the phase plane Amax versus Alsim of individual simulations for slow-remodelling dense networks
νlink = 0.001 and various linked fibre fractions χlink. The initial position is indicated with a black square, the final position with a
black star and the time-constant τAl with a black circle. The limits between each class of structures are drawn in dashed lines.
(d ) Evolution of Nmeanlinkperfib for slow-remodelling dense networks νlink = 0.001 and various linked fibre fractions χlink, with shading
indicating the inter-simulation standard deviation NSTDlinkperfib. The critical value Ncritic is indicated with a dashed line and the time-
constant τAl with a black circle.
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aligned locally, but not globally, if the main direction of the local structures varies smoothly across space.
Thus, the transition between a curved and an aligned state is mostly characterized by a gradual shifting
of multiple local structures towards the same direction.

Finally, we observe that the number of links per fibre (displayed in figure 3d ) undergoes a transient
increase followed by a two-stage exponential decay in time (appearing as a piece-wise linear decrease on
the semi-logarithmic scale). For low dynamical networks, the initial accumulation of crosslinks is more
pronounced, in the sense that the peak is higher and the subsequent decrease slower, when χlink is
high. For the extreme case of large linked fibre fraction χlink = 0.9 (pink curve in figure 3d ), the
phenomenon is so strong that only the first stage of exponential decay is observed during the time of
the simulation. On the other hand, for small equilibrium linked fibre fraction (χlink = 0.1, blue curve),
we do not observe any crosslinks accumulation or fast remodelling networks (see electronic
supplementary material, appendix C.4 for more dynamical networks).

This behaviour can be explained by comparing the linking dynamics to the characteristic time of the
repulsive interaction Trep = 4.32 Ut. Parameter χlink describes the proportion of linked fibres among all
linkable fibres at equilibrium, but this equilibrium takes time to establish (inversely proportional to
νlink). If the repulsion interaction operates faster than the links remodelling (i.e. Trep≪ 1/νlink), then
the linkable configurations will change before the linking/unlinking processes could equilibrate on the
current configuration: new links will appear between newly overlapping fibres while former
overlapping fibres will still be linked even if not overlapping anymore, leading to an accumulation of
links in the system. This happens all the more if the disparity between the frequencies νlink and νunlink
is more favourable to linking than unlinking (νlink > νunlink, i.e. if χlink > 0.5).
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The system thus exhibits a global, macroscopic relaxation phenomenon which emerges from its
various local, microscopic properties. It can be seen that the characteristic time-scale of this relaxation
is comparable to the time-constant of the alignment indicator τAl (see position of the black circles on
the curves in figure 3d, which indicates the value of τAl for the corresponding set of parameters).

These results demonstrate a nonlinear dependence of the network properties on the type of links and
the number of crosslinks per fibre. A high number of long-lasting crosslinks promotes crosslink
accumulation resulting in medium/low alignment, while fast remodelling reduces the mechanical
action of the individual links on the overall network, resulting in lowly connected networks being
unable to align. Together with the results of §3.2, we showed that the network alignment abilities
require a number of links adapted to their remodelling speed: fast remodelling networks need a high
equilibrium linked fibre fraction to quickly reach a high alignment indicator, while slow remodelling
networks need a medium/low equilibrium linked fibre fraction to prevent crosslink accumulation and
avoid the formation of crowded interconnected fibre structures inhibiting fibre motion.
R.Soc.Open
Sci.11:231456
4. Discussion
In this work, we have implemented a three-dimensional model for fibre networks composed of fibre
elements capable of dynamically crosslinking or unlinking from each other, to align with each other at
the crosslinks and to repel their nearest neighbours to prevent cluttering. We showed that this model
can spontaneously generate various types of macrostructures whose emergence can be finely
described. The model reveals that the different macrostructures (i) can be easily explained by a single
emerging intermediate variable, namely the number of links per fibre in the ECM network, (ii) are
controlled by a nonlinear relationship between the linked fibre fraction and remodelling rate and (iii)
follow the same unique evolutionary path for all structures and not multiple paths.

To our knowledge, this work is the first exhaustive study questioning the mechanisms of tissue
architecture emergence via a simple mechanical model of dynamical fibre networks in three
dimensions. The equilibrium structures obtained with our model can be classified into three types: (a)
aligned states with a strong organization around one main direction, (b) curved states with a median,
locally heterogeneous alignment indicator and a wide range of directional vectors living in a plane,
named curved patterns and (c) unorganized states with very low alignment indicator and no
preferential direction. These different types of macro architectures show that the model can cover a
wide range of biological tissues, from highly aligned fibre structures reminiscent of muscular tissues
[46] to disturbed alignment of collagen fibres observed in the first phase of wound healing [47].
Unorganized states were exclusively obtained for non-dynamical networks composed of permanent
crosslinks (νlink = 0), whose plasticity was very low due to their inability to rearrange their crosslinks.
By contrast, dynamical networks exhibited a mixture of aligned and curved states. These results point
to the essential role of matrix remodelling in ECM structuring, consistent with several results in the
literature (see [48] and references therein).

This framework reveals that the different tissue architectures at equilibrium are directly controlled by
a simple intermediary variable, the number of links per fibre (see §3.1). Our interpretation is that, when
the number of links per fibre is inferior to the critical threshold Ncritic, the network is weakly constrained.
In this configuration, an increase in the number of links per fibre improves the transmission of
information in the network and thus enhances the alignment process. The logarithmic scaling
indicates that the higher the number of links per fibre, the less prominent this feature becomes, until
the gain (in terms of the equilibrium alignment indicator) becomes null. The system then shifts into a
constricted regime where each new link adds to the constriction of the network and impedes its
reorganization, leading to a decrease of the local alignment.

The fact that we observe the same correlation for all dynamical networks means that, as long as a
network is slightly dynamical, its final alignment is mostly controlled by its number of links per fibre
rather than by its remodelling dynamics or its density. On the other hand, non-dynamical networks
are locked in mechanically constrained configurations, preventing the system from reorganizing
efficiently compared to dynamical ones and leading to a much lower level of alignment. However, we
showed that non-dynamical networks still contain some degrees of freedom allowing for spatial
matrix reorganization, and that this organization is controlled again by the number of links per fibre
in the network but also by the matrix density, which becomes an important factor. Our interpretation
is that dense non-dynamical networks are more spatially constrained than sparse networks. Therefore,
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adding new links to a sparse network can be more beneficial for the networks’ overall alignment than to
a dense network which has less degrees of freedom.

Altogether, this simple model suggests that different tissue architectures (different levels of
fibre alignment) can already emerge as a result of simple interactions between dynamically linked
fibres without the need for supplementary complex interactions involving external factors. Such
simplified systems highlight the essential role of matrix remodelling on the tissue structuring.
The existence of a simple emerging variable such as the number of links per fibre to control tissue
structuring could have major therapeutic implications in systems where the architecture of the
ECM is impacted (scarring, fibrosis, ageing), but could also prove very useful in the field of
tissue engineering. Indeed, because of its simplicity, this variable is amenable to experimental
measurements and represents a new putative target for the development of therapeutic drugs one
could develop to restore the architecture of various biological tissues after external or internal
alterations. It is noteworthy that this variable is not prescribed by model parameters but emerges
from the initial simple rules as a combination of ECM remodelling dynamics, linked fibre fraction and
fibre spatial organization.

The second major contribution lies in the analysis of the link between this emerging variable and the
model parameters related to the crosslinks. Our model reveals that the number of links per fibre in the
network, and therefore the global alignment abilities of dynamical fibre networks, results from a complex
interplay between their linked fibre fraction and their remodelling speed. From such results, it is apparent
that changes in linked fibre fraction will increase or decrease the global alignment abilities of the
network, depending on the network remodelling rate. Thus, biological contexts in which fibre
crosslinking activity undergoes changes may play an underappreciated role in driving tissue
restructuring. Moreover, these results suggest that the development of biological crosslinkers
controlling ECM crosslinking as a target for tissue reconstruction must be carefully accounting for
ECM remodelling dynamics.

Finally, the third major contribution of the paper lies in the fine time evolution of the spatial
structures. This documents the different temporal evolution of the structures as function of the ECM
remodelling speeds and reveals an unique trajectory for all architectures combined with internal and
transient temporal windows during which they self-organize. The model revealed that dynamical
networks composed of long-lasting links exhibited a phase of crosslink accumulation followed by a
long ‘relaxation’ phase (reduction of the number of links per fibre in the network) associated with a
spatial reorganization of its fibres, while fast remodelling networks exhibited only the ‘relaxation’
phase. The long relaxation phase associated with slow realignment of the fibre units observed for
slowly remodelling networks is reminiscent of the realignment phase observed on long time scales in
later stages of wound healing [47]. The crosslink accumulation phase has been observed in different
ECM networks, for instance in ageing tissues [9]. These new insights into the temporal evolution of
the structures as function of the ECM remodelling properties could prove useful in the field of tissue
engineering, where there is a need to design efficient biological crosslinkers [49,50].

In emerging systems, the characteristics of the final outcome cannot be predicted from the initial rules
of the system and the paths from the initial interactions to the final equilibrium can be numerous and
complex, corresponding to a stochastic evolution. This is not completely the case in our model
because, if indeed the emerging macrostructures cannot be predicted from the initial rules and the
emergence must be understood as a whole, the path is simple and unique and can be strongly
predicted by an intermediate emerging variable (the number of links per fibre in the ECM).
Altogether, our study suggests that the very aligned structures observed in fibrotic tissues could be
mainly due to excess accumulation of crosslinks, consistent with the alterations of ECM structure
observed as a consequence of increased crosslinking in lung fibrosis [51] or cancer [8], or again with
previous studies on tissue-induced alignment of fibrous ECM [3,52]. Such deciphering of the
emergence would open numerous perspectives for future investigations.

In this study, several simplifications were made to break the complexity of real ECM systems. For
instance, the dynamical remodelling of the fibre network (random linking/unlinking of fibres) can be
seen as an indirect way to account for the presence of remodelling cells. This abstract way of looking
at cellular activity on the ECM enables us to study independently the effect of matrix remodelling on
its structure, instead of pre-imposing some cellular dynamics. By leaving ECM linking/unlinking as
free and independent parameters of the model, we are then able to study the respective importance of
these parameters and the importance of matrix crosslinking on its architecture. The model not only
reveals that remodelling is essential in the production of aligned fibre structures, it also suggests that
ECM architecture could be mainly driven by the number of links per fibre in the matrix. Of course, in
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vivo experiments must be conducted to definitively validate this hypothesis and are out of the scope of
this manuscript. On the modelling viewpoint, several perspectives can be considered. First, future works
will be devoted to the study of the mechanical properties of these dynamical networks under tensile/
compressive stress and shear and study the viscoelastic properties of the different networks [53].
Moreover, it is noteworthy that our model features networks composed of only one type of crosslink
(permanent or transient with a given link-life). A natural perspective would be to study the self-
organization abilities of networks composed of heterogeneous crosslinks, following the works of [36].
Moreover, our network features active crosslinks, i.e crosslinks that generate an alignment of the fibres
they are attached to. As a result, our fibre networks are not subject to any external mechanical stimuli.
It would be interesting to add cells having the ability to generate locally biophysical cues such
as tension, stiffness and fibre production/degradation [54] and study these effects on the structure
and mechanical properties of the ECM networks. In the same direction, a complete cell/fibre three-
dimensional model could account for biomechanical feedback loops such as force-dependent fibre
binding/unbinding [30,37].

Finally, we note that our fibre networks are reminiscent of nematic materials [55]. A fundamental
difference compared to previous studies is the active nematic alignment of the rod-like elements due
to the alignment torque at the (dynamical) crosslinks. As a result, contrary to mixtures of passive
particles interacting via volume exclusion, the alignment ability of our material depends crucially on
the crosslinking dynamics and the network configurations. In this framework, crosslink remodelling
can be seen as thermal fluctuations enabling network alignment. Therefore, this simple model could
serve as a basis for studying the influence of the environment in the collective motion of isotropic or
anisotropic cells (bacteria) [56–58].
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Appendix A. Model
Here, we give details about the mathematical model presented in §2.1 of the main text. Let us recall the
main features and introduce some notations. The Nfib fibre elements are represented by their centres
XkðtÞ [ R3 and their non-oriented directional unit vectors vkðtÞ [ Sþ

2 . The fibres repel their close
neighbours by means of a soft repulsion mechanism modelling steric repulsion between
spherocylinders of radius Rfib. Fibre elements have the ability to link to or unlink from each other to
model fibre elongation or rupture. The linking and unlinking of fibres follow random (Poisson)
processes in time. Fibres offer resistance to bending through an alignment torque acting between two
linked fibre elements. Fibre motion and rotation is given by Newton’s second law of motion, in an
overdamped regime to model a medium with low Reynolds number.

https://github.com/chassonnery/3D_DynamicalFiberNetwork
https://github.com/chassonnery/3D_DynamicalFiberNetwork
https://doi.org/10.5281/zenodo.8416498
https://doi.org/10.5281/zenodo.8416498
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The outline of this appendix is the following: in appendix A.1, we give the details of the mechanical
interaction forces and torques acting on the fibres. In appendix A.2, we give details on the numerical
implementation and appendix A.3 details the computation of the closest points of two finite segments
used to compute the interactions and the crosslinks.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.11:231456
A.1. Model components
In this section, we give details of the computation of the forces and torques generated by the mechanical
interactions described in §2.1 of the main text.

(i) Computation of the fibre-fibre repulsion forces. The force between two spherocylinders k and m is
approximated by the force between two spheres of radius Rfib, placed along the major axis of the fibre
elements at such positions Xk,m and Xm,k that their distance is minimal (see appendix A.3 for the
actual computation of this point). Denoting by Frepk,m the pairwise interaction force between the
spherocylinders k and m and using Hertzian theory [39]

Frepk,m ¼ arep(2Rfib � kXk,m � Xm,kk)3=2
ffiffiffiffiffiffiffiffiffiffi
2Rfib

p
� Xk,m � Xm,k

kXk,m � Xm,kk , ðA1Þ

where αrep is the maximal intensity of the fibre-fibre repulsion and Rfib the threshold beyond which the
force field vanishes (this can be regarded as the ‘width’ of the fibre). This force is applied at point Xk,m,
thus inducing a rotational torque

Trep
k,m ¼ (Xk,m � Xk) ^ Frepk,m, ðA2Þ

on fibre k.
(ii) Computation of the fibre attachment forces due to crosslinks. Fibres closer than the threshold dmax

link can
create a crosslink, modelled as a linear spring of stiffness αrest and unloaded length deqlink fixed to the two
points of the crosslinked fibres that were closest at the time of its creation. Using Hooke’s Law, the elastic
restoring force sustained by fibre k due to its link with fibre m reads

Frestk,m ¼ arest

�
deqlink � kXl

k,m � Xl
m,kk

	 Xl
k,m � Xl

m,k

kXl
k,m � Xl

m,kk
, ðA3Þ

where Xl
k,m denotes the point of fibre k that was closest to fibre m at the time of the link creation. This force

induces a rotational torque on fibre k

Trest
k,m ¼ (Xl

k,m � Xk) ^ Frestk,m: ðA4Þ

To ensure coherence between the different features of the model, we require that 2Rfib 	 deqlink 	 dmax
link .

(iii) Computation of the linked fibre alignment forces. It is characterized by a stiffness parameter αalign > 0
playing the role of a flexural modulus: the larger αalign, the more rigid the fibre network. Given two
linked fibres k and m, the torque sustained by the fibre k is such that, 8u [ R3,

Talign
k,m ^ u ¼ aalign ðvk ^ evmÞ ^ uþ 1� jvk � vmj

kvk ^ vmk2
ðvk ^ evmÞ ^ ððvk ^ evmÞ ^ uÞ

 !
, ðA5Þ

where evm ¼ signðvk � vmÞ � vm so that there is no preferential orientation.
(iv) Computation of fibre friction. We assume that the friction sustained by an infinitesimal element of a

fibre follows a Stokes Law with friction coefficient μfib [61]. The total friction force sustained by a fibre k,
computed by integrating this law on the whole length of the fibre, is equal to

Ffrick ¼ �mfibLfib
dXk

dt
, ðA6Þ

and the associated rotational torque is equal to

Tfric
k ¼ �mfibL

3
fibvk ^ dvk

dt
: ðA7Þ

For the sake of simplicity and because our model features only one type of element, we assumed a single
friction coefficient μfib for the fibre elements of our model. However, we note that several methods for
computing the hydrodynamic properties of rigid macromolecules have been developed in the
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literature. For instance in [62], the authors present a systematic method for computing the frictional
tensor of rigid particles modelled as assemblies of beads.

A.2. Numerical implementation
The differential system (2.1) is numerically solved using a discrete upwind Euler scheme, with adaptive
time step. The linking and unlinking Poisson processes are updated between each time step. We assume
that a pair of fibres cannot change its linking state more than once in a single time step: this is reasonable
if the length of the time-step dt is small enough compared to the mean occurrence time 1/ν of the Poisson
process, so we prescribe dt≤ dtlink with

dtlink ¼ min
0:5
nlink

,
0:5

nunlink


 �
: ðA8Þ

The probability for two fibres k and m to develop a crosslink between time tn and time tn+1 = tn + dtn is
then given by

P(pk,mðtnþ1Þ ¼ 1
�� pk,mðtnÞ ¼ 0 and kXk,mðtnÞ � Xm,kðtnÞk 	 dmax

link ) ¼ 1� e�nlinkdtn ðA9Þ
while the probability for a crosslink to break is given by

P(pk,mðtnþ1Þ ¼ 0
�� pk,mðtnÞ ¼ 1) ¼ 1� e�nunlinkdtn : ðA10Þ

To ensure that agents do not swap position without even seeing each other, we also restrict the
instantaneous translation of each fibre to half its radius Rfib and its rotation to arctanð0:1Þ � 6�. This
implies the following upper limits for the time step:

ldttransðtnÞ ¼ min
1	k	Nfib

0:5 Rfib

dXk

dt
ðtnÞ

���� �������� ����
0BB@

1CCA

and dtrotðtnÞ ¼ min
1	k	Nfib

0:1
dvk

dt
ðtnÞ

���� �������� ����
0BB@

1CCA:

9>>>>>>>>>>>=>>>>>>>>>>>;
ðA11Þ

Reduction of the computational cost is achieved by dividing the domain of simulation into cubes
whose side-length is higher than the maximal range of the interactions: thus, interactions need only be
computed for pairs of agents located in neighbouring cubes. The loops calculating the interactions are
parallelized for further speeding up of the simulations.

One iteration of the Euler scheme proceeds as follows:

— Parallel computation of all forces and torques sustained by the agents at time tn (right-hand part of
equation (2.1)).

— Computation of the adaptive time step (equations (A 8) and (A 11))

dtn ¼ minðdttransðtnÞ, dtrotðtnÞ, dtlinkÞ:
— Motion of the agents to their new position

Xkðtnþ1Þ ¼ XkðtnÞ þ dtn
dXk

dt
ðtnÞ

and

vkðtnþ1Þ ¼ vkðtnÞ þ dtn
dvk

dt
ðtnÞ

— Account for periodic boundary conditions.
— Attribution of each agent to a simulation box.
— Parallel update of linking configuration (equations (A 9) and (A 10)).

A.3. Closest points of two finite segments
Given two fibres k and m, we denote by Xk,m = Xk + lk,mωk the point of fibre k closest to fibre m (figure 4).
The couple (lk,m, lm,k) is the minimizer of the distance ‖Xk + uωk− (Xm + vωm)‖ for (u, v)∈ [− (Lfib/2), (Lfib/



Xk,m

fibre k fibre m

Xm,k

Xm

Xk

l k,
m

l
m

,k
Figure 4. Scheme of two spherocylindrical fibres k and m indicating the position of the closest points Xk,m and Xm,k of their central
segment (in a three-dimensional perspective) relative to their respective centre.
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2)]. If ωk = ωm, there is an infinity of solutions of the form v = u + (Xk−Xm) · ωk; in this case, we arbitrarily
chose the solution with the smallest |u| value. Otherwise, there exists a unique solution whose
analytical expression is

lk,m ¼ CLfib=2
(ðvk � vmÞvm � ðXk � XmÞ � vk � ðXk � XmÞ)

(1� ðvk � vmÞ2)

 !

lm,k ¼ CLfib=2
(ðvk � vmÞvk � ðXm � XkÞ � vm � ðXm � XkÞ)

(1� ðvk � vmÞ2)

 !
,

9>>>>=>>>>; ðA12Þ

where Ca denotes the cut-off function between −a and a.
Appendix B. Quantifiers and visualization tools for the fibre structures
The goal of this section is to define quantifiers allowing to quantitatively describe the local and global
organization of the fibre structures obtained with our computational model. Figure 5a shows a typical
simulation (almost) at equilibrium, in which fibres are represented as grey double arrows. As one can
observe, this simulation shows two levels of organization: a high local alignment and globally
twisting, curving patterns located near the centre of the domain. In order to quantitatively describe
these states, we now define appropriate numerical quantifiers.
B.1. Local alignment indicator
Let Ralign denotes the sensing distance up to which a fibre may interact with its neighbours: in our model,
it is equal to Lfib + 2Rfib. For any fibre k, we define its neighbourhood Bk as the set of all fibres located at a
distance less than Ralign and its local alignment indicator Alk as the fractional anisotropy of the fibres’
directional vectors within Bk.

It is computed as follows. We denote by pm = ωm⊗ ωm the projection matrix on the directional vector
of fibre m. The mean of the projection matrices of the fibres inside Bk is given by

Pk ¼ 1
jBkj

X
ms:t:Xm[Bk

pm, ðB1Þ

where jBkj denotes the number of fibres in Bk.



(a) (b)

(c) (d)

1.0

0.8

0.6

0.4

0.2

0

Figure 5. Illustration of the various way to visualize the state of a system, using as example the final state of a simulation. (a)
Three-dimensional representation of each fibre as a grey double-headed arrow, with edges of the spatial domain V drawn in black.
(b) Same representation, with fibres coloured according to their local alignment indicator (blue: Alk = 0, red: Alk = 1). See appendix
B.1 for the actual computation. (c) Stereographic projection of the fibres directional vectors. See appendix B.2 for the actual
computation. (d ) Stereographic projection of the fibres directional vectors, with the covariance ellipse drawn in red dashed line
and its semi-major axis drawn in blue solid line.
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The matrix Pk is symmetric positive-definite, so its three eigenvalues λ1(Pk), λ2(Pk) and λ3(Pk) are real
positive. The alignment indicator or fractional anisotropy in the neighbourhood Bk is then equal to

Alk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðl1ðPkÞ � �lÞ2 þ ðl2ðPkÞ � �lÞ2 þ ðl3ðPkÞ � �lÞ2

l1ðPkÞ2 þ l2ðPkÞ2 þ l3ðPkÞ2

s
, ðB2Þ

with �l ¼ ðl1ðPkÞ þ l2ðPkÞ þ l3ðPkÞÞ=3 the mean of the eigenvalues.
Figure 5b shows the same simulation as figure 5a, but here the fibres have been coloured as a function

of their local alignment indicator, from blue (Alk = 0) to red (Alk = 1). As one can see, the curved patterns
are much easier to distinguish. Thus, the local alignment quantifier also serves as a visualization tool by
supporting the qualitative, visual observation of locally organized states.

Note that Alk = 1 if all the fibres in Bk have the same directional vector. If the directional vectors are
uniformly distributed then theoretically Alk = 0, but this is not always the case. Indeed, the actual
sampling of a random distribution may not be fully isotropic, especially if the number of elements in
the sample is small. Figure 6 displays the value of the alignment indicator obtained for various
distribution of fibres and various sample sizes: it can be seen that a uniform distribution produces
alignment indicator ranging from 0.1 (when the sample size is large) to as much as 0.55 (when the
sample size is small), and that there is a large discrepancy between different samples.

In our simulations, the number of neighbours of a fibre is very stable: between 20 and 25 for dense
systems and between 10 and 15 for sparse systems. Non-dynamical networks display mean alignment
indicators between 0.3 and 0.45 for dense systems and between 0.4 and 0.65 for sparse systems: these
values are comparable to those observed in our calibration tests for a uniform distribution with
similar sample size.

It can be seen from figure 6 that these biases are much smaller for non-isotropic distributions: for
mainly two- or one-directional distributions, the values computed are nearly the same regardless of
the sample size and the discrepancy between different samples is small. For a two-directional
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Figure 6. Calibration of the alignment indicator quantifier Al on random sets of orientation vectors, for various distribution laws and
sample sizes. The displayed values correspond to the average and standard deviation over 10 random draws with the same
characteristic.
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distribution (i.e. when the fibre directional vectors describe a disc), the eigenvalues on the mean
projection matrix are theoretically λ1(Pk) = λ2(Pk) = 1/2 and λ3(Pk) = 0, leading to a theoretical alignment
indicator of 1=

ffiffiffi
2

p � 0:707. This is very close to the value observed in our calibration tests (see yellow
curve on figure 6). Nearly two-directional distributions, where the fibre directional vectors describe a
‘band’ or thick disc, give lower and lower alignment indicator as the prominence of the third direction
(i.e. the band width) increases (see green curves on figure 6). Likewise, conical distributions, which
are mainly one-directional, give an alignment indicator close to 1 which becomes lower and lower as
the aperture angle of the cone increases (see red curves on figure 6).
B.2. Stereographic projection
The directional vectors of the fibres belong to the half unit sphere Sþ

2 . This subset of R
3 can be projected

onto the unit disc in two dimensions using a stereographic projection, as explained below.
We define the main direction of a system as the eigenvector associated with the largest eigenvalue of

its total projection matrix

Ptot ¼ 1
Nfib

X
1	k	Nfib

vk 
 vk: ðB3Þ

If the system contains two or three equally represented directions (associated with equal eigenvalues),
one of them is randomly selected.

We rotate the set of directional vectors so that this main direction lies on the z-axis or ‘north-south
axis’. Since the fibres orientation is not relevant in our model, the set of directional vectors can be
restricted to the ‘north hemisphere’ of the sphere. A point ω = (x, y, z) on this hemisphere can then be
projected onto the equatorial plane via the following transformation:

pðvÞ ¼ x
1þ z

,
y

1þ z


 �
: ðB4Þ

The whole process is illustrated in figure 7.
Figure 5c shows the stereographic projection of the simulation displayed in figure 5a,b. As one can

observe, the dots are not uniformly distributed but densely packed at the centre of the figure,
indicating the existence of a main preferential direction in the system. However, not all fibres have a
directional vector close to this main direction: a non negligible number of dots are distributed all
around the circle, meaning that all possible directions are represented in the system. Furthermore, the
presence of a ‘circular branch’ in the top-right part of the point cloud allows us to identify the locally
twisting structure that can be observed in figure 5b: in this part of the system, nearby fibres have



(a)

z

x y

z

x y

z

x y

(b) (c)

Figure 7. Illustration of the stereographic projection. The orientation axes are shown for reference. (a) Natural distribution of the
fibres directional vectors on the unit sphere S2, with main direction indicated by a red line. (b) Rotation of the vectors set so that its
main direction (in red) now lies along the z-axis. The definition-space of the vectors have been reduced to the ‘North Hemisphere’,
that is to the subset Sþ

2 in the new rotated coordinates system. The equatorial plane is shown in dark grey. (c) Projection of the
vectors onto the equatorial plane, shown in three-dimensional perspective.
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similar but gradually shifting directional vectors such that, on the scale of the whole structure, the fibres’
directional vectors describe a circle (in the domain S

þ
2 ).

Thus, this representation enables us to quickly grasp the distribution of the fibres directional vectors
around one or more poles. It must be noted that proximity on the stereographic projection indicates
similar directional vectors, but not necessarily spatial proximity. Nonetheless, we can gain insights
into the overall architecture of the network by drawing the covariance ellipse of the point-cloud (in
red dashed line on figure 5c) and computing its semi-major axis length Amax. As shown in the §3.2,
this enables us to identify many type of ‘states’ or structures that can also hint on the spatial
organization of the network.
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