N
N

N

HAL

open science

(Demo) Joint Automated Header and Payload
Compression in Constrained Networks

Ichrak Kallala, Thomas Watteyne, Quentin Lampin, Marion Dumay, Stephane

Coutant, Cédric Adjih, Paul Muhlethaler

» To cite this version:

Ichrak Kallala, Thomas Watteyne, Quentin Lampin, Marion Dumay, Stephane Coutant, et al.. (Demo)

Joint Automated Header and Payload Compression in Constrained Networks. 2024. hal-04618561

HAL Id: hal-04618561
https://hal.science/hal-04618561

Submitted on 24 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04618561
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

(Demo) Joint Automated Header and Payload
Compression in Constrained Networks

Ichrak Kallala*, Thomas Watteyne*,

Quentin Lampinf, Marion Dumay/,

Stephane Coutant!, Cedric Adjih*, Paul Muhlethaler*
* Inria, France
T Orange Innovation, Meylan, France
e-mail: first.last@{inria.fr*, orange.com'}

Abstract—Reducing the number of bytes transmitted by
a low-power wireless device greatly reduces its power
consumption. While header compression is a well-studied
topic with solutions such as SCHC that are well-established
standards, very little work exists on compressing the payload.
This is all the stranger that the payload typically contains more
bytes than the headers. This demonstration introduces Dixy, a
payload compression technique which can be used alongside
SCHC. We implement SCHC and Dixy on the nRF52840,
a popular micro-controller. We have them compress packets
collected from a real-world deployment by startup company
Falco. We show how the resulting joint header and payload
compression reduces the number of bytes exchanged between
two boards by 74%. The demonstration allows visitors to
understand SCHC and Dixy, trigger packets being compressed
and transmitted, and observe the number of bytes and
the charge consumed with enabling header and/or payload
compression.

Index Terms—constrained networking, compression, SCHC,
Dixy.

I. INTRODUCTION

The wireless radio transceiver is typically the component
in a low-power wireless device which accounts for the largest
charge consumed. Let’s take a wireless temperature and
humidity sensor composed of a state-of-the-art nRF52840
system-on-chip and an SHT31 sensor. Acquiring temperature
and humidity from the sensor draws 600 pA for 2.5 mA,
or 1.5 uC. Preparing the data for transmission takes the
64 MHz micro-controller at most 2 ms, with a current draw
of 3.3 mA, or 6.6 uC. Transmitting a single 128-byte frame
over its IEEE802.15.4 radio takes 4.256 ms at 6.53 mA, or
28 1 C. Optimizing the power consumption involves reducing
the consumption of the radio.

Reducing the number of bytes means reducing the time
spent transmitting, which correlates almost linearly with
power consumption. A wireless frame typically consists of
headers followed by a payload. The headers contain the
metadata allowing the network to deliver the payload to
the intended destination, and includes in particular different
addressing fields. The payload is created by the source,
carried as an opaque string of bytes by the network, and
delivered to the destination.

Reducing the overall number of bytes can be achieved by
“compressing” the headers and payload. Header compression

has received a lot of attention by the scientific and standard-
ization community, with Static Context Header Compression
(SCHC) [1] being a well-established standardized compres-
sion routine. Payload compression has strangely received
far less attention, even though the payload typically takes
up more bytes in a frame that the headers. We have been
developing an approach called Dixy based on previous work
by Massey et al. [2].

The goal of this demonstration is to show SCHC and Dixy
working together. We implement both in Python and C, and
run both on a pair of communicating nRF52840-DK boards.
We have one of the boards send 100 frames to the other. The
packets contains both headers and payload, and are taken
from a real-world deployment by startup company Falco'.
In the demonstration, we can enable and disable SCHC and
Dixy compression independently. We show how the overall
number of bytes exchanged between the boards is reduced
by 74% when enabling both SCHC and Dixy.

The remainder of the extended abstract is organized as
follows. Section II provides the scientific background of the
demonstration. Section III describes the joint SCHC and Dixy
compression approach used in the demonstration. Section IV
details the Falco dataset used. Section V describes the
demonstration. Finally, Section VI concludes this extended
abstract and presents avenues for future work.

II. SCIENTIFIC BACKGROUND

Compression in low-power wireless communication has
been the focus of standardization for some years.

Most methods only compress headers at the medium-
access, networking, and transport layers [3]. 6LoWPAN
(RFC6282) [4] and 6LoWPAN-GHC (RFC7400) [5] are
standards which compress IPv6 and UDP by removing bytes
which have known values, or which can be recomputed based
on the value of other fields. SCHC (RFC8724) [1] can be
seen as a generalization of the approach. The compressor
operates with a set of rules indicating how it can compress
the fields from arbitrary headers. By crafting those rules, one
can achieve the same compression as 6LoWPAN, but also
compress a much larger set of protocol headers.

I www.wefalco.com

Dixy ; Dixy .
compression decompression
application application
SCHC SCHC
compression decompression
networking stack Y """ Y networking stack
v radio radio

Fig. 1. We demonstrate how both the headers and the payload of a low-
power wireless frame can be compressed, resulting in a reduction in bytes
exchanged by 74% on the real-world dataset used.

packet buffer

0 aa | bb | ef | 13 | ed | 13 | ab | 43 | ef | ff
o |m[or [02 [03 [fe | 05 | 06 [77 | a5 | 09 | oa
2 || aa | e | ef | 13 | do | e8 | ad | 43 | er | ff
@ g" | o1 | 02 | 03 | 3d | 05 | 06 | 4e | 4a | 09 | o0a
€| or [02 | 03 [aa | 05 | 06 [83 | 44 | 09 [o0a
% @ pattern list
S o] aa * [ef [13 s [=[x] a3 et £
. w| o1 02 [o3 | = 05 [o6 [= [* [09 | oa
o
@
@ g [[o1 o2 [03 [ea [05 [06 [12 [7o [09 [0a |
8 /V acket
|

[02 e [12]]

compressed packet

Fig. 2. Illustrating how Dixy works by presenting example contents for its
internal “packet buffer” and “pattern list” structure, and how those are used
to compression a 10 B packet into a 4 B compressed packet.

None of the techniques above addresses compressing the
payload, despite the fact that the payload can take up more
bytes in a frame than all headers. Surprisingly few studies
focus on payload compression. Massey er al. develop a
dictionary-based technique [2]: the compressor remembers
the five last frames, and creates a set of patterns by identi-
fying the bytes which are the same between these different
cached frames. When a new packet is received, if the bytes
from the patterns are again present, it removes those and, in
a single-byte header prepended to the compressed payload, it
sets as bit flag indicating this pattern was used. The power of
dictionary-based compressor is that it can compress arbitrary
sequences of bytes, which makes it perfect for payload
compression. This technique is effective because, in a typical
low-power wireless (sensor) network, each node tends to send
about the same frame each time, with a few bytes difference.

We modify the technique by Massey et al. to create Dixy,
the payload compressor used in this demo and detailed in
Section III.

ITI. JOINT HEADER AND PAYLOAD COMPRESSION
This is arguably the first demonstration of joint compres-

sion of both the headers and the payload?.

2 As an online addition to this paper, the source code used in this demo
will be available under an open-source MIT license at https://github.com/
veryverychic/.

TABLE 1
THE FALCO DATASET.

614 devices

3.909 days

1,154,176 packets

1,050 / 1,118 / 11,684 packets

number of devices

duration of the recording
number of packets collected
number of packets per device
(min / median / max)
payload length

(min / median / max)

4/29/58B

Fig. 1 shows a block diagram of the approach. The node
on the left transmits (TX) frames to the node on right who
receives them (RX) wirelessly. These frames are comprised
of a header (blue) and a payload (green). Note that what we
call “header” can be a series of headers (e.g. IEEE802.15.4
followed by IPv6 and UDP compressed using 6LoWPAN).
The application on the TX side generates a payload that
is compressed using Dixy. The networking stack then pre-
pends a header to it, which itself is compressed using SCHC.
The frame actually transmitted by the radio consists of the
compressed header, followed by the compressed payload.

We use SCHC unmodified, as defined in RFC8724 [1].
Prior to the demonstration, SCHC rules are loaded which
compress the IPv6 and UDP headers.

For compressing the payload, we modify the dictionary-
based compression by Massey et al. [2]. The original com-
pressor only considered patterns with consecutive bytes.
In the case where successive frames are composed of
mostly identical bytes, with varying bytes at different non-
consecutive locations in the frame, Massey et al.’s approach
is very inefficient. We illustrate how Dixy works in Fig. 2.
It relies on a pattern buffer holding the last 5 packets. Based
on that, it recognizes the patterns by identifying the sets of
frames in the pattern buffer which looks the most alike. In
Fig. 2, we notate bytes that are varying by a *. When a new
packet is ready to be compressed, Dixy identifies the pattern
which matches to it (here pattern 1), keeps only the bytes
which are varying, and prepends a 1-byte header indicating
pattern 1 was applied.

IV. FALCO DATASET

Falco® is a start-up company which provides marinas
with low-power wireless sensors. Different sensors generate
different types of data and large deployments with different
types of sensors producing diverse types of data.

We have one of the deployments log all (cleartext) pay-
loads generated by the wireless sensors. Table I contains the
high-level statistics of the Falco dataset. Over the 3.909 days
the logging was active, each of the 614 devices generated
between 1,050 and 11,684 payloads, with a median of 1,118,
for a total of over a million payloads.

V. DEMONSTRATION

We connect two nRF52840-DK boards to a computer
on which we run two interfaces, each driving one board.

3 https://wefalco.com/en_us/

3120 uAh

MEASURING THE NUMBER OF BYTES TRANSMITTED AND THE CHARGE CONSUMED AFTER SENDING 100 PACKETS FROM THE FALCO DATASET.

Fig. 3.

Graphical user interface of the program controlling the transmitting (TX) board (left) and the receiving (RX) board (right).

TABLE I

SCHC compression |

Dixy compression | total bytes headers [total bytes payloads |

total bytes

| charge consumed transmitting_|

no no 4,800 B 5,800 B | 10,600 B 3,393 uC
yes no 100 B 5,800 B 5,900 B (-44%) 1,889 uC
no yes 4,800 B 2,875 B 7,675 B (-28%) 2,457 uC
yes yes 100 B 2,647 B 2,741 B (-74%) 880 uC

Fig. 3 shows screenshots of those interfaces. On the TX
side, we configure whether we want to enable SCHC header
compression, and/or Dixy payload compression. Two buttons
allow us to send one or 100 packets. Graphical-elements
allow the user to follow the activity of the TX board: the
number of packets transmitted, the total number of header
and payload bytes transmitted, and the charge remaining in an
emulated battery initially holding 4000 uC. A button allows
the user to reset these graphical elements at any time. On the
RX side, the user sees the length of the last received frame.
The contents of the last 10 frames received is displayed in a
table.

We pick an arbitrary mote from the Falco dataset, and send
the packets it generated through the demonstration system.

The emulated battery model is implemented as fol-
lows. We assume battery holding an initial charge of
4000 pC. Each time a frame is sent, we invoke function
_packet_charge () with the total number of bytes in that
frame (the sum of the header and payload bytes). Assuming
a datarate of 250 kbps, we compute the time on air of that
frame. Assuming a transmit current of 10 mA, we compute
the charge, in Coulomb, consumed by sending that frame.
This value is subtracted from the charge of the emulated
battery.

Table II shows the performance of joint header and payload
compression on the demonstration system. We can see that
enabling only SCHC (resp. only Dixy), reduces the total
bytes sent by 44% (resp. 28%). Enabling both SCHC and
Dixy reduces the number of bytes by 74%. This results in a
reduction of the charge consumed from 3,393 yC to 880 uC,
compared to when no compression is used.

VI. CONCLUSION

This is arguably the first demonstration of joint header and
payload compression in low-power wireless networks. While
header compression is a well-studied topic with solutions
such as SCHC being well-recognized standards, strangely,
very little research has been done on compressing the pay-
load. This is all the stranger that a frame can contain more
payload bytes than header bytes. We develop Dixy, a payload
dictionary-based compression technique by generalizing pre-
vious work by Massey et al.. To measure the performance of
the resulting joint header and payload compression, we col-
lect packets from a real-world deployment by startup Falco.
We create a demonstration system where we inject packets
from that dataset in a transmitter board, which compresses
the payload and the header, and sends that wirelessly to a
receiver board. We show how our joint header and payload
compression results in 74% less bytes being exchanged.

REFERENCES

[1] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and J. Zuniga,
SCHC: Generic Framework for Static Context Header Compression and
Fragmentation, Internet Engineering Task Force (IETF) Std. RFC8724,
2020.

[2] T. Massey, A. Mehta, T. Watteyne, and K. Pister, “Protocol-
Agnostic Compression for Resource-Constrained Wireless Networks,” in
IEEE Global Telecommunications Conference (GLOBECOM), Miami,
Florida, USA, 6-10 December 2010.

[3] M. Tomoskozi, M. Reisslein, and E. H. P. Fitzek, “Packet Header Com-
pression: A Principle-Based Survey of Standards and Recent Research
Studies,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp.
698740, 2022.

[4] J. Hui and P. Thubert, Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks, Internet Engineering Task Force (IETF)
Std. RFC6282, 2011.

[5] C. Bormann, 6LoWPAN-GHC: Generic Header Compression for IPv6
over Low-Power Wireless Personal Area Networks (6LoWPANs), Inter-
net Engineering Task Force (IETF) Std. RFC7400, 2014.

