ICIAM 2023

22 August 2023

Adaptive Precision Sparse Matrix-Vector Product and its Application to Krylov Solvers

Roméo Molina
LIP6, Sorbonne Université IJCLab, CNRS
Joint work with
Stef Graillat, Fabienne Jézéquel, and Theo Mary

Today's floating-point landscape

Number of bits
Signif. (t) Exp. Range $u=2^{-t}$

fp128	quadruple	113	15	$10^{ \pm 4932}$	1×10^{-34}
fp64	double	53	11	$10^{ \pm 308}$	1×10^{-16}
fp32	single	24	8	$10^{ \pm 38}$	6×10^{-8}
fp16	half	11	5	$10^{ \pm 5}$	5×10^{-4}
bfloat16		8	8	$10^{ \pm 38}$	4×10^{-3}
fp8 (e4m3)	quarter	4	4	$10^{ \pm 2}$	6×10^{-2}
fp8 (e5m2)		3	5	$10^{ \pm 5}$	1×10^{-1}

- Low precision increasingly supported by hardware
- Great benefits:
- Reduced storage, data movement, and communications
- Reduced energy consumption ($5 \times$ with fp16, $9 \times$ with bfloat16)
- Increased speed ($16 \times$ on A100 from fp32 to fp16/bfloat16)
- Some limitations too:
- Low accuracy (large u)
- Narrow range

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of high precision

Various terminologies, various approaches: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of high precision

Various terminologies, various approaches: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

How to select the right precision for the right variable/operation?
$\Rightarrow \mathrm{My} \mathrm{PhD}$ thesis area: Precision tuning, autotuning based on the source code.

- PROMISE [Graillat \& al.'19] based on CADNA [Vignes'93]
© Does not need any understanding of what the code does
V Does not have any understanding of what the code does

Adaptive precision algorithms

This work:
another point of view, exploit as much as possible the knowledge we have about the code

Given an algorithm and a prescribed accuracy ϵ, adaptively select the minimal precision for each computation

Adapting the precision to the data at hand

\Rightarrow Why does it make sense to make the precision vary?

Adapting the precision to the data at hand

\Rightarrow Why does it make sense to make the precision vary?

- Because not all computations are equally "important"! Example:

Adapting the precision to the data at hand

\Rightarrow Why does it make sense to make the precision vary?

- Because not all computations are equally "important"! Example:

\Rightarrow Opportunity for mixed precision: adapt the precisions to the data at hand by storing and computing "less important" (usually smaller) data in lower precision

Adaptive precision algorithms

Mixed precision algorithms in numerical linear algebra, section 14 [Higham \& Mary (2022)]
\Rightarrow adaptive precision algorithms, an emerging subclass

- Anzt, Dongarra, Flegar, Higham, and Quintana-Orti, Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers (2019).
- Doucet, Ltaief, Gratadour, and Keyes, Mixed-precision tomographic reconstructor computations on hardware accelerator (2019).
- Ahmad, Sundar, and Hall, Data-driven mixed precision sparse matrix vector multiplication for GPUs (2019).
- Ooi, Iwashita, Fukaya, Ida, and Yokota, Effect of mixed precision computing on H-matrix vector multiplication in BEM analysis (2020).
- Diffenderfer, Osei-Kuffuor, and Menon, QDOT: Quantized dot product kernel for approximate high-performance computing (2021).
- Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, Keyes, Ltaief, and Sun, Accelerating geostatistical modeling and prediction with mixed-precision computations (2022).
- Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, Mary Mixed precision low-rank approximations and their application to block low-rank LU factorization (2022)

Sparse matrix-vector product (SpMV) [Oettli-Prager' 64$]$. [Rigal-Gaches' 67$]$

$y=A x, A \in \mathbb{R}^{m \times n}$ performed in a uniform precision ϵ

$$
\begin{aligned}
& \text { for } i=1: m \text { do } \\
& \quad y_{i}=0 \\
& \quad \text { for } j \in n n z_{i}(A) \text { do } \\
& \quad y_{i}=y_{i}+a_{i j} x_{j} \\
& \text { end for } \\
& \text { end for } \\
& \hline
\end{aligned}
$$

Backward error: The computed result is the exact one for a perturbed matrix: $\widehat{y}=(A+\Delta A) x$

- Focus on $\varepsilon_{\mathrm{nw}}=\frac{\|\hat{y}-y\|}{\|A\|\|x\|}$.
- Similar results for $\varepsilon_{\mathrm{cw}}=\max _{i}\left[\frac{\left|\hat{y}_{i}-y_{i}\right|}{\sum_{j \in J_{i}}\left|a_{j i} x_{j}\right|}\right]$
- Analysis rely on standard result for scalar product

$$
\left|\widehat{y}_{i}-y_{i}\right| \leq n_{i} \epsilon \sum_{a_{i j} x_{j} \in n n z_{i}(A)}\left|a_{i j} x_{j}\right|
$$

Adaptive precision SpMV

Goal: compute the SpMV $y=A x$ with accuracy ϵ using q precisions

$$
u_{1} \leq \epsilon<u_{2}<\ldots<u_{q}
$$

```
for \(i=1\) : \(m\) do
    \(y_{i}=0\)
    for \(k=1: p\) do
        \(y_{i}^{(k)}=0\)
        for \(j \in n n z_{i}(A)\) do
                if \(a_{i j} x_{j} \in B_{i k}\) then
                \(y_{i}^{(k)}=y_{i}^{(k)}+a_{i j} x_{j}\) at precision \(u_{k}\)
                end if
        end for
        \(y_{i}=y_{i}+y_{i}^{(k)}\)
    end for
end for
```

- Split elements $a_{i j}$ on each row i into q buckets $B_{i 1}, \ldots, B_{i q}$, where bucket $B_{i k}$ uses precision u_{k}
- For each bucket: $\left|\widehat{y}_{i}^{(k)}-y_{i}^{(k)}\right| \leq n_{i}^{(k)} u_{k} \sum_{a_{i j} x_{j} \in B_{i k}}\left|a_{i j} x_{j}\right|$

Adaptive precision SpMV: Normwise (NW) criteria

- How should we build the buckets?

$$
\begin{cases}\left|a_{i j}\right| \leq \epsilon\|A\| & \Rightarrow \text { drop } \\ \left|a_{i j}\right| \in\left[\epsilon\|A\| / u_{k+1}, \epsilon\|A\| / u_{k}\right) & \Rightarrow \text { place in } B_{i k} \\ \left|a_{i j}\right|>\epsilon\|A\| / u_{2} & \Rightarrow \text { place in } B_{i 1}\end{cases}
$$

- Theorem: the computed \widehat{y} satisfies $\|\widehat{y}-y\| \leq c \epsilon\|A\|\|x\|$ and so, $\varepsilon_{\text {nw }} \leq \epsilon$.

SpMV experimental settings

- 32 matrices coming from SuiteSparse collection and industrial partners

SpMV experimental settings

- 32 matrices coming from SuiteSparse collection and industrial partners
- 3 different accuracy targets:
- $\epsilon=2^{-24}$ (equivalent to fp32)
- $\epsilon=2^{-37}$ (no equivalent)
- $\epsilon=2^{-53}$ (equivalent to fp64)

SpMV experimental settings

Various sets of precision formats:

- 2 precisions: fp32, fp64
- 3 precisions: bfloat16, fp32, fp64
- 7 precisions: bfloat16, "fp24", fp32, "fp40", "fp48", "fp56", fp64

	Bits	
	Mantissa	Exponent
bfloat16	8	8
"fp24"	16	8
fp32	24	8
"fp40"	29	11
"fp48"	37	11
"fp56"	45	11
fp64	53	11

SpMV experiments: controlled accuracy

Maintaining normwise accuracy

- Unif. fp32
- Unif. fp64

SpMV experiments: controlled accuracy

Maintaining normwise accuracy

- Unif. fp32
- Unif. fp64
- Adapt. $\epsilon=2^{-24}$
- Adapt. $\epsilon=2^{-53}$

Adaptive methods preserve an accuracy close to the accuracy of uniform methods,

SpMV experiments: controlled accuracy

Maintaining normwise accuracy

And we are able to target intermediate accuracy.

SpMV experiments: storage gains

Theoretical storage gains targeting $\epsilon=2^{-24}$ accuracy

Small bars: most suitable matrices to the adaptive method

SpMV experiments: storage gains

Theoretical storage gains targeting $\epsilon=2^{-24}$ accuracy

Small bars: most suitable matrices to the adaptive method

SpMV experiments: storage gains

Theoretical storage gains targeting $\epsilon=2^{-24}$ accuracy

Small bars: most suitable matrices to the adaptive method

The more formats we have, the more the necessary data storage can be reduced up to $36 \times$

SpMV experiments: storage gains

Theoretical storage gains targeting $\epsilon=2^{-53}$ accuracy for the $\epsilon=2^{-53}$ target. . .

Unif. fp64
Adapt. NW 2 prec.
Adapt. NW 3 prec.
\square Adapt. NW 7 prec.

Small bars: most suitable matrices to the adaptive method

SpMV experiments: storage gains

Theoretical storage gains targeting $\epsilon=2^{-37}$ accuracy and for intermediate accuracy target.

Unif. fp64 Unif. fp32
\square Adapt. NW 2 prec.

- Adapt. NW 3 prec.
- Adapt. NW 7 prec.

Small bars: most suitable matrices to the adaptive method

SpMV experiments: time gains

Time experiments with two precisions: fp 32 and fp 64.
Actual time gains targeting $\epsilon=2^{-24}$ accuracy (fp32)

Unif. fp32
\square Adapt. NW 2 prec.

Small bars: most suitable matrices to the adaptive method Up to $7 \times$ time reduction!

SpMV experiments: time gains

Time experiments with two precisions: fp 32 and fp 64.
Actual time gains targeting $\epsilon=2^{-53}$ accuracy (fp64)

Unif. fp64
\square Adapt. NW 2 prec.

Small bars: most suitable matrices to the adaptive method

SpMV experiments: time gains

Time experiments with two precisions: fp 32 and fp 64 .
Actual time gains targeting intermediate accuracy: $\epsilon=2^{-37}$

-_Unif. fp64
Unif. fp32

- Adapt. NW 2 prec.

Small bars: most suitable matrices to the adaptive method

Krylov-based iterative refinement

GMRES

$$
\begin{aligned}
& r=b-A x_{0} \\
& \beta=\|r\|_{2} \\
& q_{1}=r / \beta \\
& \text { for } k=1,2, \ldots \text { do } \\
& \quad y=A q_{k} \\
& \quad \text { for } j=1: k \text { do } \\
& \quad h_{j k}=q_{j}^{T} y \\
& \quad y=y-h_{j k} q_{j} \\
& \quad \text { end for } \\
& h_{k+1, k}=\|y\|_{2} \\
& q_{k+1}=y / h_{k+1, k} \\
& \text { Solve } \min _{c_{k}}\left\|H c_{k}-\beta e_{1}\right\|_{2} . \\
& \quad x_{k}=x_{0}+Q_{k} c_{k} \\
& \text { end for }
\end{aligned}
$$

- GMRES performance rely on matrix-vector product
- Interesting to implement adaptive SpMV in GMRES
- How does the adaptive method affect the convergence?

GMRES

$$
\begin{aligned}
& r=b-A x_{0} \\
& \beta=\|r\|_{2} \\
& q_{1}=r / \beta \\
& \text { for } k=1,2, \ldots \text { do } \\
& \quad y=A q_{k} \rightarrow \epsilon_{\text {in }} \\
& \quad \text { for } j=1: k \text { do } \\
& \quad h_{j k}=q_{j}^{T} y \\
& \quad y=y-h_{j k} q_{j} \\
& \text { end for } \\
& h_{k+1, k}=\|y\|_{2} \\
& q_{k+1}=y / h_{k+1, k} \\
& \text { Solve } \min _{c_{k}}\left\|H c_{k}-\beta e_{1}\right\|_{2} . \\
& \quad x_{k}=x_{0}+Q_{k} c_{k} \\
& \text { end for }
\end{aligned}
$$

GMRES-IR

$$
\text { for } \begin{aligned}
& i=1,2, \ldots \text { do } \\
& \quad r_{i}=b-A x_{i-1} \rightarrow \epsilon_{\text {out }} \\
& \quad \text { Solve } A d_{i}=r_{i} \text { by GMRES } \\
& x_{i}=x_{i-1}+d_{i}
\end{aligned}
$$

end for

- Larger speedups for lower accuracy targets
- GMRES-IR particularly attractive
- Jacobi preconditioner
- $\epsilon_{\text {out }}=2^{-53}$ (fp64)
- restart every 80 iterations

GMRES experiments: role of $\epsilon_{\text {in }}$

GMRES convergence for matrix ML_Laplace

Uniform bfloat16 not enough to converge

GMRES experiments: role of $\epsilon_{\text {in }}$

GMRES convergence for matrix ML_Laplace

Adaptive SpMV with target $\epsilon_{\text {in }}=2^{-24}$ converges as uniform fp32

GMRES experiments: role of $\epsilon_{\text {in }}$

GMRES convergence for matrix ML_Laplace

Lower accuracy targets maintain the convergence, one can tune $\epsilon_{\text {in }}$ for even larger gains!

Surprising behaviour

GMRES convergence for matrix Geo_1438

- Surprising behavior, adaptive method converges faster than uniform one.
- Consistently reproduced and occurs for several other matrices
- Aggressive dropping of small coefficients might lead to a "nicer" matrix for which GMRES can converge quickly?

To get the most out of adaptive precision SpMV

- experiment on hardware with native bfloat16 support
- develop optimized accessors for custom-precision formats [Anzt et al., 21]
- use more suitable sparse matrices formats to reduce indices access cost
- explore the use of block exponents in the buckets

Future work

To get the most out of adaptive precision SpMV

- experiment on hardware with native bfloat16 support
- develop optimized accessors for custom-precision formats [Anzt et al., 21]
- use more suitable sparse matrices formats to reduce indices access cost
- explore the use of block exponents in the buckets

Adaptive precision in the area of Krylov solvers

- Use more advanced preconditioners, and develop adaptive precision variants of them (e.g., ILU, SPAI)
- Introduce adaptive precision into the Krylov basis following the introduction of mixed-precision in the Krylov basis by [Aliaga \& al'22]

Conclusion: take-home messages

- Adaptive precision SpMV algorithm
- Buckets built according to the elements magnitude
- Error analysis guarantees any accuracy target
- Matrix-dependent gains up to
- 97% data reduction
- 88% time reduction
- Application to Krylov solvers
- Reasonable accuracy targets preserve convergence
- One can tune this target to find the best trade-off between cost per iteration and convergence speed
Preprint [Adaptive Precision Sparse Matrix-Vector Product and its Application to Krylov Solvers Graillat, Jézéquel, Mary, Molina'22]

Thank you! Any questions?

