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Abstract—This paper introduces a new method for estimating
modes in non-stationary mixture signals. First, we establish a
connection between the short-time Fourier transform (STFT)
and sparse sampling theory, representing observations as pulses
filtered by a known function. Leveraging the finite rate of innova-
tion in the target signal, our specialized reconstruction approach
enables mode estimation amidst noise. Second, we propose a
variant based on a recursive version of the STFT allowing real-
time mode parameter estimation with sequential acquisition. We
compare our results with state-of-the-art methods, showing an
improvement in estimation performance across various scenarios.
Our approach paves the way of the future mode disentangling
algorithms based on Finite rate of innovation.

Index Terms—Ridge extraction, Time-frequency, Sparse de-
convolution, Finite rate of innovation.

I. INTRODUCTION

Complex signals from various physical systems are often
modeled as Multi Component Signal (MCS), represented as
a sum of amplitude- and frequency-modulated (AMFM) sine
waves. Separating and estimating the parameters of individual
components or modes in an MCS are essential in various
applications [1], [2]. Existing approaches, such as Empiri-
cal Mode Decomposition (EMD) [3] and Singular Spectrum
Analysis (SSA) [4], as well as methods projecting the signal
onto the time-frequency (TF) plane [5], aim to achieve this.
Linear Time-Frequency Representation (TFR), like Short-Time
Fourier Transform (STFT) or Continuous Wavelet Transform
(CWT), are extensively studied for their ability to provide
a framework where the Instantaneous Frequency (IF) trajec-
tory of each mode corresponds to a ridge in the TF plane,
enabling applications such as noise removal [6] or source
separation [7]. The robustness of such methods to noise under-
scores the importance of regularization in ridge detection [8].
Synchrosqueezing-based method with Total Variation (TV)
regularization [9], [10], and spline interpolation [11] address
IF estimation challenges. However, most of the existing meth-
ods either do not allow for the estimation of other parameters
such as Instantaneous Amplitude (IA) or involve considerable
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computational time [12]. Usually, such methods require the
entire signal spectrogram and have limitations for possible
real-time parameter estimation through sequential acquisition.

In this context, we propose a new method for IF and IA esti-
mation through spectrogram analysis. Connecting with sparse
sampling theory [13], [14], we emphasize that, in noiseless
scenarios, each instantaneous slice of the spectrogram can be
accurately modeled as a Stream of Dirac (SoD) considered
as an ideal TFR [10]. Thus, we address the problem of
estimating IF and IA to identify the position and weight of
each Dirac pulse in the signal exhibiting a Finite Rate of
Innovation (FRI) in the presence of undesired noise [13],
[15]. To make our approach more robust, we resort to an
alternative to the Prony method: the Total Least-Squares (TLS)
approach [15]. Moreover, we introduce a recursive filter-
bank-based implementation using specific analysis windows
designed for real-time and adaptive applications. Additionally,
we consider vertical SynchroSqueezing Transform (SST) [10]
as an alternative sharpened representation for comparison. The
main contributions of the paper can be summarized as follows:
• A novel IF and IA estimation methods based on a sparse

observation model of MCS spectrograms.
• A FRI-based method possibly combined with SST for

disentangling and reconstructing the modes.
• A recursive filter-bank-based implementation using a

specific causal analysis window.
This paper is organized as follows. In Section II, we intro-
duce the problem addressed in this work and our proposed
observation model. Section III and IV present respectively
the IF and IA reconstruction strategy. We introduce a re-
cursive implementation in Section V enabling future real-
time mode retrieval applications. The performance of the
proposed method is comparatively assessed in Section VI
through numerical experiments. Conclusions and future work
are finally reported in Section VII.

II. OBSERVATION MODEL

Let x be a discrete-time finite-length mixture signal made
of K superimposed Amplitude- and Frequency-Modulated



(AM-FM) components expressed as:

x(n) =

K−1∑
k=0

xk(n) =

K−1∑
k=0

αk(n) ej
2πφk(n)

M (1)

where n ∈ {0, 1, . . . , N − 1} denotes the time instant,
j2 = −1, αk(n) ≥ 0 and φk(n) denote respectively the time-
varying amplitude and phase of the k-th component. Here, K
is assumed to be either known or estimated [16]. In this study,
we focus on estimating ridge positions and amplitudes from
the observed mixture of TFR. They are specifically associated
with the IF φ′k(n), the sampled derivative with respect to time
of φk, and the IA αk(n) of each component. Now, we consider
the STFT of x, using an analysis window θ that can be defined
at each TF point as:

F θx (n,m) =

+∞∑
l=−∞

x(l)θ(n− l)∗ e−j 2πlm
M (2)

with m ∈ {0, 1, . . . ,M − 1} and z∗ being the complex
conjugate of z. Let S be an RM×N matrix representing
the spectrogram of x. After disregarding noise, assuming
only non-modulated sinusoidal components, and neglecting the
interferences between close or overlapping components, S can
be approximated as follows [17], [18]:

[S]n,m = |F θx (n,m)|2 ≈
K−1∑
k=0

|xk(n)|2 |Fθ (m− φ′k(n))|2

(3)
where Fθ(m) = 1

M

∑
l∈Z θ(l) e

−j 2πlm
M is the discrete Fourier

transform of θ. In the sequel, we denote the nth spec-
trogram column as [S]n,: that is represented by sn =
[sn,0, . . . , sn,M−1]> ∈ RM that is modeled according to
Eq. (3) as:

sn,m :=

K−1∑
k=0

(αk(n))2g(m− φ′k(n)) (4)

with g(m) = |Fθ(m)|2, and where αk(n) and φ′k(n) are
the components IF and IA to estimate. Therefore, Equa-
tion (4) can be interpreted as a field of Dirac Pulses
(DPs) situated on the ridge of each component fn(m) =∑K−1
k=0 (αk(n))2δ(

m−φ′k(n)
M ), where the Dirac distribution is

convolved with a known kernel g. Hence, our work consists
in estimating each DP position and weight from sn.

III. INSTANTANEOUS FREQUENCY (IF) ESTIMATION

The restoration of sparse signals in that context was inten-
sively studied over the past few years [13], [15], [19]. The
locations and weights of the DPs can be retrieved using the
Fourier series coefficients of fn [13]. From Eq. (4) we obtain:

sn,m =

K−1∑
k=0

(αk(n))2
∞∑

λ=−∞

Fg(λ) ej
2πλ(m−φ′k(n))

M

=

∞∑
λ=−∞

Fg(λ)

K−1∑
k=0

(αk(n))2 e−j
2πλφ′k(n)

M

︸ ︷︷ ︸
Ffn (λ)

ej
2πλm
M .

(5)

In order to avoid the use of an infinite sum, a bandlimited
approximation can be used in Eq. (5) such that only 2M0 + 1
Fourier series coefficients are kept [14]:

sn,m ≈
M0∑

λ=−M0

Fg(λ)Ffn(λ) ej
2πλm
M (6)

which rewrites matrix-wise with the Fourier series coef-
ficients Ffn(λ), λ ∈ [−M0,M0] of fn such as zn =
[Ffn (−M0), Ffn (−M0+1), · · · , Ffn (M0)]T as:

sn = V Dgzn ⇔ zn = D−1g V †sn (7)

where [V ]m,λ = ej
2πmλ
M is a M×(2M0+1) matrix, V † is the

pseudo-inverse (eg. (V TV )−1V T ) of V and Dg is a diagonal
matrix gathering the discrete Fourier series coefficients of g
in [−M0,M0]. In noiseless setting, φ′k(n) can be estimated
using the Prony method [20], which computes a filter h =
[h(1), h(2), · · · , h(K)]T that annihilates Ffn , thus we have:

(Ffn ? h)(l)=

K−1∑
k=0

(αk(n))2 e−j
2πlφ′k(n)

M H

(
e−j

2πφ′k(n)

M

)
= 0

(8)
with ? the convolution product operator, and H(z) =∑
i∈Z h(i)z−i the z-transform of h whose roots are

e−j
2πφ′k(n)

M . Assuming h(0) = 1, [15], [21], h can be retrieved
by solving a linear Yule-Walker system which has a unique
solution if M0 ≥ 2K:

Ffn (0) · · · Ffn (−K+1)

Ffn (1) · · · Ffn (−K+2)

...
. . .

...
Ffn (K−1) · · · Ffn (0)


︸ ︷︷ ︸

A


h(1)
h(2)

...
h(K)

=−


Ffn (1)
Ffn (2)

...
Ffn (K)

 (9)

where the φ′k(n) of each component is deduced from the
roots of h. Different alternative to the Prony method have
been proposed to perform the estimation in the presence of
noise [22], [23]. From them, the TLS approach [15] has
the advantage of being simple and computationally attractive,
while circumventing the ill-posed problem in Eq. (9) by
approximating h. It consists in finding the filter that minimizes
‖Ah‖2, subject to the constraint ‖h‖2 = 1, instead of the
perfect annihilation of Ffn . This minimization of ‖Ah‖2 is a
known problem that can be solved by computing the Singular
Values Decomposition (SVD) of A [15], and by setting h to
the eigenvector associated with the smallest eigenvalue. The
sensitivity to the choice of M0 in the presence of noise has
been studied in [14], [15] and is thus not discussed here.

IV. INSTANTANEOUS AMPLITUDE (IA) ESTIMATION

The classical principle of FRI reconstruction enables IA
estimation once the IF values are determined. Indeed, con-
sidering the definition of Ffn given in Eq. (5), the amplitudes



can be obtained by solving a linear system of equations with
a unique solution:

W0,0 · · · W0,K−1
W1,0 · · · W1,K−1

...
. . .

...
WK−1,0 · · · WK−1,K−1




(α0(n))
2

(α1(n))
2

...
(αK−1(n))

2

=


Ffn (0)
Ffn (1)

...
Ffn (K−1)


(10)

where Wl,k = e−j
2πlφ′k(n)

M . Due to its sensitivity to outliers,
it is generally preferred [14], [15] to address a least squares
problem which leads to the following estimator:

α̂
(LS)
k (n) = argmin

αk(n)

∑
|λ|≤M0

∣∣∣∣∣Ffn (λ)−
K−1∑
k=0

(αk(n))
2 e−j

2πλφ′k(n)

M

∣∣∣∣∣
2

.

(11)
However, even with perfectly estimated φ′k(n), this method
still exhibits inefficiency, particularly in the presence of out-
liers and when component frequency modulations are ne-
glected. Thus, we also propose another simpler amplitude
estimator based on the properties of the STFT [24]:

α̂k(n) =

∣∣∣∣ F θx (n,mk)

Fθ(mk − φ′k(n))

∣∣∣∣ (12)

where mk ∈ {0, 1, · · · ,M−1} is the nearest integer frequency
bin (on the grid) from φ′k(n).

V. RECURSIVE IMPLEMENTATION

We propose to extend our work by the use of a recursive
filtering implementation to allow real-time and filter-bank-
based signal processing applications. To this end, we resort
to the use of a specific causal analysis window related to an
Infinite Impulse Response (IIR) filter [25]:

θp(n) =
np−1

Lp(p− 1)!
e−n/LU(n) (13)

where p is the order of the related recursive filter, L is a
parameter which controls the spread of the analysis window
and U(n) is the Heaviside function. The Fourier transform of
this filter is expressed as Fθp(m) = (1 + j 2πmLM )−p which
leads to [25]:

g(m) = |Fθp(m)|2 =

(
1 +

(
2πmL

M

)2
)−p

(14)

that is used in the FRI observation model given in Eq. (4). The
proposed analysis window in Eq. (13) allows the computation
of F θpx (n,m) = yp(n,m) ej

2πnm
M where yp is the filtered

signal computed through a standard recursive equation:

yp(n,m) =

p−1∑
i=0

bi x(n− i)−
p∑
i=1

ai yp(n− i,m) (15)

where the filter coefficients ai and bi are obtained by
computing the z-transform of the IIR filter Γθp(n,m) =

θp(n) ej
2πnm
M . Combined with this recursive implementation

of the TFR, the proposed method allows for real-time estima-
tion of both the IF and IA.

VI. RESULTS

Our numerical experiments1 are made with the ASTRES
toolbox [5].We consider two distinct STFTs with M = 500
frequency bins, respectively computed with a Gaussian anal-
ysis window θ(n) = 1√

2πL
e−n

2/L2

, such that g(m) =
2
√
πL
M e−(

2πmL
M )2 , and the recursive version (c.f. Section V),

both computed with parameters L = 20 and p = 3.

A. IF Estimation

We consider a synthesized signal of length N = 500 made
of three modes: a sinusoid, a linear chirp and a sinusoidally-
FM chirp. We control the Signal-to-Noise Ratio (SNR) by
adding white Gaussian noise to the MCS. Overlaping compo-
nents scenario is out of the scope of this paper, as a similar
experiment has been carried out in [26].

We assess the IF estimation performance of the proposed
approaches denoted FRI TLS and Recursive FRI, applied on
the corresponding computed STFTs. Additionally, we use the
Vertical Synchrosqueezing Transform (VSST) to sharpen the
resulting (non-recursive) TFR, denoted FRI SST when applied
on the squared-moduled synchrosqueezed STFT instead of
its spectrogram. For the FRI SST method, we arbitrary use
for g a Gaussian function with a standard deviation equal
to 0.5, which empirically provides the best correlation with
the data. In Fig. 1, we compare our results with the state-
of-the-art approaches: (i) Brevdo [9], (ii) Pseudo-Bayesian
(PB) [17] (setting the variance of the Gaussian random walk
to 2), (iii) Ridge Detector (RD) [11] (setting the frequency
derivative constraints to λs = 0.2 and βs = 0.4) and (iv)
Classical FRI presented in Section III (denoted FRI). The
estimation performance are assessed in terms of relative mean

squared error, RMSE(φ̄′, φ̂′) =
∑K−1
k=0

∑N−1
n=0

|φ′k(n)−φ̂′k(n)|2
M2 ,

where φ̄′k(n) is the ground truth IF and φ̂′k(n) the estimate
provided by each method.

Fig. 1 depicts the performance of various methods at
different SNR levels. FRI TLS consistently obtains supe-
rior performance, outperforming Recursive FRI which uses a
causal non-symmetrical analysis window, especially at high
SNR. FRI SST shows less-than-optimal results except for
SNR above 20dB. In contrast, the RD and Brevdo methods
display behavior similar to FRI TLS at SNR levels above
2dB and −4dB, respectively, but are less effective at lower
SNRs. The PB methods aim for robustness through meticulous
hyperparameter selection, resulting in performance that falls
short at high SNR. However, our proposed approach shows
slightly improved performance at low SNR, closely tied to the
Total Least-Squares (TLS) alternative. This entails selecting
time-frequency points corresponding to the mean between
the two highest maxima in the frequency plane. As noise
spreads in the spectrogram, this mean converges to M

2 as
the SNR decreases. It’s noteworthy that FRI TLS shows
robustness to variations in the assumed filtering kernel g in

1Matlab code freely available at https://github.com/QuentinLEGROS/
EUSIPCO2024/

https://github.com/QuentinLEGROS/EUSIPCO2024/
https://github.com/QuentinLEGROS/EUSIPCO2024/
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Fig. 1. RMSE of the normalized IF (averaged over 100 realizations of noise)
obtained with the different competing methods for a varying SNR.

the presence of FM components broadening the observed
ridges along the frequency axis [24]. Additionally, applying
the proposed method on VSST yields degraded performance
for SNR< 8dB. Finally, we notice that the choice of M0 has
a minimal impact on estimation performance, albeit with an
increased computational cost. The best results are achieved
with M0 = 20.

B. IA Estimation

In Fig. 2, we comparatively evaluate the IA estimation
performance of the proposed FRI method considering different
estimations of the IF. The FRI LS corresponds to the baseline
estimator using Eq. (10). FRI TLS, FRI SST and Recursive
FRI, use Eq. (12) combined with the IF estimated using the
corresponding method evaluated in Section III. Our methods
are compared with two state-of-the-art Bayesian techniques (i)
PB (using an alpha-beta divergence with α = 0.4, β = 0.2)
[17] and (ii) Expectation Maximization (EM) [18] (using a
Laplacian prior model with weight λ = 10−2). To ensure a
fair assessment of the methods, we now consider a mono-
component signal (N = 500) made of a linear chirp with
a linearly growing amplitude varying from 0.5 to 1. The
results are expressed in terms of Relative Mean Absolute Error
RMAE(ᾱ, α̂) = 1

NK

∑K−1
k=0

∑N−1
n=0 |ᾱk(n)− α̂k(n)|, where

ᾱ is the ground truth IA and α̂ the estimation. According
to Fig. 2, all the proposed FRI-TLS and Recursive methods
obtain satisfying results at SNR above 0dB except the baseline
FRI LS method based on Eq.(11) that is biased but more
robust to noise in the −15dB to 0dB range. We notice that
the FRI SST only obtains satisfying results at SNR above
5dB (due to a second-order derivative-based IF estimator). As
expected, the EM and PB methods are more robust at low
SNRs since they were designed to deal with noise. Thus, they
significantly outperform our new proposed methods only at a
low SNR below 0dB. At high SNRs (above 0dB), we observe
slightly better results of the proposed methods (all are mostly
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Fig. 2. RMAE of the IA (averaged over 100 realizations of noise) obtained
with the different competing methods for a varying SNR

equivalent) compared to the robust alternatives with have a
significantly higher computational costs.

C. Computation Time

Table I presents the measured computation time of the
compared methods applied to the three-component signal
considered in the experiments conducted to obtain Fig. 1,
with N = 500 and various frequency resolutions indexed by
M . All experiments were conducted using Matlab R2023b
on a Intel(R) Core(TM) i7-12700H @ 2.30 GHz. The time
corresponds to the execution of the main algorithms and
does not include the computation of the TFRs. Since, all
the compared methods are not designed for IA estimation,
the computation time of the FRI-based methods presented
in Table I only corresponds to the estimation time of IF.
While the computational gain is implementation-dependent
and may be further improved from parallel programming, our
proposed method exhibits a significant speed-up compared
to others [18], across all frequency resolutions. In terms
of computation time, the proposed FRI methods outperform
other methods, providing the fastest results. Additionally, the
proposed method’s performance is only slightly affected by
the frequency resolution.

TABLE I
COMPUTATION TIME IN SECONDS (LOWER IS BETTER) OF THE COMPETING

APPROACHES FOR SYNTHETIC DATA ANALYSIS, AVERAGED OVER 50
REALIZATIONS (N = 500).

M 500 1000 2000
Brevdo [9] 0.13 0.14 0.18
EM [18] 6.93 29.36 116.42
PB [17] 0.23 0.36 0.61
RD [11] 0.41 0.54 1.20
FRI TLS (proposed) 0.12 0.12 0.2
Recursive FRI (proposed) 0.12 0.13 0.13
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Fig. 3. Estimation of the first K = 2 signal components of the speech signal
using the proposed TLS method.

D. Real-world signal analysis

We finally examine a real-world signal defined on a re-
stricted segment of the time axis, as illustrated in Fig. 3.
However, for the sake of readability and to evaluate the
behavior of the TLS method in this scenario (with STFT
computed using L = 40), we assume the presence of only
two components. The transition between the two segments of
mode 2 is smooth, as the method seeks the filtered DP that
exhibits the strongest correlation with the data. Minimizing the
`2-norm, as elaborated in Section III, involves selecting the TF
points that minimize the mean-square error, corresponding to
the mean between the two ridges of mode 1.

VII. CONCLUSION

This study introduces a novel observation model for esti-
mating the instantaneous frequency and amplitude of modes
within a multicomponent signal in the presence of noise.
The spectrogram time slices are viewed as noisy filtered
and sampled streams of Dirac pulses, thereby reducing the
problem of retrieving FRI signals. Given the noise challenges,
efficient use of the Prony method is hindered. Therefore, we
explored alternatives like total least square estimation and a
designed amplitude estimation. Our proposed approach not
only achieves state-of-the-art estimation performance but also
enables real-time sequential estimation through a recursive
implementation of the short-time Fourier transform. Future
work should focus on extending the method to handle ex-
treme scenarios, such as overlapping ridges or high-frequency
modulation, considering new practical applications.
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