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Dilation Choice Sets, Dulmage-Mendelsohn
decomposition and structural controllability

Christian Commault∗ and Jacob van der Woude

Abstract—One of the two conditions for the controllability
of linear structured systems is a rank condition. It can be
phrased as the absence of so-called dilations in the directed graph
representing the system. Starting from dilations in the graph of
a system without control, input vertices and edges can be added
such that these dilations are removed. Their presence can be
investigated by searching for minimal dilations, and by combining
them into larger ones, leading to the recently introduced notion
of Dilation Choice Set. However, from a computational point of
view this searching for minimal dilations is not efficient as their
number may grow rapidly. For this reason, in the current paper,
first a fundamental decomposition of the related bipartite graph
is recalled. The decomposition, called the Dulmage-Mendelsohn,
can be obtained by well-known and efficient methods. Having
the decomposition, the dilations can be found and removed in
straightforward way, making sure that the rank condition for
structural controllability is fulfilled. Using a refined version of
the decomposition, this process can even be refined. Finally, the
relevance of vertices and edges for the removal of dilations can
be characterized.

Index Terms—Generic controllability, linear structured sys-
tems, graph theory methods, minimal dilations, Dulmage-
Mendelsohn decomposition

I. INTRODUCTION

Since more than a decade, there has been an increasing
interest for the controllability issues in networks, cf. [1], [2],
[3] and [4]. Considering that each vertex of the network
is associated with one state variable, the network is then
modelized as a finite dimensional linear dynamical system
in the sense of control theory. It appeared then that an old
concept of control theory, the notion of structured system,
cf. [5], was well fitted for the study of controllability for
networks. A structured system is a usual dynamical finite
dimensional linear system, defined by its matrices A and B,
where the entries of the matrices are either fixed zeros or
unknown values, and where the structure of the system is lying
in the location of fixed zeros. A graph can be associated with
the system, where vertices are representing input and state
variables, while edges are associated with nonzero entries of
A and B. For more information on structured systems, see the
survey papers [6] and [7]. In his seminal work, Lin proved
that a structured system (A,B) is generically (i.e. for almost
any value of the unknown entries) controllable if and only
if two conditions are satisfied, cf. [5]. The first condition,
usually called input connection condition, states that each state
vertex must be reachable from an input vertex through a path
in the graph. This condition is very natural, it simply means
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that each state must be influenced by at least one input, this
condition is also necessary for more general models, cf. [8].
Moreover the condition is simple to check using classical
algorithms based on the decomposition of the graph in strongly
connected components. The second condition states that the
generic rank of the composite matrix [A,B] must be n, being
the dimension of the state space. This is why we usually call
this condition the rank condition. The rank condition is much
less intuitive than the input connection condition and is closely
related with the linearity of the model. This condition can be
stated in several equivalent forms, in particular in graph terms.
One of these alternative formulations asks for the absence
of dilations in the graph, where a dilation is a set of state
vertices originating from a fewer number of predecessors.
Another formulation of the rank condition is obtained with
the interpretation of the generic rank of [A,B] as the size of
a maximum matching in the graph.

The formulation of the controllability problem by the net-
work community is very specific. It starts with a network
without inputs and asks for a minimum number of inputs
and the way they act on the state vertices in order to insure
controllability of the controlled system. In simple words, one
starts from a given structured matrix A and looks for a B such
that the pair (A,B) is controllable. The minimum number of
necessary inputs was given in [3] and the minimum number
of dedicated inputs (i.e. inputs impacting a unique vertex)
received a nice algorithmic solution in [9], [10] and [11]. See
also [12] for an alternate an more general approach based on
Linear Programming.

The objective of this paper is to go deeper into the rank
condition in order to get more precise information on the input
additions fulfilling the condition.

The connection between the rank condition and dilations
appeared first in [5]. Dilations easily reveal which nodes may
be selected as driver inputs in order to obtain structural control-
lability. However, because of the potentially large amount of
dilations, and their possible overlapping, the selection may be
not as small as possible. Recently, in [13] the authors analysed
finely the structure of the set of dilations and introduced
the appealing notion of Dilation Choice set (DCS) in which
overlapping dilations are taken into account. They proved that
DCS’s allow the characterization of (smallest sets of) driver
inputs for structural controllability, and give tools for the
analysis of the set of all (smallest) possible solutions. For
further details, see [13].

The drawback of DCS’s is that they are constructed from
minimal dilations, which can only be obtained by inspection,
and therefore no efficient algorithm can be found to charac-
terize DCS’s. The motivation for the investigations leading
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to the current paper was to show the relations between DCS’s
and a well-known decomposition of bipartite graphs called the
Dulmage-Mendelsohn decomposition (DM decomposition), cf.
[14] and [15].

The main contributions of this paper are the following
• We prove that DCS’s correspond with the connected

components of the maximal inconsistent part of the DM
decomposition of the bipartite graph representing the
structure of the underlying structured system without
controls.

• This implies that these DCS’s can be obtained with a
simple algorithm which has the complexity of a maxi-
mum matching algorithm. Then DCS’s can be computed
in polynomial time.

• The correspondence between DCS’s and the DM decom-
position suggests a refined partition of the inconsistent
components of the DM decomposition.

• We show that the classification of vertices and edges,
which was introduced in [13], but was only partially
characterized through DCS’s, can fully be characterized
using the DM decomposition.

• More generally, we hope to convince the reader of the
crucial importance of the DM decomposition for dealing
with problems related to the rank condition for structural
controllability.

The outline of this paper is as follows. In Section II we
introduce linear structured systems and the controllability of
such systems. In Section III the bipartite graphs are introduced
together with the concept of (maximum) matching. The de-
composition, called the Dulmage-Mendelsohn decomposition,
is described in Section IV. With its properties, the decom-
position provides the possibility to find the minimal number
of input vertices to be added, and also the locations where
to add these input vertices. Some of the known results are
recalled and are illustrated by means of an example. In Section
V the notion of dilation, introduced for directed graphs, is
translated into the language of bipartite graphs and their
decompositions. The notion of DCS is introduced, together
with the location of where to find these DCS’s in terms of
parts of the decomposition of the bipartite graph. Section VI
contains a refinement of the minimal and maximal inconsistent
part of the Dulmage-Mendelsohn decomposition. Also the
consequences are included of where to add inputs vertices
and edges in order to fulfil the rank condition for structural
controllability. In Section VII the classification of vertices and
edges is recalled from [13] and fully characterized. In Section
VIII some of the computational aspects of the method in this
paper are highlighted. Section IX contains some conclusions.
The literature consulted for this paper is listed in the Reference
section.

II. LINEAR STRUCTURED SYSTEMS AND STRUCTURAL
CONTROLLABILITY

A. The structural controllability theorem

We consider a standard dynamical linear system, described
by

Σ : ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn is the state vector, and u(t) ∈ Rm is the
input signal. Further, A and B are real matrices of appropriate
dimensions. System (1) is called a linear structured system if
each of the entries of the composite matrix J = [A,B] is
either a fixed zero, or has an unknown value (possibly zero).
The entries which are not fixed zeros are usually, with some
misuse of terminology, called nonzeros, cf. [6]. Clearly, the
structure of the system is defined by the zero/nonzero patterns
in matrices A and B.

For structured linear systems, one can study generic proper-
ties, i.e. properties which are true for almost any value of the
nonzeros. More precisely, a property of Σ is generic if the set
of values of the nonzero entries for which the property is not
true is a proper algebraic variety in the space of possible values
of these nonzeros, cf. [15]. A matrix Q with such zero/nonzero
entries is called a structured matrix and its generic rank is
denoted by g-rank(Q).

A directed graph G(Σ) = (V ;W ) can be associated with
the structured system Σ of type (1), with
• the vertex set V = X ∪ U , where X and U are the

state and input vertex sets, given by {x1, x2, . . . , xn} and
{u1, u2, . . . , um}, respectively,

• the edge set W = {(xj , xi)|aij ̸= 0}∪{(uj , xi)|bij ̸= 0},
where (xj , xi) denotes an edge from vertex xj to vertex
xi and aij ̸= 0 means that the (i, j)-th entry of the matrix
A is a nonzero, and likewise, (uj , xi) denotes an edge
from vertex uj to vertex xi and bij ̸= 0 means that the
(i, j)-th entry of the matrix B is a nonzero.

Occasionally, we will deal with systems without input, i.e.
without matrix B, and with only matrix A. The associated
directed graph will then be denoted G(A). Clearly, the sets V
and X then coincide and may be used interchangeably.

A path in G(Σ) from a vertex v0 to a vertex vq is a
sequence of directed edges (v0, v1), (v1, v2) , . . . , (vq−1, vq),
such that vt ∈ V for t = 0, 1, . . . , q, and (vt−1, vt) ∈ W for
t = 1, 2, . . . , q. The path is then said to cover the vertices
v0, v1, . . . , vq . The vertex v0 is called the begin vertex of the
path, and vq its end vertex. The path is called closed if v0 = vq ,
i.e. its begin and end vertex coincide. If v0 ∈ U and vq ∈ X ,
the path is called an input-state path.

The system Σ is said to be input-connected if for any state
vertex v ∈ X , there exists an input-state path with end vertex
v. An input-state path which does not visit the same vertex
twice is called a stem. A cycle is a closed path which does not
visit the same vertex twice (except for the begin/end vertex).

Two vertices vi, vj ∈ V are said to be strongly connected to
each other if there is a path from vi to vj , and from vj to vi.
The relation ”is strongly connect to” is an equivalence relation
and partitions the vertex set V into equivalence classes of
vertices that are strongly connected to each other. A maximally
strongly connected subgraph is a subgraph made up of a
collection of such vertices that is as large as possible, and
together with all edges between them. Maximally strongly
connected components (or simply strongly connected com-
ponents) can be ordered in an acyclic way such that there
may be edges from one component to another, but not the
other way around. Corresponding notions can be introduced
for non directed graphs. Paths will become walks and strongly
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connected components just connected components. Connected
components can be associated with a directed graph if we do
not take into account the direction of edges.

Let vi and vj be two vertices in V , then vj is said to be
a predecessor of vi if (vj , vi) ∈ W . Note that in the context
of this paper only vertices in X can have predecessors. A
subset L ⊂ X is called a dilation, if |P(L)| < |L|, where
P(L) is the set of predecessors of vertices in L, |L| denotes
the cardinality of L, i.e. the number of elements of L, and
likewise for |P(L)|.

Structural (or generic) controllability, i.e. controllability for
almost any value of the nonzeros, was introduced by Lin, who
proved the following result, cf. [5]

Theorem 1: Let Σ be the linear structured system defined
by (1) with associated graph G(Σ). The system is structurally
controllable if and only if

1) The system Σ is input-connected and,
2) a) g-rank[A,B]=n, or

b) G(Σ) has no dilation.
In the following, the conditions 1 and 2 of Theorem 1 will

be referred to as the input connection condition and the rank
condition, respectively.

The input connection condition is quite natural and simply
means that any state vertex can be influenced by some input
vertex. Hence, input connection can be seen as a ‘global’
property. The rank condition is a bit more subtle and is tightly
related with the linear nature of the model. The rank condition
has a more ‘local’ character in the sense that it implies that
each state vertex can be individually controlled by means of
its predecessor state and/or input vertices.

Example 1: In the rest of the paper we will illustrate all
the concepts by an example of a structured dynamical system
without input, defined by the following n×n matrix A, where
n = 9 and a ∗ stands for a nonzero entry.

A =



0 0 ∗ ∗ 0 ∗ 0 0 0
0 0 0 ∗ 0 0 0 0 0
0 0 0 0 0 0 0 ∗ 0
0 0 0 0 ∗ 0 0 0 0
0 0 0 0 ∗ 0 0 0 0
0 0 0 0 0 ∗ 0 ∗ 0
∗ ∗ 0 0 0 0 ∗ 0 ∗
0 0 0 0 ∗ 0 0 0 0
0 0 0 0 0 ∗ 0 ∗ 0


. (2)

The system is represented by the directed graph G(A) in
Figure 1 The example will be used as a running example in
the remainder of the paper.
This system is clearly not controllable since having no in-
put it is not input connected. Moreover, notice that the set
L = {x4, x8} is a dilation since P(L) = {x5} and therefore
|P(L)| < |L|.

III. BIPARTITE GRAPH, MAXIMUM MATCHING AND THE
RANK CONDITION

We will recall here a characterization of the rank condition
of Theorem 1, i.e. g-rank[A,B] = n. This generic rank will be
computed using a bipartite graph associated with the system
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Fig. 1. Digraph G(A) of Example 1.

Σ of type (1). The bipartite graph will be denoted by B(Σ)
and is defined as B(Σ) = (V +, V −;W ′), with
• two disjoint vertex sets V + = X+ ∪ U and V − = X−,

where X+ = {x+
1 , . . . , x

+
n } is the first set of state

vertices, X− = {x−1 , . . . , x−n } is the second set of state
vertices, and U = {u1, . . . , um} is the set of input
vertices. Notice that here we have split each state vertex
xi of G(Σ) into two vertices x+

i and x−i in B(Σ),
• the edge set W ′ = {(x+

j , x
−
i )|aij ̸= 0}∪{(uj , x

−
i )|bij ̸=

0}, where (x+
j , x

−
i ) denotes an edge from vertex x+

j to
vertex x−i and aij ̸= 0 means that the (i, j)-th entry of
the matrix A is a nonzero, and likewise, (uj , x

−
i ) denotes

an edge from vertex uj to vertex x−i and bij ̸= 0 means
that the (i, j)-th entry of the matrix B is a nonzero.

Similarly to the directed graph before, when the system has
no input, the graph B(Σ) will be denoted B(A). Then the sets
V + and X+ coincide and may be used interchangeably, and
so do V − and X−.

Notice that the representations of a structured linear system
Σ of type (1) by the directed graph G(Σ) and the bipartite
graph B(Σ) are completely equivalent. It is straightforward to
commute from one representation to the other.

A matching in a bipartite graph B = (V +, V −;W ′) is
an edge set M ⊆ W ′ such that the edges in M have no
common vertex. Vertices that are covered by (or are incident
with) edges in M are said to be matched by the matching.
The remaining vertices are said to be unmatched, i.e. they
are not covered by any edge in M . The cardinality of a
matching, i.e. the number of edges it consists of, is also called
its size. A matching M is called maximum if its cardinality is
maximal among the cardinalities of all possible matchings. The
maximum matching problem is the problem of finding such
a matching of maximal cardinality. This maximum matching
problem is a standard problem of combinatorics and a lot of
efficient algorithms have been proposed to solve it, cf. [16].
For Example 1, the bipartite graph together with a maximum
matching in red are represented in Figure 2.

First we will highlight the use of a maximum matching for
structural controllability. We recall the following proposition,
cf. [17].
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Fig. 2. Bipartite graph B(A) of Example 1 with a maximum matching.

Proposition 1: Let Σ be the linear structured system defined
by (1) with associated bipartite graph B(Σ). The generic rank
of [A,B] is equal to the size of a maximum matching in B(Σ).
In particular, g-rank[A,B] = n if and only if there exists a
size n matching in B(Σ).

Some remarks follow from this result.
Remark 1: By Proposition 1, the rank condition of Theorem

1 can be equivalently replaced by the existence of a size n
matching in the bipartite graph B(Σ).

Remark 2: In the literature, the rank condition of Theorem
1 is sometimes formulated in terms of the graph G(Σ). Indeed,
it can be shown that the rank condition is equivalent to the
covering of all state vertices by a set of disjoint stems and
cycles.

Remark 3: In network theory, a fundamental problem is the
following: given a network where each vertex is associated
with a state variable, find a minimum number of external
inputs, and the way they have to impact the vertices, such
that the whole system is controllable. In terms of structured
systems the previous problem amounts to: given the A matrix,
find a minimum number of inputs and a matrix B, such that
the pair (A,B) is controllable.

For this problem, an important issue is the rank defect dr
which is defined as dr = n−g-rank(A).

From [3], if a maximum matching of B(A) has size n−dr, a
matching of size n can be obtained by adding dr inputs with an
edge from one input to an unmatched state vertex in the given
maximum matching. Some edges starting from these inputs
may be necessary to fulfill the input connection condition
of Theorem 1. Finally, the minimum number of inputs for
controllability is max(dr, 1).

Other approaches allow each input to only impact one state
vertex, they are then called dedicated inputs. Their minimum
number can then obtained through some weighted maximum
matching algorithm, cf. [9], [10] and [11].

For Example 1, it appears, that since n = 9 and the size of a
maximum matching is six, then dr = 3. Three inputs are then
necessary to fulfill the rank condition. Adding three inputs
acting on the unmatched vertices {x4, x5, x6} will imply with
the corresponding B matrix, g-rank[A,B] = 9. Moreover,
an input acting on x5 induces input connection, therefore
three inputs acting on vertices {x4, x5, x6} insure structural
controllability.

The tight relation between the size of a maximum matching
in a bipartite graph and the rank of the corresponding matrix

is a fundamental tool for the characterization of the rank
condition in structural controllability. However, when starting
with the bipartite graph of the matrix A, and looking for new
inputs and a matrix B for reaching the rank condition, we are
faced with the problem of the non unicity of the maximum
matching in B(A). The Dulmage-Mendelsohn decomposition
of a bipartite graph which will be introduced in the next section
is a tool to overcome the problem of non unicity of a maximum
matching.

IV. DULMAGE-MENDELSOHN DECOMPOSITION OF A
BIPARTITE GRAPH

A useful tool to parameterize all the maximum matchings
in a bipartite graph is the Dulmage-Mendelsohn (DM) decom-
position, which will be presented now.

Given a bipartite graph B = (V +, V −;W ′), the DM decom-
position allows to decompose B into a uniquely defined family
of bipartite subgraphs Bi = (V +

i , V −i ;W ′i ), i = 0, 1, . . . , r,∞,
called the DM components, where {V +

0 , V +
1 , . . . , V +

r , V +
∞} is

a partition of V + in disjoint subsets, and likewise for V −

and W ′. This partition has the fundamental property that any
maximum matching on B can be decomposed into maximum
matchings on the DM components.

A. Finding the Dulmage-Mendelsohn decomposition

Consider a general bipartite graph B = (V +, V −;W ′)
together with a maximum matching M ⊆ W ′. Vertices that
are covered by the edges in M are said to be matched by the
matching. The remaining vertices are said to be unmatched,
i.e. they are not covered by any edge in M .

1) Auxiliary graph based on maximum matching in bipartite
graph: To find the DM decomposition, a so-called auxiliary
graph is used. This auxiliary graph, denoted BM , can be seen
as a directed graph with vertex set V + ∪ V −, and edge set
W ′ ∪M←, i.e. BM = (V + ∪ V −;W ′ ∪M←). Here V + and
V − are the two vertex sets of B, W ′ is the edge set of B, and
M← is the edge set consisting of all edges of M , however
with their direction reversed. Hence, M← = {(v, v′) ∈ V − ×
V +|(v′, v) ∈ M}. Clearly, the edges of W ′ are directed from
V + to V −, whereas the edges of M← are directed from V −

to V +. In the following, the edges of W ′ will occasionally
be referred to as black edges and the edges in M← as red
edges. Further, the notions of path and path length in BM will
be as usual. Hence, a path in BM consists of an alternating
sequence of black and red edges.

A consequence of the fact that M is a maximum matching
is that in BM there are no paths from unmatched vertices
in V + to unmatched vertices in V −. Indeed, when existing,
such a path would consist of an odd number of edges that
alternatively are coloured black and red, starting and ending
with a black edge. Note that the red edges correspond to the
matching M . However, using an alternating path argument,
these red edges can be replaced by the black edges in the
path, creating a new matching with a size one larger than the
size of M . Hence, the matching M would not have been a
maximum matching.
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2) Decomposition based on maximum matching: Now as-
sume that a maximum matching M is given, and denote the
set of all unmatched vertices in V + by S+. Then, all vertices
in V +\S+ are matched.

Next consider all paths in BM that start in S+. Collect
all vertices on these paths in the set V0, and write V +

0 =
V0 ∩ V +, V −0 = V0 ∩ V −. Note that none of the vertices in
V −0 is unmatched because M is maximum, i.e. they are all
matched. See also the previous paragraph. Further, any vertex
of V +

0 \S+ is matched because it can only be reached from
S+ by a path with a final red edge. Hence, the number of
matched vertices in V +

0 and V −0 is the same, and the two sets
of matched vertices are connected by means of a matching
of size |V −0 |. Further, note that by definition there are no
edges from V +

0 to V −\V −0 . However, there may be edges
from V +\V +

0 to V −0 . Denote B0 = (V +
0 , V −0 ;W ′0), where

W ′0 = {(v, v′) ∈ W ′|v ∈ V +
0 , v′ ∈ V −0 }. The bipartite

subgraph B0 is called the minimal inconsistent part of the
DM decomposition.

Now denote the set of all unmatched vertices in V − by S−.
Then all vertices of V −\S− are matched and consider all paths
in BM that end in S−. Collect all the vertices on these paths
in the set V∞ and write V +

∞ = V∞ ∩ V +, V −∞ = V∞ ∩ V −.
Denote B∞ = (V +

∞ , V −∞ ;W ′∞), where W ′∞ = {(v, v′)|v ∈
V +
∞ , v′ ∈ V −∞}. The bipartite subgraph B∞ is called the

maximal inconsistent part of the DM decomposition. Then the
properties of B∞ can be obtained in a way completely dual
to the way they are obtained for B0.

Next recall that the vertices in S+ and S− are unmatched in
V + and V −, respectively. Therefore, as indicated above, there
are no paths from S+ to S−. So, it follows that V0∩V∞ = ∅.
Hence, it makes sense to introduce Vf = V \(V0 ∪ V∞), with
’f ’ for ’finite’, and write V +

f = Vf ∩V + and V −f = Vf ∩V −.
Note that V +

f ⊆ V +\S+ and V −f ⊆ V −\S−, from which it
follows that all vertices in V +

f and V −f are matched. Since
the matched vertices in V +

0 and V −0 are connected by means
of a matching of size |V −0 |, and the matched vertices in V +

∞
and V −∞ are connected by means of a matching of size |V +

∞ |,
it follows that the vertices in V +

f and V −f are connected by
means of a matching of size |V +

f | = |V −f |. Denote Bf =

(V +
f , V −f ;W ′f ), where W ′f = {(v, v′)|v ∈ V +

f , v′ ∈ V −f }.
Recall that there are no edges from V +

0 to V −\V −0 ,
and no edges from V +\V +

∞ to V −∞ . Observe further that
{V +

0 , V +
f , V +

∞} forms partition of V + and {V −0 , V −f , V −∞}
forms partition of V −. Hence, it follows that there are no
edges from V +

0 to V −f , from V +
0 to V −∞ and from V +

f to V −∞ .
In Bf , consisting of all vertices in Vf and edges between

these vertices, every vertex is covered by a cycle of even
length, consisting of alternating black and red edges. The
directed subgraph can be decomposed in, say r, maximally
strongly connected components that can be ordered in an
acyclic way. The latter implies that the bipartite subgraph
Bf = (V +

f , V −f ;W ′f ) can be decomposed in r bipartite
subgraphs Bi = (V +

i , V −i ;W ′i ), i = 1, . . . , r, where each
subgraph contains a matching of size |V +

i | = |V −f |, i =

1, . . . , r, and where there are no edges from V +
i to V −j for

all i, j ∈ {1, . . . , r} with i < j. The bipartite subgraphs

Bi = (V +
i , V −i ;W ′i ), i = 1, . . . , r are called the consistent

parts the DM decomposition.

B. Application to Example 1
For Example 1, starting with the maximum matching

{(x+
2 , x

−
7 ), (x

+
3 , x

−
1 ), (x

+
4 , x

−
2 ), (x

+
5 , x

−
8 ), (x

+
6 , x

−
9 ), (x

+
8 , x

−
3 )},

the decomposition of Subsection IV-A, boils down to the
following.
• S+ = {x+

1 , x
+
7 , x

+
9 }, V0 = {x+

1 , x
−
7 , x

+
2 , x

+
7 , x

+
9 }, yield-

ing V +
0 = {x+

1 , x
+
2 , x

+
7 , x

+
9 } and V −0 = {x−7 }. This gives

B0 = (V +
0 , V −0 ;W ′0) with V +

0 and V −0 as indicated, and
with W ′0 = {(x+

1 , x
−
7 ), (x

+
2 , x

−
7 ), (x

+
7 , x

−
7 ), (x

+
9 , x

−
7 )}.

• S− = {x−4 , x
−
5 , x

−
6 }, V∞ = {x−4 , x

+
5 , x

−
8 , x

−
5 , x

−
6 , x

+
6 ,

x−9 , x
+
8 , x

−
3 }, yielding V +

∞ = {x+
5 , x

+
6 , x

+
8 } and

V −∞ = {x−3 , x
−
4 , x

−
5 , x

−
6 , x

−
8 , x

−
9 }. This gives B∞ =

(V +
∞ , V −∞ ;W ′∞) with V +

∞ and V −∞ as indicated, and with
W ′∞ = {(x+

5 , x
−
4 ), (x

+
5 , x

−
5 ), (x

+
5 , x

−
8 ), (x

+
6 , x

−
6 ),

(x+
6 , x

−
9 ), (x

+
8 , x

−
3 ), (x

+
8 , x

−
6 ), (x

+
8 , x

−
9 )}.

• Vf = {x−1 , x
−
2 , x

+
3 , x

+
4 }, yielding V +

f = {x+
3 , x

+
4 } and

V −f = {x−1 , x
−
2 }.

• The vertices x−1 and x+
3 with the two edges between them

in BM , a black and a red one, form a strongly connected
component. The same applies to the vertices x−2 and x+

4 .
Note that it is possible in BM to go from the component
with {x+

4 , x
−
2 } to the the component with {x+

3 , x
−
1 }, but

not the other way around. Hence, there are two distinct
strongly connected components in BM , implying two
distinct bipartite subgraphs, namely B1 = (V +

1 , V −1 ;W ′1)
with V +

1 = {x+
3 }, V

−
1 = {x−1 } and W ′1 = {(x+

3 , x
−
1 )},

and B2 = (V +
2 , V −2 ;W ′2) with V +

2 = {x+
4 }, V

−
2 = {x−2 }

and W ′2 = {(x+
4 , x

−
2 )}.

The resulting Dulmage-Mendelsohn decomposition can be
displayed as in Figure 3. Note that in Figure 3, the bipartite
subgraph B∞ can be further subdivided in B1

∞ and B2
∞.

This observation will be formalized in Section VI. Also the
decomposition nicely illustrates the property that there are no
edges from V +

i to V −j for all i, j ∈ {0, 1, 2,∞} with i < j.

C. Main properties of the DM decomposition
In the following Proposition, inspired by Theorem 2.2.22 of

[15], we summarize the main properties of the DM decompo-
sition.

Proposition 2: Let be given a general bipartite graph
B = (V +, V −;W ′) and its DM decomposition, with Bi =
(V +

i , V −i ;W ′i ), i = 0, 1, . . . , r,∞, being its DM components.
One has the following properties.

1) A maximum matching on B is a union of maxi-
mum matchings on the DM components Bi, i =
0, 1, . . . , r,∞.

2) A vertex v in V −0 (or in V +
i , V −i , i = 1, . . . , r, or in

V +
∞) is covered by any maximum matching on B.

3) A vertex v in V + belongs to V +
0 if and only if there

exists a maximum matching on B that does not cover v.
4) A vertex v in V − belongs to V −∞ if and only if there

exists a maximum matching on B that does not cover v.
5) There is no edge (v+, v−) from a vertex v+ in V +

i to
a vertex v− in V −j , for any i, j ∈ {0, 1, . . . , r,∞} with
i < j.



6

r r r r r r r r r

r r r r r r r r r

x+
5x+

8x+
6x+

4x+
3x+

9x+
2x+

1x+
7

x−5x−8x−4x−3x−9x−6x−2x−1x−7

A
A
A
A

A
A
A

C
C
C
C
C
C
C

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

C
C
C
C
C
C
C

B0 B1 B2 B∞
Fig. 3. DM decomposition of the bipartite graph B(A) of Example 1.

6) Any edge in a DM component belongs to some maxi-
mum matching on B.

The DM decomposition is useful in a number of problems
of applied mathematics. It allows in particular to get a block
triangular form of the associated matrix by permutation of
rows and columns. In the same spirit, it allows to decompose a
set of algebraic equations in over-determined, just-determined
and under-determined sets of equations, cf. [18].

D. DM decomposition and structural controllability

The rank condition for structural controllability can be
expressed using only the maximal inconsistent part of the DM
decomposition of B(Σ), cf. [19], [20], [21].

In the same vein, it is possible to be more precise than
the main result of [3], concerning the location of the steering
vertices to fulfil the rank condition in structural controllability.

Proposition 3: Consider a linear structured system defined
by the matrix A, with bipartite graph B(A), and the corre-
sponding DM decomposition. Assume that g-rank(A) = n−dr
with dr > 0. To fulfil the rank condition of structural
controllability, one must add dr input vertices u1, . . . , udr

,
connected with dr state vertices xi1 , . . . , xidr

, where xik is
such that x−ik is an unmatched vertex of V −∞(A), for some
maximum matching in B∞.
Proof of Proposition 3: From [3], the steering vertices are
unmatched vertices by some maximum matching in G(A),
and therefore are in V − of B(A). Moreover, from the
decomposition of a maximum matching on the components
of the DM decomposition and the fact that the unmatched
vertices of V − are located in V −∞ , the result follows. △

It can be concluded from Figure 3, that we here have V +
∞ =

{x+
5 , x

+
6 , x

+
8 } and V −∞ = {x−3 , x

−
4 , x

−
5 , x

−
6 , x

−
8 , x

−
9 }. The rank

defect, dr = n-(g-rank[A,B])= |V −∞ | − |V +
∞ |, is equal to 3.

Moreover, adding a new input will result in a larger rank if and
only if this input acts on a vertex in {x3, x4, x5, x6, x8, x9}.

V. DILATIONS AND DM DECOMPOSITION

In this section, for a given system without inputs, defined by
the structured matrix A, we show some important connections
between recently introduced DCS’s of G(A) and the DM
decomposition of the bipartite graph B(A).

Recall that the subset L ⊂ X is a dilation if |P(L)| < |L|,
where P(L) is the set of predecessors of vertices in L. A

dilation D is said to be minimal if no proper subset of D is
a dilation. Note that the total number of minimal dilations is
finite and that these dilations therefore can be enumerated. The
following important definition was given in [13] (in slightly
modified form).

Definition 1: Denote the minimal dilations of a graph as
D1, D2, . . . , DN . A Dilation Choice Set (DCS) is a largest
union of minimal dilations such that each one of them overlaps
with at least one other minimal dilation in the set. More
precisely, the set D = Di1 ∪Di2 ∪ · · · ∪Diq is a DCS if for
each i ∈ {i1, i2, . . . , iq}, there exists a j ∈ {i1, i2, . . . , iq},
i ̸= j, with Di ∩Dj ̸= ∅, and q as large as possible.

From the bipartite graph B(A) of a structured system with-
out inputs, and its DM decomposition as presented in section
IV, define the sets of vertices X∞ = {xi ∈ X|x−i ∈ V −∞} and
X̄∞ = X/X∞.

Proposition 4: Let D of cardinality ν be a dilation such that
D∩X̄∞ ̸= ∅ and has cardinality µ. Then D∩X∞ is a dilation
of cardinality ν − µ.

Proof of Proposition 4: From the properties of the DM
decomposition, for any xi ∈ D ∩ X̄∞, vertex x−i is matched
by any maximum matching of the bipartite graph. Therefore,
the µ vertices in D ∩ X̄∞ have at least µ predecessors in
V +/V +

∞ . From point 5 of Proposition 2 it follows that vertices
in D ∩ X∞ only have predecessors in V +

∞ . Since the total
number of predecessors of dilation D is less than ν, the
number of predecessors of D ∩ X∞ is less that ν − µ, and
consequently D ∩X∞ is a dilation. △

Notice incidentally that the previous result shows that any
dilation has a non empty intersection with X∞.

Proposition 4 has an important consequence for DCS’s.
Corollary 1: Minimal dilations and DCS’s are contained in

X∞.
Proof of Corollary 1: From Proposition 4, if D is a dilation

such that D ∩ X̄∞ ̸= ∅, then D ∩X∞ is a dilation, proving
that D is not a minimal dilation. Therefore, minimal dilations
must be contained in X∞. DCS’s, which are obtained from
union of minimal dilations, are also contained in X∞. △

This establishes that minimal dilations and DCS’s are to be
searched only in X∞.

Now let us come back to the way V∞ is constructed in
the bipartite graph, see Subsection IV-A. We construct first
the auxiliary directed graph BM associated with a particular
maximal matching M . The graph BM is obtained from the
initial bipartite graph B by adding an edge (x−i , x

+
j ) when the

edge (x+
j , x

−
i ) belongs to the maximal matching M .

Let xi be a vertex such that x−i is not matched by M .
Now define the elementary set associated with xi, as the set
of vertices xj such that there exists a path from x−j to x−i in
BM and denote this set by EM (xi).

In Example 1, choosing the maximum matching M =
{(x+

2 , x
−
7 ), (x

+
3 , x

−
1 ), (x

+
4 , x

−
2 ), (x

+
5 , x

−
8 ), (x

+
6 , x

−
9 ), (x

+
8 , x

−
3 )}

leaves the vertices x−4 , x
−
5 and x−6 unmatched. The

corresponding elementary sets are EM (x4) = {x4, x8},
EM (x5) = {x5, x8}, EM (x6) = {x3, x6, x9}. It can be
checked that the elementary sets depend on the chosen
maximum matching. For example, if in the maximum
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matching we had chosen (x+
5 , x

−
5 ) instead of (x+

5 , x
−
8 ), we

would get EM (x4) = {x4, x5}.
Proposition 5: The elementary set EM (xi) associated with

a vertex xi, where x−i is not in a given maximal matching M ,
is a minimal dilation.

Proof of Proposition 5: Let us consider an elementary set
EM (xi) associated with a vertex xi, where x−i is not in a given
maximal matching M and let us first prove that it is a dilation.
For any xj ̸= xi in EM (xi), the first edge in the path from x−j
to x−i in the auxilliary graph BM is (x−j , x

+
kj
) where (x+

kj
, x−j )

belongs to the maximum matching M . Then the set EM (xi)
has at least l−1 predecessors if the set EM (xi) has cardinality
l. Assume that some xj in EM (xi) has a predecessor xq

which does not belong to this set of cardinality l − 1. From
the properties of the DM decomposition, there exists an edge
(x+

q , x
−
iq
) in M , where xiq /∈ EM (xi). Then there exists a

path from x−iq to x−i in the auxilliary graph BM , which is in
contradiction with the definition of EM (xi). Therefore the set
EM (xi) of cardinality l has a set of predecessors of cardinality
l − 1 and is then a dilation.

If EM (xi) is not minimal it must contain a set of vertices
E′ ⊂ EM (xi) which is a minimal dilation. Notice first that if
xi /∈ E′, E′ is not a dilation because for each xj ∈ E′ there
exists xkj

such that (x+
kj
, x−j ) ⊂ M and then the cardinality

of the set of predecessors of E′ is at least as large as the
cardinality of E′. Now consider a minimal dilation E′, where
xi ∈ E′. Let xk be such that xk ∈ EM (xi) but xk /∈ E′. By
definition of EM (xi), there is a path from x−k to x−i in the
auxilliary graph BM . The first edge of this path is (x−k , x

+
kq
)

where (x+
kq
, x−k ) ∈ M . Moreover, this path will intersect E′

in a first vertex which cannot belong to V +
∞ . This is because

there would then exist an edge (x−kl
, x+

l ), where (x+
l , x

−
kl
),

xkl
/∈ E′, is in M . But there also exists an edge (x+

l , x
−
k′
l
) of

M with xk′
l

in E′ which is a contradiction. Then this path will
intersect E′ in a first vertex x−p . Each vertex in E′, except for
xi, has a dedicated predecessor defined by M , but xp has an
additional predecessor in the path coming from xk, then the
cardinality of the set of predecessors of E′ is at least as large
as the cardinality of E′ and E′ is not a dilation. Therefore,
EM (xi) has no proper subset which is a minimal dilation, i.e
EM (xi) is a minimal dilation. △

Remark 4: The maximal inconsistent part can be decom-
posed into connected n∞ components as V∞ = V 1

∞ ∪ V 2
∞ ∪

. . . , V n∞
∞ . For i = 1, . . . , n∞, denote V i

∞
−

= V i
∞ ∪ V −,

V i
∞

+
= V i

∞ ∪ V +, and Xi
∞ = {xi ∈ X|x−i ∈ V i

∞
−}. Then

there is no edge from x+
ki

∈ V i
∞

+ to x−kj
∈ V j
∞
− for i ̸= j.

In Example 1, there are clearly two connected compo-
nents defined by V 1

∞
+

= {x+
5 }, V 1

∞
−

= {x−4 , x
−
5 , x

−
8 } and

V 2
∞

+
= {x+

6 , x
+
8 }, V 2

∞
−

= {x−3 , x
−
6 , x

−
9 } and therefore

X1
∞ = {x4, x5, x8} and X2

∞ = {x3, x6, x9}.
With the decomposition of the maximal inconsistent part

in connected components, we can now refine the result of
Corollary 1.

Proposition 6: A minimal dilation and a DCS belong to a
particular set Xi

∞.
Proof of Proposition 6: Consider a minimal dilation D

which can be decomposed as D = D1 ∪D2, · · · ∪Dk where

Di = D ∩ Xi
∞ for i = 1, . . . , n∞. The sets of predecessors

for each Di are disjoint from the definition of the Xi
∞’s. D

being a dilation, the total number of predecessors of D is less
than the cardinality of D. This implies that there is at least a
Di such that the number of predecessors of Di is less than
the cardinality of Di. Then this Di is a dilation which induces
that D is a minimal dilation only if Dj = ∅ for all j ̸= i,
i.e. D is contained in Xi

∞. Then any minimal dilation is
contained in some Xi

∞. A DCS being an union of overlaping
minimal dilations, since two minimal dilations belonging
to two different Xi

∞’s cannot overlap, from Definition 1, a
DCS’s is also contained in some Xi

∞. △

The previous results can be summarized in a simple corre-
spondence between DCS’s and the connected parts of B∞.

Theorem 2: The sets of vertices Xi
∞, for i = 1, . . . , n∞,

corresponding with the connected components of the maximal
inconsistent part of the DM decomposition of the bipartite
graph B(A), are the Dilation Choice Sets of the graph G(A).

Proof of Theorem 2: Consider a maximum matching M
in the bipartite graph B(A) and the corresponding auxilliary
graph BM . Let x−l ∈ V i

∞
− be a vertex not matched by M .

The associated elementary set EM (xl), from Proposition 5 is a
minimal dilation and from Proposition 6 is contained in Xi

∞.
By construction of the V∞ part of the DM decomposition,
the union of the elementary sets associated with unmatched
vertices of V i

∞
− contains all the vertices of Xi

∞. Then, Xi
∞

is an union of minimal dilations which do not overlap with
minimal dilations of Xj

∞ for j ̸= i, therefore Xi
∞ is a DCS.

△

VI. REVISITING THE DM DECOMPOSITION

The concepts introduced in Section V suggest that the DM
decomposition can be further refined. The n∞ connected com-
ponents of the maximal inconsistent part in Remark 4 allow
to refine the decomposition of the bipartite graph. In a dual
way, the minimal inconsistent part of the DM decomposition
can be partitioned into connected n0 components.

Therefore, we can write B∞ = B1
∞ ∪ · · · ∪ Bn∞

∞ , B0 =
B1
0 ∪ · · · ∪Bn0

0 and decompose the sets V −∞ , V +
∞ , V −0 and V +

0

accordingly.
Then Proposition 2 can be generalized as follows.
Proposition 7: Let B = (V +, V −;W ′) be a bipartite graph

and its DM decomposition with Bi = (V +
i , V −i ;W ′i ), i =

1, . . . , r, Bj
∞ = (V j+

∞ , V j−
∞ ;W ′j∞), j = 1, . . . , n∞, and Bk

0 =
(V k+

0 , V k−
0 ;W ′k0 ), k = 1, . . . , n0, its DM components. One

has the following properties:
1) A maximum matching on B is a union of maximum

matchings on the DM components Bi, i = 1, . . . , r,
Bj
∞ = (V j+

∞ , V j−
∞ ;W ′j∞), j = 1, . . . , n∞, and Bk

0 =
(V k+

0 , V k−
0 ;W ′k0 ), k = 1, . . . , n0.

2) A vertex v in V −0 (or in V +
i , V −i , i = 1, . . . , r, or in

V +
∞) is covered by any maximum matching on B.

3) A vertex v in V + belongs to V +
0 if and only if there

exists a maximum matching on B that does not cover v.
4) A vertex v in V − belongs to V −∞ if and only if there

exists a maximum matching on B that does not cover v.
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5) There is no edge (v+, v−) from a vertex v+ in V +
i to

a vertex v− in V −j , for any i, j ∈ {0, 1, . . . , r,∞} with
i < j.

6) There is no edge (v+, v−) from a vertex v+ in V i+
0 to a

vertex v− in V j−
0 , for any i, j ∈ {1, . . . , n0} with i ̸= j.

7) There is no edge (v+, v−) from a vertex v+ in V i+
∞ to

a vertex v− in V j−
∞ , for any i, j ∈ {1, . . . , n∞} with

i ̸= j.
8) There is no edge (v+k , v

−
l ) if v+k ∈ V i+

0 , v−l ∈ V j−
0

and i ̸= j for i, j ∈ {1, . . . , n0}. Any edge in a DM
component belongs to some maximum matching on B.

Proof of Proposition 7: Properties 6 and 7 follow
from the decomposition of the inconsistent parts into
connected components. Similarly, Property 1 results from the
decomposition of a maximum matching of an inconsistent
part into its connected parts. △
In Example 1, The vertices of V∞ in the subset
{x+

6 , x
+
8 , x

−
3 , x

−
6 , x

−
9 } are connected to each other by

means of an undirected path. The same applies to the
vertices of V∞ in the subset {x+

3 , x
−
4 , x

−
5 , x

−
8 }, and to all

the vertices of V0. Then these observations lead to the
bipartite subgraphs B1

0 = B0, and B1
∞ = (V 1+

∞ , V 1−
∞ ;W ′1∞)

with V 1+
∞ = {x+

6 , x
+
8 }, V 1−

∞ = {x−3 , x
−
6 , x

−
9 },W ′1∞ =

{(x+
6 , x

−
6 ), (x

+
6 , x

−
9 ), (x

+
8 , x

−
3 ), (x

+
8 , x

−
6 ), (x

+
8 , x

−
9 )}, and

B2
∞ = (V 2+

∞ , V 2−
∞ ;W ′2∞) with V 2+

∞ = {x+
5 }, V 2−

∞ =
{x−4 , x

−
5 , x

−
8 },W ′2∞ = {(x+

5 , x
−
4 ), (x

+
5 , x

−
5 ), (x

+
5 , x

−
8 )}.

This refined DM decomposition allows also to refine Propo-
sition 3 in the following way.

Proposition 8: Consider a linear structured dynamical sys-
tem defined by the matrix A, with bipartite graph B(A) and
the corresponding refined DM decomposition. Assume that g-
rank(A) = n−dr with dr > 0. Denote li = |V i−

∞ |− |V i+
∞ | for

the ith connected part of the maximal inconsistent component,
yielding dr = Σn∞

i=1li. To fulfil the rank condition of structural
controllability, one must add li inputs u1, . . . , uli connected
with li state vertices xi1 , . . . , xili

, where xik is such that x−ik
is an unmatched vertex of V i−

∞ (A) for any connected part
V i
∞(A).
Proof of Proposition 8: This Proposition makes more precise

Proposition 3. The proof follows the same lines as in [20]
and [21] and taking into account the partition of the maximal
inconsistent component in connected parts. △

From Proposition 8, to satisfy the rank condition in Example
1, two vertices must be controlled in X1

∞ = {x4, x5, x8}, and
one vertex must be controlled in X2

∞(A) = {x3, x6, x9}. It
can be further noticed that here any two vertices in X1

∞ and
any vertex in X2

∞ would do the job, but this is not true in
general.

VII. VERTEX AND EDGE CLASSIFICATION FROM THE DM
DECOMPOSITION

From Theorem 2, the DCS’s are indeed obtained from
a refined partition of the maximal inconsistent part of the
DM decomposition of the bipartite graph B(A). Hence, the
properties of DCS’s given in [13], can directly result from the
DM decomposition.

In [13], the authors propose a classification of vertices and
edges of the graph relative to their importance in maximum
matchings.
• Critical vertices (resp. critical edges), which belong to

any maximal matching,
• Redundant vertices (resp. redundant edges), which belong

to no maximal matching,
• Intermittent vertices (resp. intermittent edges), which

belong to some maximal matching, but not to all maximal
matchings.

The classification of vertices has been given in [23] and [22]
and in terms of the DM decomposition in [20] and [21].

A. Edge classification from the DM decomposition

In this subsection, we prove that the full characterization of
edges simply follows from the DM decomposition of B(A).

Proposition 9: Consider a linear structured dynamical sys-
tem defined by the matrix A, with bipartite graph B(A) and
the corresponding DM decomposition. The classification of
edges is characterized as follows:
• An edge (xk, xl) is a critical edge if and only if there ex-

ists a consistent component Bi of the DM decomposition
such that V +

i = {x+
k } and V −i = {x−l }.

• An edge (xk, xl) is a redundant edge if and only if there
exist two components Bi and Bj of the DM decomposi-
tion such that x+

k ∈ V +
i and x−l ∈ V −j .

• An edge (xk, xl) is an intermittent edge if it is neither
critical nor redundant.

Proof of Proposition 9:
• Assume that the edge (x+

k , x
−
l ) is such that there exists

a consistent component Bi of the DM decomposition
with V +

i = {x+
k } and V −i = {x−l }. From point 1

of Proposition 2, the edge (x+
k , x

−
l ) belongs to any

maximum matching.
Conversely, from point 1 of Proposition 2 the edge

(x+
k , x

−
l ) can be critical only if it belongs to a DM

component. Moreover, if this component contains more
than one edge, there exists at least one edge e in the
same DM component which has a common vertex with
(x+

k , x
−
l ). Then, from point 6 of Proposition 2, there

would exist a maximum matching containing e, and
therefore not containing (x+

k , x
−
l ), which would be a

contradiction.
• Assume that the edge (x+

k , x
−
l ) is such that x+

k ∈ V +
i

and x−l ∈ V −j , where Vi and Vj correspond with two
different components Bi and Bj of the DM decompo-
sition. A maximum matching, being decomposed in the
components of the DM decomposition, as in point 1 of
Proposition 2, implies then that the edge belongs to no
maximum matching, and therefore is redundant.

Conversely, since, by point 6 of Proposition 2, any edge
in a DM component belongs to a maximum matching,
only edges from one DM component to another one may
be redundant.

• The third point follows from the definition of an inter-
mittent edge. △
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In Example 1, from [20] vertices x1, x2, x7 are critical, there
is no redundant vertex and vertices x3, x4, x5, x6, x8, x9 are
intermittent.

From Proposition 9, edges (x3, x1) and (x4, x2) are critical
while, for instance, (x6, x6) is intermittent and (x6, x1) is
redundant. △

It is important to notice that the characterization of redun-
dant and critical (and then intermittent) edges involves all the
components of the DM decomposition. This implies that a
complete characterization of the edges using only DCS’s is
not possible, because the DCS’s are only related to the B∞
component.

B. Driver-disrupting intermittent edges

To further precise the importance of the intermittent edges
in matchching degeneracy, the authors of [13] define the no-
tion of driver-disrupting intermittent edge. A driver-disrupting
intermittent edge is an edge e such that after removing e,
some but not all control configurations still achieve structural
controllability. In other words, removing e restricts the possi-
bilities to achieve structural controllability.

Proposition 10: Consider a linear structured dynamical
system defined by the matrix A, with bipartite graph B(A)
and the corresponding DM decomposition. An edge (xi, xj)
is a driver-disrupting intermittent edge if (x+

i , x
−
j ) ∈ B∞ and

xi is the unique predecessor of xj .
Proof of Proposition 10: Consider an edge (xi, xj) such that
(x+

i , x
−
j ) ∈ B∞ and xi is the unique predecessor of xj . From

Proposition 9, (xi, xj) is an intermittent edge. Let M be a
maximum matching of B containing (x+

i , x
−
j ). The control

configuration associated with the maximum matching M is
composed of the dr vertices unmatched by M in X∞. If
(x+

i , x
−
j ) is deleted, no other maximum matching of the same

size can match x−j since (x+
i , x

−
j ) is the unique edge ending in

x−j . Then, as an unmatched vertex, x−j belongs to any control
configuration, the previous control configuration associated
with M is no longer valid. Deleting (xi, xj) invalidates a
control configuration, hence (xi, xj) is a driver-disrupting
intermittent edge. △

In Example 1, Proposition 10 shows that edges (x5, x4),
(x5, x5), (x5, x8) and (x8, x3) are driver-disrupting intermit-
tent edges.

Proposition 10 provides a sufficient condition for a given
edge to be driver-disrupting which is more precise than
Theorem 5 in [13]. However, it can be seen that the condition
of Proposition 10 is not necessary. The control configuration
{x9, x4, x5} associated with the maximum matching
{(x+

2 , x
−
7 ), (x

+
3 , x

−
1 ), (x

+
4 , x

−
2 ), (x

+
6 , x

−
6 ), (x

+
8 , x

−
3 ), (x

+
5 , x

−
8 )}

is no longer a control configuration if the intermittent edge
(x+

6 , x
−
6 ) is deleted, which proves that (x+

6 , x
−
6 ) is driver

disrupting although vertex x6 has two predecessors.

VIII. COMPLEXITY ASPECTS

In [13], the definition of minimal dilations and DCS’s are
quite natural and lead to important properties for structural
controllability. The main drawback of this approach lies in the
fact that finding DCS’s assumes the possibility to enumerate all

the minimal dilations, which is certainly hard in a reasonable
time for large scale systems.

In contrast, the characterization of DCS’s through Theorem
2 only needs the computation the DM decomposition of the
bipartite graph. The DM decomposition is available from many
graph packages and the complexity of computing the DM
decomposition is the same as the complexity of finding a
maximum matching in the bipartite graph, cf. [15].

When the DM decomposition is obtained, it only remains
to decompose the maximal inconsistent component into con-
nected components to get all the DCS’s. The DCS’s are then
obtained in polynomial time.

For more details on complexity, cf. [24], and [16] is a clas-
sical reference for the complexity of the maximum matching
problem while [9] reviews the complexity of recent algorithms
for solving this problem.

IX. CONCLUSIONS

In this paper we were inspired by the notion of Dilation
Choice Set (DCS) introduced in [13]. The sets are used
in the context of the rank condition of structural control-
lability of structured systems. The systems can equivalently
be represented by directed and bipartite graphs. In [13] the
DCS’s are determined from minimal dilations by inspection,
which does not yield an efficient method to check the rank
condition. In this paper we proved that the computation of
DCS’s can be avoided by decomposing the bipartite graph
of the structured system. The decomposition used is the so-
called Dulmage-Mendelsohn decomposition. It is based on
a maximum matching in the associated bipartite graph and
can be computed by efficient methods. Once obtained the
decomposition can be used efficiently for the controllability
rank test, as the DCS’s are located in so-called connected parts
of the maximal inconsistent part of the decomposition.

The notions developed in this paper may be important for
the analysis of controllability modifications resulting from
deletion [25] or addition [26] of edges.
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