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Today’s floating-point landscape

Number of bits

Signif. (t) Exp. Range u = 2−t

fp128 quadruple 113 15 10±4932 1× 10−34

fp64 double 53 11 10±308 1× 10−16

fp32 single 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16
half

8 8 10±38 4× 10−3

fp8 (e4m3) 4 4 10±2 6× 10−2

fp8 (e5m2)
quarter

3 5 10±5 1× 10−1

• Low precision increasingly supported by hardware
• Great benefits:
◦ Reduced storage, data movement, and communications
◦ Reduced energy consumption (5× with fp16, 9× with bfloat16)
◦ Increased speed (16× on A100 from fp32 to fp16/bfloat16)

• Some limitations too:
◦ Low accuracy (large u)
◦ Narrow range2/19



Mixed precision algorithms

Mix several precisions in the same code with the goal of

• Getting the performance benefits of low precisions

• While preserving the accuracy and stability of high precision

Various terminologies, various approaches: Mixed precision,
Multiprecision, Adaptive precision, Variable precision, Transprecision,
Dynamic precision, . . .

How to select the right precision for the right variable/operation?

⇒ My PhD thesis area: Precision tuning, autotuning based on the
source code.
◦ PROMISE [Graillat & al.’19] based on CADNA [Vignes’93]
N Does not need any understanding of what the code does
H Does not have any understanding of what the code does
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Adaptive precision algorithms

This work:
another point of view, exploit as much as possible the knowledge
we have about the code

Given an algorithm and a prescribed accuracy ε, adaptively select the
minimal precision for each computation
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Adapting the precision to the data at hand

⇒ Why does it make sense to make the precision vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

⇒ Opportunity for mixed precision: adapt the precisions to the
data at hand by storing and computing “less important” (usually
smaller) data in lower precision
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Adaptive precision algorithms

Mixed precision algorithms in numerical linear algebra, section 14
[Higham & Mary (2022)]
⇒ adaptive precision algorithms, an emerging subclass

• Anzt, Dongarra, Flegar, Higham, and Quintana-Orti, Adaptive precision in
block-Jacobi preconditioning for iterative sparse linear system solvers (2019).

• Doucet, Ltaief, Gratadour, and Keyes, Mixed-precision tomographic reconstructor
computations on hardware accelerator (2019).

• Ahmad, Sundar, and Hall, Data-driven mixed precision sparse matrix vector
multiplication for GPUs (2019).

• Ooi, Iwashita, Fukaya, Ida, and Yokota, Effect of mixed precision computing on
H-matrix vector multiplication in BEM analysis (2020).

• Diffenderfer, Osei-Kuffuor, and Menon, QDOT: Quantized dot product kernel for
approximate high-performance computing (2021).

• Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, Keyes, Ltaief, and Sun, Accelerating
geostatistical modeling and prediction with mixed-precision computations (2022).

• Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, Mary Mixed precision
low-rank approximations and their application to block low-rank LU factorization
(2022)
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Sparse matrix–vector product (SpMV) [Oettli–Prager’64], [Rigal–Gaches’67]

y = Ax , A ∈ Rm×n performed in a uniform precision ε

for i = 1: m do
yi = 0
for j ∈ nnz i (A) do

yi = yi + aijxj
end for

end for

Backward error : The computed result is the exact one for a perturbed
matrix: ŷ = (A + ∆A)x

• Focus on εnw = ‖ŷ−y‖
‖A‖‖x‖ .

• Similar results for εcw = maxi

[
|ŷi−yi |∑
j∈Ji
|aijxj |

]
• Analysis rely on standard result for scalar product
|ŷi − yi | ≤ niε

∑
aijxj∈nnz i (A) |aijxj |
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Adaptive precision SpMV

Goal: compute the SpMV y = Ax with accuracy ε using q precisions
u1 ≤ ε < u2 < . . . < uq

for i = 1: m do
yi = 0
for k = 1: p do

y
(k)
i = 0

for j ∈ nnz i (A) do
if aijxj ∈ Bik then

y
(k)
i = y

(k)
i + aijxj at precision uk

end if
end for
yi = yi + y

(k)
i

end for
end for

• Split elements aij on each row i into q buckets Bi1, . . . ,Biq, where
bucket Bik uses precision uk

• For each bucket: |ŷ (k)
i − y

(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj |
8/19



Adaptive precision SpMV: Normwise (NW) criteria

• How should we build the buckets?
|aij | ≤ ε‖A‖ ⇒ drop
|aij | ∈ [ε‖A‖/uk+1, ε‖A‖/uk) ⇒ place in Bik

|aij | > ε‖A‖/u2 ⇒ place in Bi1

0 ε‖A‖ ε‖A‖/u3 ε‖A‖/u2 +∞

drop precision u3 precision u2 precision u1

• Theorem: the computed ŷ satisfies ‖ŷ − y‖ ≤ cε‖A‖‖x‖ and so,
εnw ≤ ε.
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SpMV experimental settings

• 32 matrices coming from SuiteSparse collection and industrial
partners

• 3 different accuracy targets:
◦ ε = 2−24 (equivalent to fp32)
◦ ε = 2−37 (no equivalent)
◦ ε = 2−53 (equivalent to fp64)

10/19



SpMV experimental settings

• 32 matrices coming from SuiteSparse collection and industrial
partners

• 3 different accuracy targets:
◦ ε = 2−24 (equivalent to fp32)
◦ ε = 2−37 (no equivalent)
◦ ε = 2−53 (equivalent to fp64)

10/19



SpMV experimental settings

Various sets of precision formats:

• 2 precisions: fp32, fp64

• 3 precisions: bfloat16, fp32, fp64

• 7 precisions: bfloat16, ”fp24”, fp32, ”fp40”, ”fp48”, ”fp56”, fp64

Bits

Mantissa Exponent

bfloat16 8 8
"fp24" 16 8
fp32 24 8
"fp40" 29 11
"fp48" 37 11
"fp56" 45 11
fp64 53 11
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SpMV experiments: controlled accuracy

Maintaining normwise accuracy
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Adaptive methods preserve an accuracy close to the accuracy of
uniform methods,
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And we are able to target intermediate accuracy.
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SpMV experiments: storage gains

Theoretical storage gains targeting ε = 2−24 accuracy
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Small bars: most suitable matrices to the adaptive method
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Theoretical storage gains targeting ε = 2−24 accuracy
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Small bars: most suitable matrices to the adaptive method

The more formats we have, the more the necessary data storage can
be reduced up to 36×

13/19



SpMV experiments: storage gains

Theoretical storage gains targeting ε = 2−53 accuracy

for the ε = 2−53 target. . .
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SpMV experiments: storage gains

Theoretical storage gains targeting ε = 2−37 accuracy

and for intermediate accuracy target.
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SpMV experiments: time gains

Time experiments with two precisions: fp32 and fp64.

Actual time gains targeting ε = 2−24 accuracy (fp32)
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Small bars: most suitable matrices to the adaptive method
Up to 7× time reduction!
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SpMV experiments: time gains

Time experiments with two precisions: fp32 and fp64.

Actual time gains targeting intermediate accuracy: ε = 2−37
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Krylov-based iterative refinement

GMRES
r = b − Ax0

β = ‖r‖2

q1 = r/β
for k = 1, 2, . . . do

y = Aqk
for j = 1: k do

hjk = qTj y
y = y − hjkqj

end for
hk+1,k = ‖y‖2

qk+1 = y/hk+1,k

Solve minck ‖Hck − βe1‖2.
xk = x0 + Qkck

end for

• GMRES performance rely on
matrix-vector product

• Interesting to implement
adaptive SpMV in GMRES

• How does the adaptive method
affect the convergence?
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Krylov-based iterative refinement

GMRES
r = b − Ax0

β = ‖r‖2

q1 = r/β
for k = 1, 2, . . . do

y = Aqk → εin
for j = 1: k do

hjk = qTj y
y = y − hjkqj

end for
hk+1,k = ‖y‖2

qk+1 = y/hk+1,k

Solve minck ‖Hck − βe1‖2.
xk = x0 + Qkck

end for

GMRES-IR
for i = 1, 2, . . . do

ri = b − Axi−1 → εout
Solve Adi = ri by GMRES
xi = xi−1 + di

end for

• Larger speedups for lower
accuracy targets

• GMRES-IR particularly
attractive

• Jacobi preconditioner

• εout = 2−53 (fp64)

• restart every 80 iterations
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GMRES experiments: role of εin

GMRES convergence for matrix ML Laplace
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Uniform bfloat16 not enough to converge
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Lower accuracy targets maintain the convergence, one can tune εin for
even larger gains!
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Surprising behaviour

GMRES convergence for matrix Geo 1438

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Adapt. NW εin = 2−24 (61%)

• Surprising behavior, adaptive method converges faster than
uniform one.

• Consistently reproduced and occurs for several other matrices

• Aggressive dropping of small coefficients might lead to a “nicer”
matrix for which GMRES can converge quickly?
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Future work

To get the most out of adaptive precision SpMV

• experiment on hardware with native bfloat16 support

• develop optimized accessors for custom-precision formats [Anzt
et al., 21]

• use more suitable sparse matrices formats to reduce indices
access cost

• explore the use of block exponents in the buckets

Adaptive precision in the area of Krylov solvers

• Use more advanced preconditioners, and develop adaptive
precision variants of them (e.g., ILU, SPAI)

• Introduce adaptive precision into the Krylov basis following the
introduction of mixed-precision in the Krylov basis by [Aliaga &
al’22]
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Conclusion: take-home messages

• Adaptive precision SpMV algorithm
◦ Buckets built according to the elements magnitude
◦ Error analysis guarantees any accuracy target
◦ Matrix-dependent gains up to
• 97% data reduction
• 88% time reduction

• Application to Krylov solvers
◦ Reasonable accuracy targets preserve convergence
◦ One can tune this target to find the best trade-off between cost per

iteration and convergence speed

Preprint [Adaptive Precision Sparse Matrix–Vector Product and its
Application to Krylov Solvers Graillat, Jézéquel, Mary, Molina’22]

Thank you! Any questions?19/19


