
HAL Id: hal-04618343
https://hal.science/hal-04618343

Submitted on 20 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Cryptographic Accumulators: New Definitions,
Enhanced Security, and Delegatable Proofs

Anaïs Barthoulot, Olivier Blazy, Sébastien Canard

To cite this version:
Anaïs Barthoulot, Olivier Blazy, Sébastien Canard. Cryptographic Accumulators: New Definitions,
Enhanced Security, and Delegatable Proofs. AFRICACRYPT 2024 - 15th International Conference
on Cryptology, Jul 2024, Douala, Cameroon. In press. �hal-04618343�

https://hal.science/hal-04618343
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Cryptographic Accumulators: New Definitions,
Enhanced Security, and Delegatable Proofs

Anaïs Barthoulot1, Olivier Blazy2, and Sébastien Canard3

Université de Montpellier, LIRMM, Montpellier, France
anais.barthoulot@lirmm.fr

École Polytechnique, Palaiseau, France
olivier.blazy@polytechnique.edu

LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
sebastien.canard@telecom-paris.fr

Abstract. Cryptographic accumulators, introduced in 1993 by Benaloh and De
Mare, represent a set with a concise value and offer proofs of (non-)membership.
Accumulators have evolved, becoming essential in anonymous credentials, e-
cash, and blockchain applications. Various properties like dynamic and universal
emerged for specific needs, leading to multiple accumulator definitions. In 2015,
Derler, Hanser, and Slamanig proposed a unified model, but new properties, in-
cluding zero-knowledge security, have arisen since. We offer a new definition of
accumulators, based on Derler et al.’s, that is suitable for all properties. We also
introduce a new security property, unforgeability of private evaluation, to protect
accumulator from forgery and we verify this property in Barthoulot, Blazy, and
Canard’s recent accumulator. Finally we provide discussions on security proper-
ties of accumulators and on the delegatable (non-)membership proofs property.

Keywords: Cryptographic accumulators · Dual pairing vector spaces · Security
reductions

1 Introduction

Cryptographic accumulators. In 1993, Benaloh and De Mare [15] introduced the
concept of a one-way accumulator as a family of one-way hash functions satisfying
the quasi-commutative property. Later, Baric and Pfitzmann [11] extended the def-
inition, characterizing accumulators as schemes enabling the concise representation,
termed the accumulator, of a finite set of values. A cryptographic accumulator pro-
vides membership proofs for elements in the set. Some accumulators require an ad-
ditional element, called the witness, for generating a membership proof, classifying
them as asymmetric accumulators; those without this requirement are symmetric accu-
mulators. This work focuses on asymmetric accumulators, comprising four algorithms
Setup,Eval,WitCreate,Verify. Specifically, Setup establishes accumulator parameters,
Eval accumulates values, WitCreate generates membership witnesses, and Verify ver-
ifies membership. As for security, accumulators must satisfy the collision resistance
property, preventing adversaries from finding an element not in the set and producing a
fraudulent witness for this element.

Uniform Modeling. From this basic property, the literature has been very prolific in
terms of additional functionalities and/or properties. We can mention the dynamic or
the universal properties, which respectively allow the addition or removal of elements
to the accumulated set and efficient updates to witnesses, as well as the generation
of witnesses to prove the absence of certain elements. Most of these new properties
were introduced to satisfy a specific (and sometimes unique) need, thus they do not
help in having a global picture of cryptographic accumulators and their properties, with
some rare exceptions [28,26,7]. In the asymmetric setting, we consider that the most
relevant paper on such issues is the one by Derler et al. [26] in 2015, who proposed a
uniform model for dynamic universal cryptographic accumulators, regrouping existing
properties. We use this paper model’s in this work. Recently, [9] proposed the first
universally composable treatment of cryptographic accumulators. However, due to its
limited adoption in the literature, we opt for a property-based definition of accumulators
rather than a universally composable treatment.

Instantiations and Related Primitives. Since their introduction, several accumula-
tors were built. The original ones were based on the RSA assumption [15,11], and
many works used variants of it to build their own scheme [19,54,27]. In [45], Nguyen
proposed an accumulator based on pairings, and others followed [5,25,18,4,30, . . .].
Recently, a few works presented accumulators based on lattices, such as [41,36,48]
and [44,6] proposed a code-based scheme. We can then divide existing accumulator
instantiations in five categories: hash-based accumulators, lattice-based accumulators,
pairing-based, code-based, and number theoretic accumulators. Several works studied
the relations between cryptographic accumulators and other primitives: [30] showed
that zero-knowledge sets implies zero-knowledge accumulators, which itself implies
primary-secondary-resolver membership proof systems, [22] proved that vector com-
mitment can be used to build dynamic accumulators, and later [37] proved that func-
tional commitments for linear functions implies cryptographic accumulators with large
universe (i.e., domain size can be exponential in the security parameter).

Applications. Cryptographic accumulators are versatile tools with diverse applications.
Originally used for timestamping and membership testing [15], they have found utility
in various areas such as fail-stop signatures [11], ID-based ring signatures [45], and
distributed public key infrastructure [51]. However, their central focus today is on pro-
tecting individual privacy, especially in membership revocation for group signatures, di-
rect anonymous attestations [19], and anonymous credentials [2,4]. Accumulators play
a crucial role in authenticated data structures, addressing the challenge of authenticat-
ing set operations [49,37,30]. Operations on sets, including subset and disjointness,
can be directly performed on sets represented by an accumulator [53]. Additionally,
accumulator-based representations support fundamental set operations such as union,
intersection, and set difference [49,30]. Furthermore, in the context of blockchain and
digital cash systems, accumulators serve crucial roles. In blockchain, they streamline
transaction verification by proving membership in valid transactions while preserving
privacy. They also contribute to data compression in blockchain states, reducing storage
needs and improving scalability. In digital cash systems, accumulators provide efficient
methods for verifying transaction validity while safeguarding user anonymity [5,21].

2

As a result, they play an indispensable role in ensuring both security and privacy in
digital financial transactions across various applications.

Our contributions. In this work, we present a new definition of cryptographic accu-
mulators along with an overview of accumulator properties and features,that comple-
ments [26]’s model. Additionally, we engage in several discussions on accumulators
properties. Specifically:

– We introduce a novel definition of cryptographic accumulators, representing the
primary contribution of this work. For the sake of clarity, our scheme is static (i.e.
not dynamic) and non-universal, but a definition for a dynamic universal scheme,
as presented in [26], can easily be derived. This new definition offers flexibility
as it serves as a foundational framework to incorporate all existing properties and
functionalities of accumulators, thereby extending the model proposed by [26]. Fur-
thermore, it aims to establish a standard in the field of cryptographic accumulators,
thereby providing a unified framework for describing accumulators and their prop-
erties. To demonstrate the usability of our definition, we present a (informal) com-
prehensive and up-to-date overview of all accumulator properties, in Section 2.

– In Section 3, we focus on security properties of accumulators. First, we delve into
a discussion on the property called undeniability within a specific scenario known
as the trusted setup model. Then, we engage a discussion on a recently introduced
security property, obliviousness. Finally, we explore the existing relations between
these properties and establish new relations.

– In Section 4, we present the second contribution of this work: the introduction of
a novel security property, called unforgeability of private evaluation. This property
states that the scheme is resistant to attempts to forge or create false accumulators
using the secret key. We also establish that the recent accumulator proposed in [12]
satisfies this new security property. The latter operates in the asymmetric bilinear
setting and employs dual pairing vector spaces [47], and to demonstrate that this
scheme satisfies our new security property, we introduce a novel security assump-
tion named fixed argument dual pairing vector spaces inversion. This assumption,
constituting an auxiliary contribution, can be reduced to computational Diffie Hell-
man assumption and represents the first computational assumption for dual pairing
vector spaces and may hold independent significance for future works.

– We conclude this paper with a discussion on a property known as delegatable (non-
)membership proofs. In greater detail, we explore the requirements necessary to
achieve this property with the aim of presenting a generic construction.

2 Cryptographic Accumulators

In this section, we formally introduce cryptographic accumulators and provide an ex-
haustive list of definitions, functionalities, and properties associated with this primitive.
In line with our paper’s introduction, we emphasize modern accumulator definitions
over the original one by Benaloh and De Mare [15]. Throughout the remainder of our
work, we focus on asymmetric accumulators, with the understanding that many of the
properties apply to symmetric accumulators as well. We opt for asymmetric accumula-
tors due to their improved efficiency: in the accumulators literature, it is admitted that

3

symmetric accumulators cannot have a size less than linear in the number of accumu-
lated elements, while asymmetric schemes can produce accumulators of constant size.

2.1 Our New Definition

We propose a definition of accumulators based on the definition given by Derler et
al. [26] (that we slightly simplify), and based on proof systems as the definition given
by Acar and Nguyen [1]. The motivation behind introducing this new definition stems
from the absence of a sufficiently modular definition that can adapt to various prop-
erties. Currently, defining an accumulator scheme for a specific property requires a
tailored approach, resulting in the need to redefine the accumulator to align with spe-
cific requirements. Our proposed definition addresses this limitation, offering a modular
framework that can be applied universally across different properties. We start by giving
the definition of proof system and its associated properties.

Definition 1. Proof System [1]. LetR be an efficiently computable relation of (Para,Sta,
Wit) with setup parameters Para, a statement Sta, and a witness Wit. A non-interactive
proof system for R consists of 3 PPT algorithms: a Setup, a prover Prove, and a ver-
ifier Verif. A non-interactive proof system (Setup,Prove,Verif) must be complete and
sound. Completeness means that for every PPT adversaryA, the following is negligible∣∣∣∣Pr [Para← Setup(λ); (Sta,Wit)← A(Para);Proof ← Prove(Para,Sta,Wit) :

Verif(Para,Sta,Proof) = 1 if (Para,Sta,Wit) ∈ R

]
− 1

∣∣∣∣ .
Soundness means that for every PPT adversary A, the following is negligible∣∣∣∣Pr [Para← Setup(λ); (Sta,Proof)← A(Para) :

Verif(Para,Sta,Proof) = 0 if (Para,Sta,Wit) /∈ R,∀Wit

]
− 1

∣∣∣∣ .
We now present our new definition of accumulators, based on proof systems.

Definition 2. Cryptographic Accumulator [15,26]. A cryptographic accumulator scheme
is a tuple of efficient algorithms defined as follows:

– Gen(λ): the generation algorithm takes as input a security parameter λ. It returns
a key pair K = (skacc, pkacc), where pkacc contains the setup parameters Para of
R, an efficiently computable relation. Gen can also be seen as the Setup algorithm
of a proof system (Setup,Prove,Verif) forR.

– Eval(K,X): the evaluation algorithm takes as input the accumulator key pair K
and a set X to be accumulated. It returns an accumulator accX together with some
auxiliary information aux. Notice that (accX , aux) form a statement Sta forR.

– WitCreate(K,X , accX , aux, x): the witness creation algorithm takes as input the
accumulator key pair K, an accumulator accX , the associated set X , auxiliary
information aux, and an element x. If x ∈ X it outputs a witness witXx , otherwise
it outputs a reject symbol ⊥. Note that witXx forms a witness Wit forR.

– CompProof(pkacc, accX , aux,wit
X
x , x): the proof computation algorithm takes as

input the accumulator public key pkacc that contains the proof system parame-
ters Para, an accumulator accX = Sta and associated auxiliary information, a
witness witXx = Wit, and element x. It runs the proof system prover algorithm
Prove(Para,Sta,Wit) and outputs the result Proof.

4

– Verify(pkacc, accX , aux,Proof): the verification algorithm takes as input the ac-
cumulator public key pkacc that contains the proof system parameters Para, an
accumulator accX = Sta and associated auxiliary information aux, and a proof
Proof. It runs the proof system verification algorithm Verif(Para,Sta,Proof). If
(Para,Sta,Wit) ∈ R (meaning that witXx is correct and thus that x ∈ X) it returns
1, otherwise it returns 0.

Note 1. The algorithm Gen is ran by a third party, called sometimes accumulator man-
ager. We will come back on the trust of this party in Section 2.2.

We now present the two fundamental properties of accumulators, correctness and
collision resistance. We start with the former that states that for all honestly generated
keys, computed accumulators and witnesses, the Verify algorithm always return 1.

Definition 3. Correctness. A cryptographic accumulator is said to be correct if for all
security parameter λ, all set of values X , and all element x such that x ∈ X :

Pr

K = (skacc, pkacc)← Gen(λ), (accX , aux)← Eval(K,X),

witXx ←WitCreate(K,X , accX , aux, x)
Proof ← CompProof(pkacc, accX , aux,wit

X
x , x) :

Verify(pkacc, accX ,Proof) = 1

 = 1

Regarding security of cryptographic accumulators, several notions were introduced
such as undeniability [38], indistinguishability [26] or zero-knowledge [30] for exam-
ple. We here only formally present the property of collision resistance, but in Sec-
tion 2.2 we give an exhaustive list of all accumulator security properties and a (infor-
mal) definition for all of them. Informally a cryptographic accumulator is said to be
collision resistant if it is hard for an adversary to forge a witness for an element that is
not in the accumulated set.

Definition 4. Collision resistance [11,26]. An accumulator scheme is said to satisfy
collision resistance1 if all PPT adversaries A, the following advantage is negligible:

AdvCRA (λ) := Pr

K = (skacc, pkacc)← Gen(λ), (X ,witXx , x)← AO(pkacc)

(accX , aux)← Eval(K,X)
Proof ← CompProof(pkacc, accX , aux,wit

X
x , x) :

Verify(pkacc, accX ,Proof) = 1 ∧ x /∈ X

whereO =

{
OE ,OW

}
andOE ,OW represent the oracles for the algorithms Eval and

WitCreate respectively. An adversary is allowed to query them an arbitrary number of
times. If OW is queried for an element not in the provided accumulator, it outputs a
reject symbol.

The following theorem establishes that correctness and collision resistance of the
accumulator scheme hold if completeness and soundness of the underlying proof system
hold respectively.

1 In some works, “collision resistance” is called “collision freeness”, “soundness” or “set bind-
ing” [22]. We will only use the terms collision resistance in the following.

5

Theorem 1. If the proof system (Setup,Prove,Verif) is respectively complete and sound,
then the accumulator (Gen,Eval,WitCreate,CompProof,Verify) is respectively cor-
rect and satisfies collision resistance.

We prove the theorem in two steps, corresponding to the following lemmas.

Lemma 1. If the proof system (Setup,Prove,Verif) is complete, then the accumulator
(Gen,Eval,WitCreate,CompProof,Verify) is correct.

Proof. First, let us see the correctness property as a game between a challenger and
an adversary. The aim of the adversary is to find a set X and an element x such that
x ∈ X but Verify(pkacc, accX ,Proof) = 0, where (accX , aux)← Eval(K,X), witXx ←
WitCreate(K,X , accX , aux, x) and Proof ← CompProof(pkacc, accX , aux,wit

X
x , x).

In this case, we say that the accumulator is correct if the advantage of an adversary
to win the game is negligible. Now, we prove the lemma by proving the contraposi-
tive. Let B be an adversary that breaks the accumulator scheme correctness property
with non negligible advantage. We build A an adversary that breaks the complete-
ness property of the proof system. Let C be a challenger. A is given Para and λ from
C. She runs Gen(λ) and gives pkacc to B. B sends (X , x) to A. The latter computes
Sta = (accX , aux) ← Eval(K,X), Wit = witXx ← WitCreate(K, X , accX , aux, x) (as
she knows K) and Proof = Prove(Para,Sta,Wit = witx). As B wins the correctness
security game, we have that Verify(pkacc, accX ,Proof) = 0 while x ∈ X , which corre-
sponds to Verif(Para, Sta,Proof) = 0 while (Para,Sta,Proof) ∈ R. As B wins with
non negligible advantage, then so does A.

Lemma 2. If the proof system (Setup,Prove,Verif) is sound, then the accumulator
(Gen,Eval,WitCreate,CompProof,Verify) satisfies collision resistance.

Proof. We prove the contrapositive. Let B be an adversary that breaks the accumula-
tor scheme collision resistance property with non negligible advantage. We build A
an adversary that breaks the soundness property of the proof system, using B. Let C
be a challenger. A is given Para and λ from C. She runs Gen(λ) and gives pkacc to
B. As A knows skacc she can answers to all of B’s oracle queries. At some point, B
sends (X ,witx, x) to A. The latter computes Sta = (accX , aux) ← Eval(K,X) and
Proof = Prove(Para,Sta,Wit = witx). As B wins the collision resistance security
game, we have that Verify(pkacc, accX ,Proof) = 1 while x /∈ X , which corresponds
to Verif(Para, Sta,Proof) = 1 while (Para,Sta,Proof) /∈ R. As B wins with non
negligible advantage, then so does A.

Note 2. In the rest of the paper, a witness witXx will be written witx for short, if there is
no ambiguity on the associated set X .

2.2 Overview

As mentioned earlier, accumulators have evolved over time to serve various purposes,
with new properties and functionalities being added to align with these objectives. How-
ever, these additions have often been made in isolation, leading to multiple definitions

6

of accumulators accompanied by core algorithm modifications. That makes it compli-
cated to have an overview of accumulators and their properties. That is why in 2015,
Derler et al. [26] proposed a unified formal model, dealing with most of existing accu-
mulators’ properties. Their work became a reference when working with accumulators.
However, since 2015 new properties of accumulators have been introduced, and some
functionalities, were not taken into account in the work of Derler et al.. In this section
we present an up-to-date (informal) overview of accumulators properties following our
definition for accumulators. We first list the features of accumulators, except for the
correctness property which was already defined in Section 2.1.

Trapdoorless: an accumulator scheme is said to be trapdoorless if the generation al-
gorithm Gen outputs a single public key pkacc instead of a key pair K = (skacc, pkacc).
Therefore, all algorithms taking as input K now take as input pkacc.

Note 3. Accumulators based on collision-resistant hash functions are trapdoorless.

Evaluation: in Definition 2, the evaluation algorithm takes as input the key pair K. If
Eval takes as input skacc (resp. pkacc) solely, we say that the accumulator has private
evaluation (resp. public evaluation).

Witness Generation: regarding the way witnesses are generated in WitCreate, the lit-
erature gives four possibilities: i) only using the public key [37], in this case the accu-
mulator is said to have public witness generation, ii) using the secret key [41], in this
case the accumulator has private evaluation, iii) using the public key or in a more ef-
ficient way using the secret key [4,26], iv) using a specially created private key, called
the evaluation key [30].

Note 4. In the case of trapdoorless accumulator, the evaluation and the witness genera-
tion are obliviously publicly made.

Trusted, Semi-Trusted and Non-Trusted Setup [26]: the knowledge of the accumula-
tor secret key skacc allows an adversary to break the security of the accumulator scheme,
such as the collision resistance property. Therefore a natural question arise: should we
trust the third party that runs the generation algorithm Gen? Oblivously there is no
need for a trusted setup in the case of trapdoorless accumulators. The question is more
tricky for other accumulators, such as those based on number theoretic assumptions.
Two models are defined: the trusted setup model in which a trusted third party runs
the generation algorithm Gen and discards skacc afterwards; the non-trusted model in
which such trusted third party does not exist. There exists another model, proposed by
Lipmaa [38]: the semi-trusted setup model. The idea is to divide the generation algo-
rithm Gen into two algorithms: Gen and Setup. In this model, the adversary can control
the randomness used in Setup (thus knows the secret key skacc) but she can neither
access or influence the randomness of the Gen algorithm. Notice that this model still
requires a partially trusted setup, and is not generally applicable (for example it does
not fit the known order group setting, refer to [26] for more details). Therefore, when
considering the state of the art it seems most reasonable (regarding the efficiency of
the schemes) to define a security model with respect to trusted setup as [26] did and as

7

we will do subsequently. We emphasize that this model is compatible with all existing
constructions.

Sizes requierements [18]: accumulator and witness sizes should be independent of the
number of accumulated elements. More formally, for N ∈ N that represents the size of
the setX represented by the accumulator accX , then we would like that |accX | /∈ O(N)
and for any x ∈ X , |witx| /∈ O(N).

Boundedness [5]: an accumulator scheme (Gen,Eval,WitCreate,Verify) is said to be
bounded if the generation algorithm Gen takes as additional input b ∈ N, such that for
all set X given as input of the evaluation algorithm Eval, |X | ≤ b.

Note 5. In some definitions, such as in [26], the parameter b belongs to N ∪∞ and is
always given as an input of Gen. An accumulator is then said to be bounded if b ̸=∞.

Dynamic [19]: an accumulator that additionally provides efficient algorithms (Add,
Delete,WitnessUpdate) that respectively adds/removes elements from the accumulated
set and the accumulator, and updates the witness accordingly. More formally, the algo-
rithms are defined as follows:

– Add(K, accX , aux, y): this algorithm takes as input the accumulator key pair K, an
accumulator accX for a set X , associated auxiliary information aux and an element
y to be added. If y ∈ X , it returns ⊥. Otherwise it returns the updated accumulator
accX ′ , with X ′

= X ∪ {y}, along with updated auxiliary information aux
′
.

– Delete(K, accX , aux, y): this algorithm takes as input the accumulator key pair K,
an accumulator accX for a set X , associated auxiliary information aux and an el-
ement y to be removed. If y /∈ X , it returns ⊥. Otherwise it returns the updated
accumulator accX ′ , with X ′

= X \ {y}, and updated auxiliary information aux
′
.

– WitnessUpdate(K,witx, aux, y): this algorithm takes as input the accumulator key
pair K, a witness witx to be updated, auxiliary information aux and a value y that
was added (resp. removed) to (resp. from) the accumulator, where aux indicates
addition or deletion. It returns updated witness wit

′

x on success, and ⊥ otherwise.

Note 6. If the accumulator scheme only provides Add (resp. Delete) and WitnessUpdate
algorithms, then we say that the scheme is additive (resp. subtractive).

Publicly Updatable [26]: a dynamic (or additive or subtractive) accumulator in which
updates (of the accumulators and witnesses) are performed without the secret key.

Universal [35]: witnesses can be generated to prove membership or non-membership.
The accumulator scheme now relies on two proof systems, one for proving membership
and one for proving non-membership. The witness creation, the proof computation and
the verification algorithms take an additional input, a boolean Type that indicates mem-
bership (Type = 0) or non-membership (Type = 1). More formally, an accumulator
(Gen,Eval,WitCreate,CompProof,Verify) is said to be universal if the syntax of the
witness creation, the proof computation algorithm, and the verification algorithms are as
follows: WitCreate(K,X , accX , y,Type),CompProof(pkacc, accX ,witx, x,Type) and
Verify(pkacc, accX , y,wity,Type). The witness creation algorithm outputs mwity for

8

membership witness and nmwity for non-membership witness. When given as input
Type = 0, the algorithms CompProof and Verify run respectively the Prove and Verif
algorithms of the membership proof system. Given as input Type = 1, they run the
non-membership proof system algorithms Prove and Verify.

Note 7. In some works, an accumulator scheme supporting only membership (resp.
non-membership) proofs is said to be positive (resp. negative).

Delegatable non-membership proofs [1]: it is possible for a user to give to another
entity the ability to prove non-membership of the former’s element, without the latter
knowing the concerned element. More formally, an accumulator with delegatable non-
membership proofs has four extra algorithms (Dele,Vali,Rede,CompNMProof) such
that Dele outputs a delegation key Dely associated to element y; Vali verifies if a dele-
gation key is valid; Rede computes a new delegation key from one given as input; and
CompNMProof computes a non-membership proof from the delegation key of element
y (Dely) for an accumulator given as input. See Section 5 for more details.

Note 8. i) A witness for an element x is related to the accumulated set but not to the
witness, whereas a delegation key is related to the x only and not the accumulated set. ii)
Defining the delegatable property when using the [26] model is kinda complicated. The
first thing to do is to separate the verification algorithm into two algorithms: the first one
computes some values from the accumulator and the witness, and the second verifies if
a given relation between those values is satisfied. However, defining formally for any
accumulator what these values are and what is the relation to verify is not an easy task.
Our definition is more suitable as it already propose two algorithms for the verification,
and formally introduced and highlight the proof system used in the accumulator.

Subset query [27,30,37] and Batching [28,55]: in an accumulator scheme with sub-
set query, witnesses can be generated for a subset of the accumulated set rather than
individual elements. In this case, the syntax of the witness generation algorithm is the
following one WitCreate(K,X , accX , aux, I), where I ⊂ X . Sometimes, direct gen-
eration is not possible thus the accumulator is using batching techniques [16] 2. For
example,witness aggregation [16] is a batching technique: first it computes individual
witnesses for all elements of the subset, then aggregates the witnesses.

Multiset setting [39,30,16]: sets that can be accumulated can be multisets. Each ele-
ment is associated to a count (belonging to N), that is equal to 0 when the element is
not accumulated. More formally, any set X that is accumulated is composed of tuples
of the form (xi, ki) for i = 1, · · · , |X |, where xi is the element to accumulated and
ki ∈ N represents the multiplicity of the element in the set.

Asynchronous [52]: the accumulator satisfies both low update frequency and old ac-
cumulator compatibility. An accumulator satisfies low update frequency if it is dy-
namic, and witnesses do not have to be updated at each update of the accumulator (for
witnesses associated to elements not added in the accumulator). An accumulator satis-
fies old accumulator compatibility if it is dynamic, and verification still holds with an

2 Applying a single action applied to n items instead of one action per item

9

updated witness and an old (not updated) accumulator, for an element already present
in the old accumulator.

Note 9. We present the asynchronous property for an additive, non-universal scheme,
as done in [52]. One can easily extend this property to a dynamic universal scheme.

Accumulators and Zero-Knowledge proofs: some works (such as [19,46,4,34]) com-
plete cryptographic accumulator with zero-knowledge proof-of-knowledge protocols: a
client that knows his value x is (or is not) in X , can efficiently prove to a third-party that
his value is (resp. is not) in the set, without revealing x or its associated witness. Some
accumulators are designed to be checked by a SNARK system efficiently, such as [20].
In this case we refer to such accumulators as SNARKs-friendly. Recently, Lipmaa in-
troduced a new type of accumulator, called determinantal [40], that has a structure that
support a special type of NIZK, called CLPØ [24].

Note 10. The formal definition of an accumulator scheme with zero-knowledge proofs,
the one of a SNARK-friendly scheme, and the one of a determinantal scheme can easily
be derived from our Definition 2 by replace the proof system by the appropriate NIZK.
Again we here prove the modularity of our definition.

Dually computable [12]: an accumulator with two evaluation algorithms, one that
takes as input only the scheme’s secret key, while the other takes as input the public
key solely. Outputs of both algorithms are distinguishable. More formally, an accumu-
lator (Gen,Eval,WitCreate,CompProof,Verify) is said to be dually computable if i)
the syntax of the evaluation algorithm is Eval(skacc,X), ii) there is a second evalua-
tion algorithm, with syntax PublicEval(pkacc,X), iii) for any set X ,Eval(skacc,X) ̸=
PublicEval(pkacc,X), and iv) the witness creation, the proof computation and the veri-
fication algorithms work with the outputs of both evaluation algorithms.

We now list all security properties found in the literature. A fundamental require-
ment for a secure cryptographic accumulator is collision resistance, as already pre-
sented in Section 2.1. Various definitions have been proposed in the literature, and we
discuss them for both dynamic and universal accumulators. In case of static (resp. non-
universal) scheme, just omit the dynamic (resp. universal) related parts. Throughout this
paper, we assume adversaries are "Probabilistic Polynomial Time" (PPT).

Note 11. In Definition 4, we use a static non-universal accumulator scheme. In the case
of a dynamic universal accumulator, the property can be defined similarly: the adversary
gains access to an oracle for acquiring membership and non-membership witnesses, as
well as an oracle for adding or deleting elements from an accumulator. The winning
condition remains consistent with the previous definition: meeting the condition from
before or discovering an element x′ in X to forge a non-membership witness 3.

3 [55] introduced the chosen element attack (CEA) to characterize collision resistance in dy-
namic accumulators. Notice that this term has been discontinued or abandoned.

10

One-Wayness [15]: informally it is hard for an adversary who is given a set X =
(x1, · · · , xN), its accumulation result (accX , aux), and another value x /∈ X (resp. x ∈
X) to output a value wit such that Verify(pkacc, accX ,Proof, 0) = 1, where Proof ←
CompProof(pkacc, accX , aux,wit, x, 0) (resp. Verify(pkacc, accX ,Proof, 1) = 1, Proof
← CompProof(pkacc, accX , aux,wit, x, 1)).

Strong One-Wayness [11]: informally, given X = (x1, · · · , xN) and accX , aux, it is
hard for an adversary to output x /∈ X (resp. x ∈ X) and wit such that Verify(pkacc, accX ,
Proof, 0) = 1, where Proof ← CompProof(pkacc, accX , aux,wit, x, 0) (resp. Verify(
pkacc, accX ,Proof, 1) = 1, where Proof ← CompProof(pkacc, accX , aux,wit, x, 1)).

Undeniability [38]: informally, it is hard for an adversary to output an accumulator
acc∗, a value x and two witnesses mwit and nmwit such that Verify(pkacc, acc

∗,Proof,

0) = 1 and Verify(pkacc, acc
∗,Proof

′
, 1) = 1) hold, where Proof ← CompProof(pkacc,

accX , aux,mwit, x, 0) and Proof
′
← CompProof(pkacc, accX , aux, nmwit, x, 1). No-

tice that the adversary has access to oracles OE ,OA,OD,OW that respectively repre-
sent the oracle for the algorithms Eval,Add,Delete and WitCreate.

One-Way-Domain [27]: informally, the accumulator is collision resistant, and the set
of values that can be accumulated is the span of a one-way function. Hence, it is compu-
tationally intractable to find witnesses for random values in the accumulator’s domain.
More formally, there exists a relation R over D (the accumulator domain)×A, where A
is another set, called the antecedent set, such that :

– (efficient verification): there exists an efficient algorithm D that on input (y, a) ∈
D × A, returns 1 if and only if (y, a) ∈ R.

– (efficient sampling): there exists a probabilistic algorithmW that on input λ returns
(y, a) ∈ D × A such that (y, a) ∈ R. We refer to a as pre-image of y.

– (one-wayness): it is computationally hard to compute any pre-image a
′

of an ele-
ment y that was sampled withW . Formally, for any PPT adversaryA: Pr [(y, a)←
W (λ); a

′ ← A(λ, y) : (y, a′
) ∈ R

]
= ϵ(λ), where ϵ(.) is a negligible function.

Indistinguishability [26]: informally, given the public key, the adversary chooses two
sets X0 and X1 and obtain the evaluation of one of the two. It has to decide which one.
Note that the adversary has access to oracles OE ,OA,OD,OW that represent the ora-
cles for the algorithms Eval, Add, Delete and WitCreate respectively. An adversary is
allowed to query them an arbitrary number of times. However, there are some restric-
tions regarding the oracles to prevent a trivial win by the adversary: OA can only be
ran on elements x /∈ X0 ∪ X1, OD can only be ran on elements x ∈ X0 ∩ X1, OW
when queried for Type = 0 (i.e. membership) can only return witnesses for elements
that belong to X0 ∩ X1, while when queried for Type = 1 (i.e. non-membership) can
only return witnesses for elements that do not belong to X0 ∪ X1.

Zero-knowledge accumulator [30]: informally, an accumulator is zero-knowledge (ZK)
if accumulated value, and (non-)membership witnesses leak nothing about the accumu-
lated set at any given point in the security game (even after insertions and deletions, if
the accumulator is dynamic).

11

Note 12. i) One requirement for ZK accumulator is to have ephemeral proofs, meaning
that a proof generated before an update should not be valid after an update. With this
condition, it is easy to see that a ZK accumulator scheme cannot be asynchronous. ii)
In the two above definitions, the adversary is not given the auxiliary information. iii)
Accumulators with zero-knowledge proof-of-knowledge protocols satisfy a privacy no-
tion that is different from the zero-knowledge notion of [30] in which the entire protocol
execution (as observed by a curious client or an external attacker) leaks nothing.

Obliviousness [10]: the accumulator satisfies both element hiding and Add-Del indis-
tinguishability. An accumulator satisfies element hiding if publicly available auxiliary
information aux output by update algorithms (Add or Delete) and associated to an ac-
cumulator does not lead any information about the elements in the accumulated set.
An accumulator satisfies Add-Del indistinguishability if no adversary given publicly
available information aux output by update algorithms (Add or Delete) can learn if an
operation is an addition or a deletion.

3 Discussions on Accumulators Security

This section presents several discussions on the security properties of accumulators.
First, we delve into the undeniability security property within the trusted model setup.
Following that, we discuss the obliviousness property. Finally, we summarize existing
relations between these properties and introduce new connections. It is worth noting that
we did not specifically address the relationships between certain properties of accumu-
lators and functionalities, as this aspect has already been explored in existing works [8].

3.1 Discussion about Undeniability in the Trusted Setup Model

According to [30], in the trusted setup model undeniability provides more than what is
necessary in terms of security. We formalize this statement, and we prove it.

Theorem 2. In the trapdoor setting, trusted model setup, if the evaluation is done pri-
vately, then the undeniability is an overkill; the collision resistance property is enough.

Proof. In the undeniability security game, when the only way for the adversary A to
compute acc∗ is to request the challenger (private evaluation) by giving a set X ∗ we
need to consider both cases:

– If x∗ ∈ X ∗, then Verify(pkacc, accX∗ ,Proof, 0) = 1, by definition, where Proof =
CompProof(pkacc, accX∗ , aux,mwitx∗ , x∗, 0), mwitx∗ ←WitCreate(K,X ∗, accX∗ ,

aux, x∗, 0). To win, A must find a non-membership witness nmwit
′

x∗ such that
Verify(pkacc, accX∗ ,Proof

′
, 1) = 1, where Proof

′
= CompProof(pkacc, accX∗ ,

aux, nmwit
′

x∗ , x∗, 1). Thus A wins if she wins the collision resistant game.
– If x∗ /∈ X ∗, Verify(pkacc, accX∗ ,Proof, 1) = 1, by definition, where Proof =

CompProof(pkacc, accX∗ , aux, nmwitx∗ , x∗, 1), nmwitx∗ ←WitCreate(K,X ∗, acc

X∗ , aux, x
′
, 1). To win the game, A must find a membership witness mwit

′

x∗ such
that Verify(pkacc, accX∗ ,Proof

′
, 1) = 1, where Proof

′
= CompProof(pkacc, accX∗ ,

aux,mwit
′

x∗ , x∗, 0). This means thatAwins if she wins the collision resistant game.

12

In both cases, collision-resistance is enough, and then undeniability is not required.

Note 13. If the evaluation is done publicly, i.e., without the knowledge of skacc, then
undeniability is required. Also (and obliviously) in the non-trusted setup model this
property is also required.

3.2 Discussion on Obliviousness

Before the recent work of Baldimtsi et al. [10], only two privacy-preserving properties
existed for accumulators: indistinguishability and zero-knowledge. Both demand that
the adversary lacks access to the accumulator’s auxiliary information aux, crucial for
preventing leaks about the accumulated set. This precaution is essential because auxil-
iary information could potentially disclose details about the accumulated set, particu-
larly when the latter is included in the auxiliary information or when the auxiliary in-
formation after an update reveals the added/removed element. Obliviousness [10] goes
further, ensuring that publicly available information doesn’t disclose anything about
the set, including its size. This property focuses on enhancing privacy during update
algorithm execution (i.e., aux

′
). The authors introduced some secret information during

the Add algorithm to hide the added element, which is also used in witness generation
and verification. However, in accumulator schemes, verification should rely on pub-
lic elements alone, making it challenging for an oblivious accumulator scheme. While
acknowledging the importance of protecting information leaked by aux, we remain un-
convinced that the proposed solution effectively addresses this concern.

3.3 Relations Between Security Properties

Looking at accumulators’ security properties, we classify them into two categories:
those that protect the witness (i.e., preventing forgery of witnesses), and those that pro-
tect the accumulated set (i.e., hiding information about the set). In the first category, we
have: (strong) one-wayness, collision resistance, one-way domain, and undeniability. In
the second category, we have: indistinguishability, zero-knowledge, and obliviousness.
It’s worth noting that the properties in the first category are computational, while in the
second category, they are decisional. Also, there is no security property that protects the
accumulated value, perhaps because the latter is mostly computed publicly.

Note 14. Properties that protect the accumulated set define privacy security for accu-
mulators schemes. As already observed in [42,43,26], when formulating a notion of
privacy for cryptographic accumulators the fact that the accumulation value computa-
tion must be randomized becomes evident.

Comparison between properties of the second category. The notion of zero-knowledge
differs from the privacy notion indistinguishability of [26], by protecting not only the
originally accumulated set but also all subsequent updates. In fact, [30] formally proved
in Section 3.3 the following theorem that states that for cryptographic accumulators,
zero-knowledge is a strictly stronger property than indistinguishability.

13

Theorem 3. Every zero-knowledge dynamic universal accumulator is indistinguish-
able under the definition of [26], while the opposite is not always true.

While being really similar at first glance, zero-knowledge and obliviousness are
actually different: in the former auxiliary information aux is not given while it is in
the latter. It seems then that obliviousness is stronger than zero-knowledge. However,
obliviousness requires some particular requirements in the accumulator’s algorithms.
Thus it cannot be applied to all schemes. Plus taking into account the above discussion,
we decided not to include this property in our comparison.

Relations between other properties. First, as the adversary is given more and more
flexibility, it is easy to see that the theorem below holds, while the opposite is not true.

Theorem 4. Every accumulator satisfying strong one-wayness satisfies one-wayness;
every collision resistant accumulator satisfies strong one-wayness; every one-way do-
main accumulator is collision resistant.

Due to lack of space, we furnish the proof that every collision resistance accumula-
tor satisfies strong one-wayness. The rest of the proof can easily be derived.

Proof. We prove the contrapositive: we suppose that there exists an adversary B that
breaks the strong one-wayness property, and we build an adversary A that breaks the
collision resistance property, using B. Let C be the challenger of the collision resistance
security game. C run Gen(λ) to get K = (skacc, pkacc) and sends pkacc to A, who sends
it to B. A then chooses a set X and queries the oracle OE to get accX . Then, she sends
X , accX to B. The latter returns an element x

′
/∈ X and a membership witness wit

′
such

that Verify(pkacc, accX ,Proof, 0) = 1, where Proof = CompProof(K, accX , aux,wit
′
,

x
′
, 0) = 1 with non negligible probability. Therefore, A outputs (X , x′

,wit
′
) and wins

the collision resistance security game with non negligible advantage.

For undeniability, the following lemma has been proven in Appendix C.1 of [26]

Lemma 3. Every undeniable universal accumulator is collision-resistant.

As mentioned in [38], a black-box reduction in the other direction is impossible.
In particular, [17] provides a collision-resistant universal accumulator and exhibit an
example to show that their scheme is not undeniable. This proves the following lemma.

Lemma 4. Not every collision resistant scheme is undeniable.

It remains to make the link between undeniability and one-way domain. At first, we
focus on the scheme based on sorted hash tree given in [17]. This one is proven to be
universal and collision resistant, and as state before it is not undeniable. It can moreover
be used for domain that is in the span of a one-way function. Hence, one-way domain
does not imply undeniability. Therefore, we can establish the following lemma that is
proven using the above counterexample.

Lemma 5. Not every one-way domain accumulator is undeniable.

14

For the opposite, we do not succeed in proving that this is true or false, and we
leave it as an open problem. In Figure 1, we summarize all the above properties and their
relation, based on related work, but also on our new results. In the figure an arrow means
“implies”, a crossed out arrow means “does not imply” and a dash arrow means “not
proven”. Notice that as there is no relation between obliviousness and other properties
we do not include the former in the figure.

Fig. 1. Relations between security properties of accumulators.

4 New Security Property

In a centralized cryptocurrency system, the accumulator represents spent transaction
outputs, enabling users to verify specific transactions through a publicly generated
membership witness. Until recently, there was no accumulator scheme offering both
private evaluation and public evaluation. Consequently, the scheme depended on a sig-
nature scheme to ensure the accuracy of the accumulator in representing approved
transactions. Bridging this gap, Barthoulot et al. [12] introduced the first accumula-
tor scheme with private evaluation and public witness generation. However, utilizing
their scheme in the described scenario lacks a mechanism (distinct from the signature)
to safeguard the accumulator. Our contribution addresses this security concern by intro-
ducing a novel property, making it challenging to “forge” a privately computed accu-
mulator that passes verification with a legitimate witness. Implementing an accumulator
with this property eliminates the need for a signature, simplifying the overall system.

Definition 5. Unforgeability of private evaluation (UPE). A static non-universal accu-
mulator scheme with private evaluation and public generation is said to satisfy unforge-
ability of private evaluation if for all PPT adversaries A there is a negligible function
ϵ(.) such that, for any y chosen randomly in X ∗:

Pr

(skacc, pkacc)← Gen(λ), (X ∗, acc∗)← A(pkacc);

(accX∗ , aux)← Eval(skacc,X ∗), y ← X ∗;
wity ←WitCreate(pkacc,X ∗, accX∗ , aux, y)

Proof ← CompProof(pkacc, accX∗ , aux,wity, y) :
Verify(pkacc, acc

∗,Proof) = 1

 ≤ ϵ(λ),
In other words, the adversary cannot convincingly demonstrate that they honestly

computed an accumulator for the chosen set X ∗. Therefore, the proof must be rejected

15

for any y ∈ X ∗ (except with negligible probability), which is why y is randomly se-
lected in the definition.

Note 15. This definition, which aims to address a gap in accumulator security, might
also be useful for advancing a study presented at CFail 2023 [13] where the authors
attempt to establish a connection between a primitive known as locally verifiable ag-
gregate signatures and asymmetric accumulators. The authors fail to prove this con-
nection, partly due to the absence of a security property for an accumulator that can be
considered analogous to the unforgeability of signature schemes.

In the following we prove that [12] accumulator satisfies our new security property.
Before to present [12]’s scheme, we recall informally some notation and definition.
First, for any group element g and any vectors v = (v1, · · · , vl), u = (u1, · · · , ul), we
denote by gv the vector (gv1 , · · · , gvl) and define e(gv, gu) :=

∏l
i=1 e(g

vi , gui) =
e(g, g)v·u. Let B = (b1, · · · , bn) and B∗ = (b∗1, · · · , b

∗
n) be two basis of Znp (p prime,

n fixed dimension). The two basis are dual orthonormal, meaning that bi · b∗j = 0
(mod p) whenever i ̸= j, and bi · b∗i = ψ (mod p) for all i, where ψ is a uni-
formly random element of Z∗

p. A tuple (B,B, ψ), called Dual pairing vector spaces
(DPVS) [47,23], is generated by the algorithm Dual(Znp). We now briefly present [12]’s
scheme, which is bounded by q ∈ N:

– The secret key is skacc = (s,D,D∗), where (D,D∗) ← Dual(Z2
p), ψ ∈ Zp is

the random such that d1 · d∗
1 = d2 · d∗

2 = ψ, and s is a random element of Z∗
p.

The public key is pkacc =
(
Γ, gd2

1 , gd2s
1 , · · · , gd2s

q

1 , g
d∗
1

2 , g
d∗
2

2 , g
d∗
2s

2 , · · · , gd
∗
2s

q

2

)
,

where Γ = (p,G1,G2, GT , e, g1, g2) is an asymmetric bilinear group.

– For a set X , its accumulator is accX = g
d1

∑q
i=0 ais

i

1 ∈ G2
1, where {ai}i=0,··· ,q are

the coefficients of the polynomial ChX [Z] =
∏
x∈X (Z + x).

– For an element y, its witness is wity = g
d∗
2

∑q
i=0 bis

i

2 , where {bi}i=0,··· ,q are the
coefficients of the polynomial ChX\{y}[Z] =

∏
x∈X\{y}(x+ Z).

– The verification is done by checking if e(accX , g
d∗
1

2) = e(g
d2(y+s)
1 ,wity).

To prove that the scheme satisfies this new property, we introduce the following
assumption, that can be reduced to CDH, as we prove in the extended version of our
work [14]. This assumption is the first computational assumption for dual pairing vector
spaces, and therefore might be of independent interest for future works.

Definition 6. Fixed argument dual pairing vector spaces inversion assumption(FA-
DPVS-I). Let Γ = (p,G1,G2,GT , e, g1, g2) be an asymmetric bilinear pairing group
and (D∗,D) ← Dual(Z2

p) be two dual orthonormal bases. The assumption states that

given (Γ, gd2
1 , g

d∗
1

2 , g
d∗
2

2) it is hard to compute gd1
1 .

Theorem 5. If the fixed argument dual pairing vector spaces inversion assumption
holds, then [12]’s accumulator satisfies unforgeability of private evaluation.

Proof. We prove the contrapositive. Let B be an adversary that breaks [12]’s scheme
UPE security with non negligible advantage. We build A an adversary that uses B to

16

break FA-DPVS-I assumption.A is given (Γ, gd2
1 , g

d∗
1

2 , g
d∗
2

2). She chooses s← Zp, cre-
ates pkacc and sends it to B. B answer toA with a tuple of message-forged accumulator
(X ∗, acc∗). A knows that for any y ∈ X ∗, e(acc∗, gd

∗
1

2) = e(g
d2(y+s)
1 ,wity) and that

e(g
d2(y+s)
1 ,wity) = e(g1, g2)

ψ
∑q

i=1 ais
i

. Thus e(acc∗, gd
∗
1

2) = e(g1, g2)
ψ
∑q

i=1 ais
i

.
Thanks to the knowledge ofX ∗ and s,A can recover {ai}qi=0, computes (

∑q
i=0 ais

i)−1

and obtains that e((acc∗)(
∑q

i=0 ais
i)−1

, g
d∗
1

2) = e(g1, g2)
ψ .A outputs (acc∗)(

∑q
i=0 ais

i)−1

as her answer and wins the game with an advantage equal to B’s advantage, therefore
with non-negligible advantage.

5 Delegatable Proofs

In this section we focus on a property introduced in 2010 by Acar and Nguyen [2]: del-
egatable non-membership proofs. Our aim is to understand what is necessary to obtain
delegatable proofs. Before to do this, we briefly recall some applications of accumula-
tors to highlight the interest of the delegatable property.

Accumulators’ applications. As already mentioned in the introduction, originally ac-
cumulators served purposes such as timestamping and membership testing [15]. Their
applications expanded to include fail-stop signatures [11], membership revocation in
group signatures [19], anonymous credentials (delegatable)[2], and e-cash [5] along
others. This list is not exhaustive; detailed applications are covered in surveys such
as [50]. An intriguing observation is that, while cryptographic accumulators aim to
maintain the size of cryptographic objects as constant, they are infrequently incorpo-
rated into encryption schemes. Works like [3,29,56] explore this avenue. [29,3] propose
broadcast encryption schemes using cryptographic accumulators (based on RSA) for
managing users’ secret keys. Wang and Chow [56] introduce an identity-based broad-
cast encryption scheme relying on a simplified form of accumulators. They leverage the
compactness of accumulator outputs for scheme efficiency but do not consider other
accumulator functionalities. Some research incorporates accumulators to add revoca-
tion functionality to existing encryption schemes. For instance, [32] adds revocation to
Lewko and Waters’ hierarchical identity-based encryption scheme [33]. Notably, [12]
proposes a scheme using cryptographic accumulators for both key management and
encryption, making it the only known scheme utilizing accumulators for encryption.
They employ dually computable accumulators to construct attribute-based encryption
schemes, albeit with a larger public key size, paving the way for future works in building
encryption schemes from accumulators.

Applications of delegatable proofs. Delegatable (non-)membership proofs, initially
designed for anonymous credentials, find utility in access control systems and permis-
sion delegation in distributed environments. As accumulators gain traction in encryp-
tion schemes, a promising avenue involves crafting a re-encryption proxy from an ac-
cumulator. By integrating delegation into an accumulator-based encryption scheme, the
potential for establishing a re-encryption proxy arises. Also, accumulators hold signif-
icance in blockchain and digital cash. Introducing delegatable proofs can significantly
enhance the efficiency of both systems while preserving privacy. Our goal is to dis-
cover a generic method for obtaining accumulators with this property. Focusing solely

17

on delegatable non-membership proofs, we simplify the discussion for clarity, noting
that the insights presented apply equally to delegatable membership proofs. We begin
by formally define an accumulator scheme with delegatable non-membership proofs.

Definition 7. Delegatable non-membership proofs[2]. A universal accumulator (Gen,
Eval,WitCreate,CompProof,Verify) allows delegatable non-membership proofs if it
additionally provides the following algorithms.

– Dele(pkacc, y): the delegation algorithm takes as input the public key pkacc and an
element y. It outputs a delegating key Dely .

– Vali(pkacc,Dely): the validation algorithm takes as input the public key pkacc and
a delegating key Dely . If Dely is valid it returns 1, otherwise it returns 0.

– Rede(pkacc,Dely): the re-delegation algorithm takes as input the public key pkacc
and a delegating key Dely . If Vali(pkacc,Dely) = 1, the algorithm returns an other
delegating key Del

′

x, otherwise it outputs ⊥.
– CompNMProof(pkacc,Dely,X , accX): the proof computation algorithm takes as

input the public key pkacc, a delegating key Dely , a set X and the associated accu-
mulated value accX . It returns a non-membership proof.

These algorithms verify, for every PPT adversaries A,A1,A2:

– Delegability: it states that a proof computed using a delegation key is indistinguish-
able from a proof computed using a witness if the following is negligible∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

K = (skacc, pkacc)← Gen(λ); (y,X)← A1(pkacc);
(accX , aux)← Eval(pkacc,X);

wity ←WitCreate(pkacc,X , accX , aux, y,Type = 1);
Proof0 ← CompProof(pkacc, accX , aux,wity, y,Type = 1);

Dely ← Dele(pkacc, y);
Proof1 ← CompNMProof(pkacc,Dely,X , accX);

b← {0, 1} ; b′ ← A2(accX ,wity,Dely,Proofb) : b = b
′

− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
– Unlinkability: this property states that a delegation key for y0 is indistinguishable

from a delegation key for y1 if the following is negligible∣∣∣∣Pr [K = (skacc, pkacc)← Gen(λ); (y0, y1)← D;Dely ← Dele(pkacc, y0);

b← {0, 1} ;Delyb ← Dele(pkacc, yb); b
′ ← A(pkacc,Dely,Delyb) : b = b

′

]
− 1

2

∣∣∣∣
– Redelegability: this property states that a delegation key output by the algorithm
Rede is indistinguishable from a delegation key output by the algorithm Dele if the
following is negligible∣∣∣∣∣∣Pr

K = (skacc, pkacc)← Gen(λ); y ← A1(pkacc);Dely ← Dele(pkacc, y);
Del0y ← Dele(pkacc, y);Del

1
y ← Rede(pkacc,Dely); b← {0, 1} ;

b
′ ← A2(pkacc,Dely,Del

b
y) : b = b

′

− 1

2

∣∣∣∣∣∣
– Verifiability: this property states that a delegation key generated honestly will al-

ways pass the Vali algorithm while this is not the case for a not honestly computed

18

delegation key, if the following are negligible∣∣∣∣Pr [K = (skacc, pkacc)← Gen(λ);x← A(pkacc);Dely ← Dele(pkacc, y) :
Vali(pkacc,Delx) = 1 if y ∈ D

]
− 1

∣∣∣∣
∣∣∣∣∣Pr

[
(skacc, pkacc)← Gen(λ);Del

′
← A(pkacc) : Vali(pkacc,Del

′
) = 0

if Del
′
/∈
{
Del

∣∣∣Del← Dele(pkacc, y
′
); y

′ ∈ D
}]

− 1

∣∣∣∣∣ ,
where the condition Del

′
/∈
{
Del|Del← Dele(pkacc, y

′
); y

′ ∈ D
}

means that the

delegation key Del
′

does not correspond to a delegation key correctly computed,
for any element y

′
of the domain D.

How to obtain delegatable proofs? To the best of our knowledge, only one accumu-
lator provides delegatable non-membership proofs: [2]. The key idea proposed by Acar
and Nguyen is to use a specific type of proof system: one that has homomorphic proofs,
a concept that they introduced. Informally, a proof system is said to be homomorphic if
it is associated with a law, denoted +Π , such that the result of +Π((Sta1,Wit1,Proof1),
(Sta1,Wit2,Proof2)), denoted (Sta,Wit,Proof), is a valid tuple composed of a proof
Proof computed from the statement Sta and witness Wit. Therefore, if the accumulator
can be expressed as a linear combination of public elements, then a delegating key will
correspond to a set of proofs (one per public element). Constructing the proof asso-
ciated with the statement corresponding to the accumulator is done by computing the
correct operation on the proofs.

Efficiency and Aggregation (Batching). As described, a delegation key is a set of
proofs. Therefore its size is dependent on the number of basis elements in the public
key, which might be high. A solution to improve the efficiency of the scheme is to
use a proof system with aggregation techniques (as done by Acar and Nguyen): the
delegation key is not a set of proofs, but an aggregation (or any batch) of the proofs,
i.e. one proof. In the following, we suppose that our non-membership proof system
also has batching techniques, represented by the algorithm Batch that batches proofs,
an algorithm BatchVerif that verifies a batched proof, knowing the associated set of
statements, and a extracting algorithm Extract that extract from the batched proof all
the proofs. Let us now see formally that all properties of a delegatable accumulator can
be achieved using the underlying proof system properties.

Delegatable non-membership proofs and proof systems. First, we define the proof
system properties that we will need: witness indistinguishability and randomizable.

Definition 8. Witness indistinguishability[31,1]. A proof system is said to satisfy wit-
ness indistinguishability if for any malicious verifier V , the following is negligible:

Pr

[
Para← Setup(λ,R), (Sta,Wit0,Wit1)← V(Para), b← {0, 1} ,

Proofb ← Prove(Para,Sta,Witb), b
′ ← V(Proofb) : b

′
= b

]
.

Definition 9. Randomizable proof system [1]. A proof system is said to be randomiz-
able if has another PPT algorithm RandProof that takes as input a tuple (Para,Sta,Proof)

19

of setup parameters Para, statement Sta and proof Proof and returns another valid
proof Proof

′
, which is indistinguishable from a proof produced by Prove.

Let us rewrite the additional algorithms Dele,Rede,Vali,CompProof required to
obtain an accumulator with delegatable non-membership proofs to highlight the non-
membership proof system (Setup, Prove,Verif). Doing so, we can see that the prop-
erties of witness indistinguishability and randomizable of the proof system guarantees
unlinkability and redelegability, while Verifiability comes directly from the proof sys-
tem completeness and soundness. Notice that the proof system parameters Para are
included in pkacc, and that there exists an algorithm CompWit that takes as input public
parameters Para, statement Sta and an element y, and returns a witness Wity for y.

– Dele(pkacc, y) : the algorithm extracts the public parameters Para from the accumu-
lator public key pkacc, and from Para it extracts the basis elements that forms a set
of statement {Stal}l. For each l it runs CompWit(Para,Stal, y) to get Witl and then
computes Prove(Para,Stal,Witl) to get Proofl. It runs Batch(Para, {Stal,Proofl}l)
to get Proof and outputs Dely = Proof.

– Vali(pkacc,Dely) : the algorithm runs the batch verification algorithm BatchVerif
on public parameters Para, statement {Stal}l and the batched proof Dely .

– Rede(pkacc,Dely): if Vali(pkacc,Dely) = 1, the algorithm runs the randomization
algorithm RandProof on public parameters Para, statement {Stal} and proof Proof
to get a randomized proof Proof

′
.

– CompProof(pkacc,Dely,X , accX): from Para, X and accX the algorithms finds
the linear relation between accX and the basis elements contained in Para. Then,
it first extracts the proofs Proofl of Dely , then it uses homomorphic property of
the proof system to obtain Proofy , and finally it uses the randomization algorithm
RandProof(Para, accX ,Proofy) to get a randomized proof Proof

′

y that it outputs.

Lemma 6. Verifiability is satisfied thanks to the completeness and soundness of the
non-membership proof system.

Proof. First, let us see that the first condition is satisfied if the proof system scheme
satisfies completness. Let y ∈ D and {Stal}l be the basis elements. Then Dele com-

putes honestly
{
Witly

}
l
, from CompWit, {Proofl}l, and Proof from Batch. Then, from

completeness, we have that the probability that BatchVerif returns 1 is equal to 1. Thus,
as Vali runs BatchVerif, we have the first condition. Then, it is easy to see that if the
second condition does not hold, that means that the underlying proof system does not
satisfy soundness. Indeed, if there is an adversary that can creates a fake delegation key
that passes the verification algorithm, we can create an adversary to win the soundness
game, using the adversary against verifiability’s second condition.

Lemma 7. Redelagability is satisfied thanks to the randomizable property of the non-
membership proof system.

Proof. Let us see that if there is an adversary, let us say B, that breaks the redelagabil-
ity property, then we can build an adversary, denoted A, that breaks the randomizable

20

property of the proof system. First, A is given Para from the challenger, and she sim-
ulates the accumulator challenger by computing pkacc, that she sends to B. The latter
chooses y that she sends to A. A then creates the witnesses

{
Witly

}
l

that she sends to

the challenger, along with {Stal}l. The challenger computes {Proofl}, then runs Batch
to get Proof. She picks b ∈ {0, 1}: if b = 0, she sends Proof0 = Proof to A, other-
wise she runs the randomization algorithm RandProof to get Proof

′
= Proof1 that she

sends to A. The latter also computes ˜Proof from Batch and {Proofl}l, and she sends
Proofb, ˜Proof to B. B can distinguish a proof computed by Dele from a proof computed
by Rede, therefore she wins the game with non-negligible advantage, and so does A by
outputting B’s answer.

Lemma 8. Unlinkability is satisfied thanks to the witness indistinguishability property
of the non-membership proof system.

Proof. Let us see that if there is an adversary, let us say B, that breaks the unlinkability
property, then we can build an adversary, denoted A, that breaks the witness indistin-
guishability property of the proof system. First,A is given Para from the challenger, and
she simulates the accumulator challenger by computing pkacc, that she sends to B. The
latter chooses y0, y1 that she sends toA.A then creates the witnesses

{
Witly0 ,Witly1

}
l

that she sends to the challenger, along with {Stal}l. The challenger picks b ∈ {0, 1} and

computes {Proofl} from
{
Witlyb

}
l

then she runs Batch to get Proof, that is sent to A.

The latter then computes a proof Proof0 for y0 and she sends to B (Proof,Proof0). B
can distinguish a proof computed for y0 from a proof computed by for y1, therefore she
wins the game with non-negligible advantage, and so does A by outputting B’s answer.

Note 16. In [1], they proved that their accumulator satisfies unlinkability as they used
a composable ZK proof system. Actually, only witness indistinguishability is required.

How to obtain delegability? The witness indistinguishability and randomizable prop-
erty of proof systems are not enough to obtain an accumulator with delegatable non-
membership proof as delegability cannot be proven. To solve this issue, [2] uses a prim-
itive they introduced: homomorphic proofs.

Definition 10. Homomorphic proofs [2]. Let (Setup,Prove, Verif) be a proof system
for a relation R and Para ← Setup(λ). Consider a subset Π of all (Sta,Wit, Proof)
such that (Para,Sta,Wit) ∈ R and Verif(Para,Sta, Proof) = 1, and an operation
+Π : Π × Π → Π . Π is a set of homomorphic proofs if (Π,+Π) satisfies closure,
associativity and commutativity. Consider an IΠ = (Sta0,Wit0,Proof0) ∈ Π . Π is a
set of strongly homomorphic proofs if (Π,+Π , IΠ) forms an Abelian group where IΠ
is the identity element.

Lemma 9. Delegability is satisfied thanks to the homomorphic proofs and the random-
izable property of the non-membership proof system.

Proof. Thanks to the homomorphic property, the proof output by CompNMProof is a
valid proof for statement Sta = (accX , aux). Plus, as CompNMProof is using RandProof

21

to randomize the computed proof, the proof is indistinguishable from a proof computed
using the proof system Prove algorithm, for statement Sta = (accX , aux).

Conclusion. To obtain an accumulator scheme that has delegatable proofs, the used
proof systems must: i) satisfy witness indistinguishability, ii) be randomizable, iii) have
homomorphic proofs, and iv) support batching techniques. The last two points are the
most complicated to obtain. Indeed, currently (as far as we know) there is only one
proof system proven to have homomorphic proofs: Groth Sahai proofs. However, this
holds only if some conditions on parameters Para, statements Sta and witnesses Wit are
satisfied, such as the fact that witnesses and statements must have some constant parts.
Quite the same goes for batching techniques: Groth-Sahai proofs support batching on
some conditions only. Taking all that into account it seems that not all accumulators can
be added delegation property and thus providing a generic construction is not possible.

Acknowledgement. The authors would like to thank anonymous reviewers for their
helpful discussions and valuable comments. This work is supported in part by the
Banque Publique d’Investissement under the VisioConfiance project and the French
ANR SANGRIA project (ANR-21-CE39-0006).

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. Technical Repost
MSR-TR-2010-170, Microsoft Research (2010)

2. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 423–440. Springer, Heidelberg (Mar 2011). https://doi.org/10.1007/
978-3-642-19379-8_26

3. Asano, T.: A revocation scheme with minimal storage at receivers. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg (Dec 2002).
https://doi.org/10.1007/3-540-36178-2_27

4. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for DDH groups
and their application to attribute-based anonymous credential systems. In: Fischlin, M. (ed.)
CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer, Heidelberg (Apr 2009). https:
//doi.org/10.1007/978-3-642-00862-7_20

5. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumulator. In: Abe,
M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer, Heidelberg (Feb 2007).
https://doi.org/10.1007/11967668_12

6. Ayebie, E.B., Souidi, E.M.: New code-based cryptographic accumulator and fully dy-
namic group signature. DCC 90(12), 2861–2891 (2022). https://doi.org/10.
1007/s10623-022-01007-5

7. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K.,
Yakoubov, S.: Accumulators with applications to anonymity-preserving revocation. Cryp-
tology ePrint Archive, Paper 2017/043 (2017), https://eprint.iacr.org/2017/
043, https://eprint.iacr.org/2017/043

8. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K.,
Yakoubov, S.: Accumulators with applications to anonymity-preserving revocation. pp. 301–
315 (04 2017). https://doi.org/10.1109/EuroSP.2017.13

22

https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/3-540-36178-2_27
https://doi.org/10.1007/3-540-36178-2_27
https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/978-3-642-00862-7_20
https://doi.org/10.1007/11967668_12
https://doi.org/10.1007/11967668_12
https://doi.org/10.1007/s10623-022-01007-5
https://doi.org/10.1007/s10623-022-01007-5
https://doi.org/10.1007/s10623-022-01007-5
https://doi.org/10.1007/s10623-022-01007-5
https://eprint.iacr.org/2017/043
https://eprint.iacr.org/2017/043
https://eprint.iacr.org/2017/043
https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.1109/EuroSP.2017.13

9. Baldimtsi, F., Canetti, R., Yakoubov, S.: Universally composable accumulators. In: Jarecki,
S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 638–666. Springer, Heidelberg (Feb 2020).
https://doi.org/10.1007/978-3-030-40186-3_27

10. Baldimtsi, F., Karantaidou, I., Raghuraman, S.: Oblivious accumulators. In: Tang, Q.,
Teague, V. (eds.) Public-Key Cryptography – PKC 2024. pp. 99–131. Springer Nature
Switzerland, Cham (2024)

11. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes with-
out trees. In: Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 480–494. Springer,
Heidelberg (May 1997). https://doi.org/10.1007/3-540-69053-0_33

12. Barthoulot, A., Blazy, O., Canard, S.: Dually computable cryptographic accumula-
tors and their application to attribute based encryption. Cryptology ePrint Archive,
Paper 2023/1277 (2023), https://eprint.iacr.org/2023/1277, https://
eprint.iacr.org/2023/1277

13. Barthoulot, A., Blazy, O., Canard, S.: Locally verifiable signatures and cryptographic accu-
mulators: different names, same thing? (2023)

14. Barthoulot, A., Blazy, O., Canard, S.: Cryptographic accumulators: New defini-
tions, enhanced security, and delegatable proofs. Cryptology ePrint Archive, Paper
2024/657 (2024), https://eprint.iacr.org/2024/657, https://eprint.
iacr.org/2024/657

15. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital sinatures (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT’93. LNCS,
vol. 765, pp. 274–285. Springer, Heidelberg (May 1994). https://doi.org/10.
1007/3-540-48285-7_24

16. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to
IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part I. LNCS, vol. 11692, pp. 561–586. Springer, Heidelberg (Aug 2019). https://doi.
org/10.1007/978-3-030-26948-7_20

17. Buldas, A., Laud, P., Lipmaa, H.: Eliminating counterevidence with applications to ac-
countable certificate management. Journal of Computer Security 10, 273–296 (08 2002).
https://doi.org/10.3233/JCS-2002-10304

18. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (Mar 2009). https://doi.org/
10.1007/978-3-642-00468-1_27

19. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (Aug 2002). https://doi.org/10.1007/
3-540-45708-9_5

20. Campanelli, M., Fiore, D., Han, S., Kim, J., Kolonelos, D., Oh, H.: Succinct zero-knowledge
batch proofs for set accumulators. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
ACM CCS 2022. pp. 455–469. ACM Press (Nov 2022). https://doi.org/10.1145/
3548606.3560677

21. Canard, S., Gouget, A.: Multiple denominations in e-cash with compact transaction data. In:
Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 82–97. Springer, Heidelberg (Jan 2010)

22. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (Feb / Mar
2013). https://doi.org/10.1007/978-3-642-36362-7_5

23. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures
via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) PAIRING 2012. LNCS,
vol. 7708, pp. 122–140. Springer, Heidelberg (May 2013). https://doi.org/10.
1007/978-3-642-36334-4_8

23

https://doi.org/10.1007/978-3-030-40186-3_27
https://doi.org/10.1007/978-3-030-40186-3_27
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://eprint.iacr.org/2023/1277
https://eprint.iacr.org/2023/1277
https://eprint.iacr.org/2023/1277
https://eprint.iacr.org/2024/657
https://eprint.iacr.org/2024/657
https://eprint.iacr.org/2024/657
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.3233/JCS-2002-10304
https://doi.org/10.3233/JCS-2002-10304
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1145/3548606.3560677
https://doi.org/10.1145/3548606.3560677
https://doi.org/10.1145/3548606.3560677
https://doi.org/10.1145/3548606.3560677
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-642-36334-4_8
https://doi.org/10.1007/978-3-642-36334-4_8

24. Couteau, G., Lipmaa, H., Parisella, R., Ødegaard, A.T.: Efficient nizks for algebraic sets. In:
Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021. pp. 128–158.
Springer International Publishing, Cham (2021)

25. Damgard, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map accu-
mulators. Cryptology ePrint Archive, Report 2008/538 (2008), http://eprint.iacr.
org/2008/538

26. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional
properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS,
vol. 9048, pp. 127–144. Springer, Heidelberg (Apr 2015). https://doi.org/10.
1007/978-3-319-16715-2_7

27. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 609–626. Springer, Heidelberg (May 2004). https://doi.org/10.1007/
978-3-540-24676-3_36

28. Fazio, N., Nicolosi, A.: Cryptographic accumulators: Definitions, constructions and applica-
tions (2002)

29. Gentry, C., Ramzan, Z.: RSA accumulator based broadcast encryption. In: Zhang, K., Zheng,
Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 73–86. Springer, Heidelberg (Sep 2004)

30. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.: Zero-
knowledge accumulators and set algebra. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 67–100. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53890-6_3

31. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (Dec 2010).
https://doi.org/10.1007/978-3-642-17373-8_19

32. Jia, H., Chen, Y., Lan, J., Huang, K., Wang, J.: Efficient revocable hierarchical identity-based
encryption using cryptographic accumulators. International Journal of Information Security
(2018)

33. Lewko, A.B., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (May
2011). https://doi.org/10.1007/978-3-642-20465-4_30

34. Li, F., Hu, Y., Zhang, C.: An identity-based signcryption scheme for multi-domain ad hoc
networks. In: Katz, J., Yung, M. (eds.) ACNS 07. LNCS, vol. 4521, pp. 373–384. Springer,
Heidelberg (Jun 2007). https://doi.org/10.1007/978-3-540-72738-5_24

35. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In:
Katz, J., Yung, M. (eds.) ACNS 07. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg
(Jun 2007). https://doi.org/10.1007/978-3-540-72738-5_17

36. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based
accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. In-
ternational Conference on the Theory and Applications of Cryptographic Techniques (2016)

37. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From polynomial
commitments to pairing-based accumulators from simple assumptions. In: Chatzigiannakis,
I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016. LIPIcs, vol. 55, pp. 30:1–
30:14. Schloss Dagstuhl (Jul 2016). https://doi.org/10.4230/LIPIcs.ICALP.
2016.30

38. Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In: Bao, F.,
Samarati, P., Zhou, J. (eds.) ACNS 12. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg
(Jun 2012). https://doi.org/10.1007/978-3-642-31284-7_14

39. Lipmaa, H., Fauzi, P., Zhang, B.: Efficient non-interactive zero knowledge arguments for set
operations. International Conference on Financial Cryptography and Data Security (2014)

24

http://eprint.iacr.org/2008/538
http://eprint.iacr.org/2008/538
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-540-72738-5_24
https://doi.org/10.1007/978-3-540-72738-5_24
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-642-31284-7_14

40. Lipmaa, H., Parisella, R.: Set (non-)membership nizks from determinantal accumulators.
Cryptology ePrint Archive, Paper 2022/1570 (2022), https://eprint.iacr.org/
2022/1570, https://eprint.iacr.org/2022/1570

41. Mahabir, J., Reihaneh, S.N.: Compact accumulator using lattices. International Conference
on Security, Privacy, and Applied Cryptography Engineering (2015)

42. de Meer, H., Liedel, M., Pohls, H.C., Posegga, J.: Indistinguishability of one-way accumu-
lators. Technical Report MIP-1210, Faculty of Computer Science and Mathematics (FIM),
University of Passau (2012)

43. de Meer, H., Pohls, H.C., Posegga, J., Samelin, K.: Redactable signature schemes for trees
with signer-controlled non-leaf-redactions. E-Business and Telecommunications (2014)

44. Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving crypto-
graphic constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II.
LNCS, vol. 11922, pp. 25–55. Springer, Heidelberg (Dec 2019). https://doi.org/
10.1007/978-3-030-34621-8_2

45. Nguyen, L.: Accumulators from bilinear pairings and applications. CT-RSA (2005)
46. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.)

CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (Feb 2005). https:
//doi.org/10.1007/978-3-540-30574-3_19

47. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Mat-
sui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (Dec
2009). https://doi.org/10.1007/978-3-642-10366-7_13

48. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data struc-
tures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 353–370. Springer, Heidelberg (May 2013). https://doi.org/10.1007/
978-3-642-38348-9_22

49. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer,
Heidelberg (Aug 2011). https://doi.org/10.1007/978-3-642-22792-9_6

50. Ren, Y., Liu, X., Wu, Q., Wang, L., Zhang, W.: Cryptographic accumulator and its appli-
cation: A survey. Security and Communication Networks 2022, 1–13 (03 2022). https:
//doi.org/10.1155/2022/5429195

51. Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed pki. Internar-
ional Conference on Security and Cryptography fo Networks (2016)

52. Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI. In: Zikas,
V., De Prisco, R. (eds.) SCN 16. LNCS, vol. 9841, pp. 292–309. Springer, Heidelberg
(Aug / Sep 2016). https://doi.org/10.1007/978-3-319-44618-9_16

53. Tomescu, A., Bhupatiraju, V., Papadopoulos, D., Papamanthou, C., Triandopoulos, N., De-
vadas, S.: Transparency logs via append-only authenticated dictionaries. In: Cavallaro, L.,
Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 1299–1316. ACM Press (Nov
2019). https://doi.org/10.1145/3319535.3345652

54. Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih, C.S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (Nov / Dec
2003). https://doi.org/10.1007/978-3-540-40061-5_16

55. Wang, P., Wang, H., Pieprzyk, J.: A new dynamic accumulator for batch updates. In: Qing,
S., Imai, H., Wang, G. (eds.) ICICS 07. LNCS, vol. 4861, pp. 98–112. Springer, Heidelberg
(Dec 2008)

56. Wang, X., Chow, S.S.M.: Cross-domain access control encryption: Arbitrary-policy,
constant-size, efficient. In: 2021 IEEE Symposium on Security and Privacy. pp. 748–761.
IEEE Computer Society Press (May 2021). https://doi.org/10.1109/SP40001.
2021.00023

25

https://eprint.iacr.org/2022/1570
https://eprint.iacr.org/2022/1570
https://eprint.iacr.org/2022/1570
https://doi.org/10.1007/978-3-030-34621-8_2
https://doi.org/10.1007/978-3-030-34621-8_2
https://doi.org/10.1007/978-3-030-34621-8_2
https://doi.org/10.1007/978-3-030-34621-8_2
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-642-10366-7_13
https://doi.org/10.1007/978-3-642-10366-7_13
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1155/2022/5429195
https://doi.org/10.1155/2022/5429195
https://doi.org/10.1155/2022/5429195
https://doi.org/10.1155/2022/5429195
https://doi.org/10.1007/978-3-319-44618-9_16
https://doi.org/10.1007/978-3-319-44618-9_16
https://doi.org/10.1145/3319535.3345652
https://doi.org/10.1145/3319535.3345652
https://doi.org/10.1007/978-3-540-40061-5_16
https://doi.org/10.1007/978-3-540-40061-5_16
https://doi.org/10.1109/SP40001.2021.00023
https://doi.org/10.1109/SP40001.2021.00023
https://doi.org/10.1109/SP40001.2021.00023
https://doi.org/10.1109/SP40001.2021.00023

	Cryptographic Accumulators: New Definitions, Enhanced Security, and Delegatable Proofs

