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Today's floating-point landscape

Number of bits
Signif. (t) Exp. Range wu=27"

fp128 quadruple 113 15 1074932 1 x 10734

£p16 11 5 10 5x 10~
bfloat16 half 8 8 10¥%®  4x10°3
£p8 (e4m3) . 4 4 10%2 6 x 1072
£p8 (e5m2) ~ 1HATET 3 5 105  1x10°1

e Low precision increasingly supported by hardware

e Great benefits:
o Reduced storage, data movement, and communications
o Reduced energy consumption (5x with fpl6, 9x with bfloat16)
o Increased speed (16x on A100 from fp32 to fp16/bfloat16)

e Some limitations too:
o Low accuracy (large u)
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Mixed precision algorithms
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Mix several precisions in the same code with the goal of
e Getting the performance benefits of low precisions
e While preserving the accuracy and stability of high precision

Various terminologies, various approaches: Mixed precision,
Multiprecision, Adaptive precision, Variable precision, Transprecision,
Dynamic precision, . ..



Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Getting the performance benefits of low precisions

e While preserving the accuracy and stability of high precision

Various terminologies, various approaches: Mixed precision,
Multiprecision, Adaptive precision, Variable precision, Transprecision,
Dynamic precision, . ..

How to select the right precision for the right variable/operation?

= My PhD thesis area: Precision tuning, autotuning based on the
source code.

o PROMISE [Graillat & al.’19] based on CADNA [Vignes'93]
A Does not need any understanding of what the code does
V¥ Does not have any understanding of what the code does
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Adaptive precision algorithms

This work:
another point of view, exploit as much as possible the knowledge
we have about the code

Given an algorithm and a prescribed accuracy ¢, adaptively select the
minimal precision for each computation
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Adapting the precision to the data at hand

= Why does it make sense to make the precision vary?
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e Because not all computations are equally “important™!
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Unimportant bits
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Adapting the precision to the data at hand

= Why does it make sense to make the precision vary?

e Because not all computations are equally “important™!
Example:

Unimportant bits

= Opportunity for mixed precision: adapt the precisions to the

data at hand by storing and computing “less important” (usually
smaller) data in lower precision
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Adaptive precision algorithms

Mixed precision algorithms in numerical linear algebra, section 14

[Higham & Mary (2022)]
= adaptive precision algorithms, an emerging subclass

® Anzt, Dongarra, Flegar, Higham, and Quintana-Orti, Adaptive precision in
block-Jacobi preconditioning for iterative sparse linear system solvers (2019).

® Doucet, Ltaief, Gratadour, and Keyes, Mixed-precision tomographic reconstructor
computations on hardware accelerator (2019).

® Ahmad, Sundar, and Hall, Data-driven mixed precision sparse matrix vector
multiplication for GPUs (2019).

® Qoi, lwashita, Fukaya, Ida, and Yokota, Effect of mixed precision computing on
H-matrix vector multiplication in BEM analysis (2020).

® Diffenderfer, Osei-Kuffuor, and Menon, QDOT: Quantized dot product kernel for
approximate high-performance computing (2021).

® Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, Keyes, Ltaief, and Sun, Accelerating
geostatistical modeling and prediction with mixed-precision computations (2022).

® Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, Mary Mixed precision
low-rank approximations and their application to block low-rank LU factorization
(2022)
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S pars€ ma trix—vector pro duct (S P M V) [Oettli-Prager'64], [Rigal-Gaches'67]

y = Ax, A € R™*" performed in a uniform precision e
fori=1: mdo
yi=0
for j € nnz;(A) do
Yi = yi+ ajjx;
end for
end for

Backward error: The computed result is the exact one for a perturbed
matrix: y = (A+ AA)x

_ y—y
e Focus on ey = —||||A””X||||.

e Similar results for .y = max; [M]
o "2 e, T2l
e Analysis rely on standard result for scalar product
|yi - yi| < nera,-J-)annz,-(A) |a’JXJ|
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Adaptive precision SpMV

Goal: compute the SpMV y = Ax with accuracy € using g precisions
up <e<up<...<lg
fori=1: mdo
yi=0
for k=1: pdo
v o
for j € nnz;(A) do
if a;x; € Bix then

y,-(k) = ,-(k) + ajjx; at precision uj
end if
end for
Yi=yi+ y,-(k)
end for
end for
e Split elements aj; on each row i into g buckets By, ..., Bjq, where

bucket Bjx uses precision uy

~(k k k
e For each bucket: ]y,( ) —y,.( )| < n,( )”kza,-jxjeB,-k Es
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Adaptive precision SpMV: Normwise (NW) criteria

e How should we build the buckets?

|aij| < €A = drop
|lajj| € [€||All/uks1, €l|All/ux) = place in Bk
|aij| > €l|All/u2 = place in Bj

9 6HAH 6HAH/U3 6HAII/Uz +00

dI’Op pl’eCISIOh us preC|5|on uz pl’eCISIOh up

e Theorem: the computed y satisfies ||y — y|| < ce||A||||x|| and so,
Enw < €.
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SpMV experimental settings

e 32 matrices coming from SuiteSparse collection and industrial
partners
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SpMV experimental settings

e 32 matrices coming from SuiteSparse collection and industrial
partners
e 3 different accuracy targets:
o € =272 (equivalent to fp32)
o e =273 (no equivalent)
o e =279 (equivalent to fp64)
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SpMV experimental settings

Various sets of precision formats:

e 2 precisions: fp32, fp64

e 3 precisions: bfloatl6, fp32, fp64

e 7 precisions: bfloatl6, "fp24”, fp32, "fp40", "fp48", "fp56", fp64d

Bits
Mantissa Exponent

bfloat16 8 8
"fp24" 16 8
"fp40" 29 11
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SpMV experiments: controlled accuracy

Maintaining normwise accuracy
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SpMV experiments: controlled accuracy

Maintaining normwise accuracy

10*6 "'-....". '.'o......".l....-- .
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Matrices

Adaptive methods preserve an accuracy close to the accuracy of
uniform methods,
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SpMV experiments: controlled accuracy

Maintaining normwise accuracy
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And we are able to target intermediate accuracy.
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SpMV experiments: storage gains

Theoretical storage gains targeting ¢ = 2~2* accuracy
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Small bars: most suitable matrices to the adaptive method
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SpMV experiments: storage gains

Theoretical storage gains targeting ¢ = 2~2* accuracy
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Small bars: most suitable matrices to the adaptive method
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SpMV experiments: storage gains

Theoretical storage gains targeting ¢ = 2~2* accuracy
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Small bars: most suitable matrices to the adaptive method

The more formats we have, the more the necessary data storage can
be reduced up to 36
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SpMV experiments: storage gains

Theoretical storage gains targeting ¢ = 27°3 accuracy

for the e = 2753 target. ..

AIOO .

S —— Unif. fp64
" g 80 Adapt. NW 2 prec.
EJ} 60 BN Adapt. NW 3 prec.
oo £ B Adapt. NW 7 prec.
]
S= 40
»n 5

£ 20

: L

Matrices

Small bars: most suitable matrices to the adaptive method
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SpMV experiments: storage gains

Theoretical storage gains targeting ¢ = 2737 accuracy

and for intermediate accuracy target.
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Small bars: most suitable matrices to the adaptive method
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SpMV experiments: time gains

Time experiments with two precisions: fp32 and fp64.

Actual time gains targeting ¢ = 272* accuracy (fp32)
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Small bars: most suitable matrices to the adaptive method
Up to 7x time reduction!
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SpMV experiments: time gains

Time experiments with two precisions: fp32 and fp64.

Actual time gains targeting ¢ = 2753 accuracy (fp64)
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Small bars: most suitable matrices to the adaptive method
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SpMV experiments: time gains

Time experiments with two precisions: fp32 and fp64.

Actual time gains targeting intermediate accuracy: ¢ = 2=%7
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Small bars: most suitable matrices to the adaptive method
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Krylov-based iterative refinement

GMRES
r=»b-— AXO
B=1lrll2
q=r/B
for k=1,2,... do
y = Agx ° GMRES performance rely on
for j=1: k do matrix-vector product
hj = qJ-Ty e Interesting to implement
y =y —hiq; adaptive SpMV in GMRES
end for e How does the adaptive method
hir1,k = [|yll2 affect the convergence?
Ak+1 = Y/ his1k
Solve ming, ||Hex — Bei]|2.
Xk = Xo + Qrck
end for
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Krylov-based iterative refinement

— GMRES GMRES-IR
r=>b-Ax fori=1,2,... do
B :_“rHZ ri=b— Axi_1 = €out
q=r/B Solve Ad; = r; by GMRES
for k=1,2,... do Xi = xi_1+d;
Y = Adk = €in end for
for j=1: k do
hix = qJ.Ty e Larger speedups for lower
y =y = hyq accuracy targets
end for e GMRES-IR particularly
his1k6 = |lyll2 attractive
ngIrl = }//h/‘<|4l-_i;,k Bel e Jacobi preconditioner
olve ming, ||Hck — perf|2. _ »—53
Xk = X0 + Qxck * Cour =2 (fp6.4) )
end for e restart every 80 iterations
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GMRES experiments: role of ¢,

GMRES convergence for matrix ML_Laplace

—e— Unif. fp32
—— Unif. bfloat16 (50%)
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Uniform bfloat16 not enough to converge
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GMRES experiments: role of ¢,

GMRES convergence for matrix ML_Laplace

—e— Unif. fp32
—s— Unif. bfloat16 (50%)
—— Adapt. CW ¢;,, = 272 (77%)

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

Adaptive SpMV with target €;, = 272* converges as uniform fp32
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GMRES experiments: role of ¢,

GMRES convergence for matrix ML_Laplace
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Iteration

Lower accuracy targets maintain the convergence, one can tune ¢;, for
even larger gains!
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Surprising behaviour

GMRES convergence for matrix Geo_1438
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--o-- Adapt. NW ¢;, = 272 (61%)
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Iteration

e Surprising behavior, adaptive method converges faster than
uniform one.

e Consistently reproduced and occurs for several other matrices

e Aggressive dropping of small coefficients might lead to a “nicer”
matrix for which GMRES can converge quickly?
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To get the most out of adaptive precision SpMV
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experiment on hardware with native bfloat16 support

develop optimized accessors for custom-precision formats [Anzt
et al., 21]

use more suitable sparse matrices formats to reduce indices
access cost

explore the use of block exponents in the buckets



To get the most out of adaptive precision SpMV
e experiment on hardware with native bfloat16 support

e develop optimized accessors for custom-precision formats [Anzt
et al., 21]

e use more suitable sparse matrices formats to reduce indices
access cost

e explore the use of block exponents in the buckets

Adaptive precision in the area of Krylov solvers

e Use more advanced preconditioners, and develop adaptive
precision variants of them (e.g., ILU, SPAI)
e Introduce adaptive precision into the Krylov basis following the

introduction of mixed-precision in the Krylov basis by [Aliaga &
al'22]
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Conclusion: take-home messages

e Adaptive precision SpMV algorithm
o Buckets built according to the elements magnitude

o Error analysis guarantees any accuracy target
o Matrix-dependent gains up to

e 97% data reduction
e 88% time reduction

e Application to Krylov solvers
o Reasonable accuracy targets preserve convergence
o One can tune this target to find the best trade-off between cost per
iteration and convergence speed
Preprint [Adaptive Precision Sparse Matrix—Vector Product and its
Application to Krylov Solvers Graillat, Jézéquel, Mary, Molina'22]

19/19 Thank you! Any questions?



